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ABSTRACT 
 

Pristine and oxygen functionalized multi-walled carbon nanotubes were used as adsorbent for 
removal of Methyl Orange (MO) dye. The adsorption was carried out under different pH values. The 
analysis of results indicated that the adsorption characteristics of the MO dye by pristine carbon 
nanotubes (P-CNTs) and oxygen functionalized carbon nanotubes (O2-CNTs) are highly influenced 
by the pH of the medium. The study report that the best pH medium of solution for the adsorption of 
MO on both CNTs was acid medium. The point of zero charge (pzc) of O2-CNTs and P-CNTs were 
determined as function of pH. The pzc of P-CNTs and O2-CNTs are found to be 4.7 and 3.9, 
respectively. The adsorption data have been analyzed using Langmuir and Freundlich. Fitting the 
equilibrium adsorption data by Langmuir and Freundlich models shows that experimental data well 
explained by the Langmuir equation. 
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1. INTRODUCTION 
 
Effluents from industries contain numerous 
organic pollutants and discharging them has 

become a significant issue of environmental 
concern due to their toxicity and carcinogenicity. 
Polycyclic aromatic hydrocarbons, e.g. oils, 
plasticizer, phenols, pesticides, dyes and 
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fertilizers, are one of the main groups of                
these organic pollutants. These organic 
contaminants may remain in the environment              
for long period of time because of their high 
degree of aromaticity and conjugation [1].                   
Dyes are widely used and extensively    
discharged by industries and considered the 
main type of pollutants and posing hazard to 
living organisms [2,3]. They have many 
applications in different fields such as dyeing and 
printing on fibers and fabrics of all kinds, food 
coloring, as well as for medicinal and cosmetic 
uses [4]. 
 
Several methods in wastewater treatment 
technology have been performed to degrade or 
remove organic contaminants from aqueous 
solutions including electrochemical treatment, 
ozonation, photo degradation, adsorption, ion 
exchange and evaporative recovery [5-14]. 
Adsorption method has been proved by 
researches to be an effective and one of the 
extensively used approaches for the removal of 
organic and inorganic pollutant from wastewater 
[15-17]. Different adsorbents have been 
developed and modified for this purpose. Among 
these absorbents, activated carbon is the most 
commonly due to its excellent capacity of 
adsorption for organic pollutants [18]. Recently, 
nano-structured materials have been extensively 
used to remove toxic substances. CNT scan 
served as excellent adsorbents and widely 
studied carbon nanomaterials due to their large 
specific surface area and hollow and layered 
structure [19-21]. 
 
CNTs have received great interest in water 
treatment as a new kind of adsorbent because of 
their small size, well-developed mesopores, large 
accessible specific surface area, high aspect 
ratio, as well as easily modified surfaces. Large 
surface area and high porosity provide enough 
adsorption sites for harmful contaminations 
present in wastewater. High aspect ratio of CNTs 
makes it a possible candidate for water 
purification. In recent years, great efforts have 
been made to remove various organic pollutants 
and metal ions in wastewater by CNTs [22]. To 
further improve their adsorption performance, 
various CNTs composites have been 
synthesized and widely used to remove dye 
pollutions from wastewater. However, the 
adsorption capabilities are not entirely 
satisfactory and it is still a challenge to explore 
novel CNTs composites adsorbents with high 
adsorption capacity, short adsorption time as well 
as low cost for practical utilization. 

The functionalization of CNTs surfaces was 
envisioned by many researchers in order to 
enhance their chemical properties [23]. The 
surface modification of the CNTs can be 
performed by covalent and noncovalent (van der 
Waals bonds), or by creating defect, sidewall 
functionalization and exohedral and endohedral 
functionalization [24]. Generally, during CNTs 
modification, chemical functionalities such as 
OH, COOH, NH2 groups are attached to the sp2 
carbon framework. This kind of functionalization 
promotes the CNTs' dispersion in a wide variety 
of solvents and polymers, enabling the use of 
nanotubes in a wide range of applications [25]. 
The most prominent interactions are between 
aliphatic C-H donors and aromatic pi-acceptors 
and interactions between aromatic C-H donors 
and aromatic pi-acceptors. In the case of 
covalent modification, the desired functional 
group is attached to the sidewall or to the ends of 
the carbon nanotubes [26], while in the case of 
non-covalent modifications, van der Waals force 
and π-π interactions take place. It is worth 
mentioning that the non-covalent tuning of CNTs 
is preferable for the enhancement of the 
interfacial properties of the CNTs as it avoids the 
destruction of CNT structure [27]. 
 
The MO is a representative azo dye which is 
widely used for colorization in paper, textile and 
chemical industries. The MO dye and its 
degradation products threaten to human health 
and aquatic life safety Due to their toxicity and 
carcinogenicity [28]. Since CNT shave emerged 
as a good adsorbent for dye removal from 
wastewater, therefore, the main aim of this study 
is to use to different type of multiwalled CNTs 
pristine CNTs (P-CNTs) and oxygen 
functionalized CNTs (O-CNTs) for MO dye 
removal and investigate the ability of these two 
CNTs as adsorbents. The effect of pH and point 
of zero charge for each CNTs on adsorption 
were studied. We also interested to study the two 
well-known isotherms, Langmuir and Freundlich 
on adsorption process. 
 

2. MATERIALS AND METHODS  
 

2.1 Materials 
 

The MO dye was purchased from Labpak 
Chemicals Ltd, UK, and used as received to 
prepare solutions that used in this paper. The 
characteristics of MO are shown in Table 1. The 
methyl orange concentrations used in this study 
were 10, 20, 30 and 40 mg/L. The stock solution 
of MO (1000 mg/L) was covered and stored in a 
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dark place. Deionised water was used to prepare 
all solutions used in this research. Multi-walled 
carbon nanotubes functionalised by oxygen (O2-
CNTs) and pristine multi-walled carbon 
nanotubes (P-CNTs) were purchased from 
Haydale Ltd., UK and used as catalyst in this 
study. The characteristics of both CNTs are 
shown in Table 2. Nitric acid (HNO3) and sodium 
hydroxide (NaOH) were purchased from Fisher-
Scientific, UK. Various molarities of HNO3 and 
NaOH were used to adjust the pH value of 
solutions between 2 and 10 using pH meter. 
 

2.2 Adsorption Isotherm 
 
P-CNTs and O2-CNTs each with 10 mg were 
used as adsorbents and four solutions of MO 
with initial concentration 10, 20, 30 and 40 mg/L 
were used. This involved using 200 mL of MO in 
a reactor and placed on a stirrer for better mixing 
for 60 min. Samples were taken at a specific 
schedule, 2 mL of sample, using a glass syringe 
with 10 mL. For separating adsorbents from the 
taking sample before analysis, a centrifuge was 
used. The samples were analysed using 
spectrophotometer with maximum absorbance 
508 nm. 
 
The following equation was used to calculate the 
percentage of MO removal: 
 

% ���������� =
�� − ��

��

∗ 100 %     (1) 

 
where Co is the concentration of MO dye at initial 
and Ce is the concentration at equilibrium. 
 

The amount of dye adsorbed per unit mass of 
adsorbent was calculated as follows: 
 

�� =
�� − ��

m
∗ V    (2) 

 

Langmuir and Freundlich models were applied 
for describing the adsorption of MO on P-CNTs 
and O2-CNTs. The Langmuir model can be 
written in a linear form as in below equation In 
order to obtain Qm and b values [29,30]: 
 

��

��

=
1

���

+
��

��

 
  

(3) 
 

 

Where Ce is the equilibrium concentration of 
sorbent (mg/L), Qm is the maximum sorption 
capacity (mg/g), qe is the mass of MO adsorbed 
per unit mass of adsorbent at equilibrium (mg/g), 
b is the Langmuir adsorption constant (L/mg). 
 

On the other hand, the Freundlich isotherm can 
be obtained by the equation 3. For non-ideal 
adsorption and when the surface is 
heterogeneous the Freunlidh isotherm is used 
[31]. Where nf is the Freundlich coefficient and Kf 
is the Freundlich constant. A linear equation is 
used to determine Kf and nf: 
 

���� = ���� +
1

��

���� 
(4) 

2.3 Characterisation of Adsorbents 
 
Identifying point of zero charge (pzc) in aqueous 
media is very important for adsorption and 
desorption of contaminants. The particle size of 
CNTs was measured using a High Performance 
ParticleSizer 3.3 (Malvern Instrument, UK) at 
room temperature, pH 5.13 and a 30-min 
presonication. The zeta potential of CNTs was 
measured by a Malvern Zetasizer 2000 at room 
temperature. Five CNT solutions at a 
concentration of 10 mg/L and pH values of 
approximately 2, 3, 4, 5, 6, 7 and 8 were used for 
measuring the CNTs point of zero charge (pzc). 
The pH values of these solutions were adjusted 
using 0.1M NaOH or 0.1M HNO3. 

Table 1. Methyl orange dye characteristics 
 

Property Value 

C.I. index C.I. Acid Orange 52 

Molecular Formula C14H14N3NaO3S 

Molar Mass 327.34 g/mole 

IUPAC Name Sodium 4-([4-(dimethylamino) phenyl] 
diazenyl) benzenesulfonate 

Colour Blue 

λmax 508 nm at pH< 4 

464 nm at pH ≥ 4 

pKa 3.47 
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Table 2. Properties of the P-CNTs and O-CNTs used in this research work 
 

P-CNTs O-CNTs 
Property Value Property Value 
Carbon Content (%) 96 Carbon Content (%) 95 
Outer Diameter (nm) ~ 13-16 Outer Diameter (nm) ~ 13-16 
Length (μm) ~ 1 Length (μm) ~ 1 
Aspect ratio (length/diameter)  ~ 69 Aspect ratio (length/diameter)  ~ 72 
Bulk Density (g/cm

3
)  ~ 0.19 Bulk Density (g/cm

3
)  ~ 0.21 

BET surface area (m2/g)  ~ 250 BET surface area (m2/g)  ~ 258 
Ash  ~ 1.5 Oxygen content  3.5-4 

 

3. RESULTS AND DISCUSSION 
 
3.1 Effect of pH 
 
The oxidation states and hence the properties of 
CNTs are mainly rely on the pH of the solution 
[32]. The surface charge of the adsorbents and 
the degree of ionization of dye are influenced by 
the pH of the solution due to the protonation and 
deprotonation of the functional groups [33]. The 
adsorption of other ions is affected by the pH of 
the solution because the hydrogen ion (H

+
) and 

hydroxyl ion (OH-) are strongly adsorbed to the 
surface of adsorbent. The effect of pH was 
studied and experiments were carried out at 
different pH levels (2 to 10) and the results for 
MO in the presence of different adsorbents are 
given in Fig. 1. The figure shows the increasing 
of adsorption efficiency of P-CNTs and O2-CNTs 
as pH increased from 2 to 4 because the surface 
of both adsorbents may contain a large active 
sites number. The concentration of MO used for 
the determination of pH effect was 10 mg/L. The 
dye adsorption on O2-CNTs and P-CNTs was 
decreased from pH 4 to pH 10. In this range of 
pH, the surface charge of P-CNTs and O2-CNTs 
is negative and more [A-] is formed, which also 
has a negative charge, when MO dissociate; thus 
the adsorption of MO decreased. Fig. 2 shows 
the speciation curve of MO and the formation of 
[A-] in the pH range of 4 and 10. 

 
3.2 Point of Zero Charge for the 

Absorbents 
 
The point of zero charge (pzc) of O2-CNTs and 
P-CNTs were determined by Zetasizer 2000.    
Fig. 3 shows the zeta potential values as a 
function of pH. The solutions of different pH were 
obtained by adding 0.1 M NaOH and 0.1 M 
HNO3. In high acidic medium, pH< 4, O2-CNTs 
present positive zeta potential. At pH> 4, the zeta 
potential became negative. It was measured that 
the pzc of O2-CNTs is assumed to be 3.9. 

However, pzc of P-CNTs is assumed to be 4.7. 
The zeta potential values were calculated using 
Henry’s equation: 
 

�� =
2 �� �� � 

3 �
�(��) 

(5) 

3.3 Adsorption Isotherm Models 
 
Various concentration range (10, 20, 30 and 40 
mg/L was used for investigating the effect of MO 
initial concentration on the adsorption process. 
However, other parameters like pH, volume and 
adsorbent dose were kept constant. Fig. 4 shows 
the effect of MO initial concentration on removal 
percentage. It was found that the removal 
percentage of MO decreased as the initial MO 
concentration increased. The adsorption capacity 
of O2-CNTs and P-CNTs was increased from 
129.69 to 171.48 mg/g and 127.85 to 159.32, 
respectively, as the initial MO concentration 
increased from 10 to 40 mg/L (see Fig. 5). This 
can be explained that the active sites number 
remain constant, while the initial concentration of 
MO increases. 
 

The experimental results, as shown in Figs. 6 
and 7 for O2-CNTs and P-CNTs respectively, 
were more fitted to the Langmuir isotherm than 
Freundlich isotherm. This suggest that, for the 
present system, the Freundlich isotherm is a less 
appropriate. The parameters values of both 
models for O2-CNTs and P-CNTs are shown in 
Table 3. Freundlich constants, KF and 1/nf, 
indicate the adsorption capacity and adsorption 
intensity, respectively. Higher the value of 1/nf, 
the higher will be the affinity between the 
adsorbate and the adsorbent, and the 
heterogeneity of the adsorbent sites. The 1/nf 
value indicates the relative distribution of energy 
sites and depends on the nature and strength of 
the adsorption process. The 1/nf value for O2-
CNTs and P-CNTs was found to be 0.192 and 
0.188, respectively, and these refer to adsorption 
process is favorable. The adsorption process is 
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favorable when the value of nf is in the range 
between 1–10 and this is confirmed for both type 
of studied carbon nanotubes. The KF value can 
be taken as a relative indicator of the adsorption 
capacity and the magnitude of KF also showed 
the higher uptake of MO dye at higher 
temperature and endothermic nature of 

adsorption process. The b value between 0 and 
1 indicates favorable adsorption of MO dye onto 
CNTs used. The comparison of the values in 
Table 3 for understudy isotherm models shows 
that the R2 values for Langmuir model are closer 
to unity that shows its applicability for explanation 
of MO dye adsorption on this adsorbent. 

 

 
 

Fig. 1. Effect of pH on adsorption of MO on P-CNTs and O2-CNTs, time= 40 min, Co= 10 mg/L 
 

 
 

Fig. 2. The speciation curve of methyl orange 
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Fig. 3. Variation of zeta potential for O2-CNTs and P-CNTs as a function of pH and 

determination of pzc 
 

 
Fig. 4. The effect of initial concentration of MO on removal percentage at time = 40 min 
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Fig. 5. The effect of initial concentration of MO on qe at time = 40 min 

 

 
 

Fig. 6. Langmuir and Freundlich isotherms in the presence of O2-CNTs 
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Fig. 7. Langmuir and Freundlich isotherms in the presence of P-CNTs 
 

Table 3. Isotherm parameters in the presence of O2-CNTs and P-CNTs 
 

Models O2-CNTs P-CNTs 
Langmuir Freundlich Langmuir Freundlich 

Isotherm  
parameters 

Qm= 185.18 Kf= 87.16 Qm= 178.57 Kf= 88.03 
b = 0.266 nf= 5.19 b = 0.269 nf= 5.33 

R2 0.9997 0.9531 0.9942 0.981 
 

4. CONCLUSION 
 
The efficiency of oxygen functionalized and 
pristine multi-walled carbon nanotubes were 
investigated for adsorption of MO dye. The 
analysis of results indicate that the adsorption 
process was highly affected by the pH of the 
solution. The adsorption efficiency of MO dye on 
P-CNTs and O2-CNTs increased as pH goes 
from 2 to 4 and decreased during the pH 4 and 
pH 12. The point of zero charge (pzc) of O2-
CNTs and P-CNTs were determined as function 
of pH and were recorded 4.7 and 3.9, 
respectively. Comparing O2-CNTs to CNTs, it 
was found that at the same dose, O2-CNTs 
enhanced the decolorization rates more than P-
CNTs. Langmuir and Freundlich isotherms were 
studied to analyze the removal of MO dye on 
both CNTs. The Langmuir adsorption model 
gives very satisfactory fitting to the adsorption 
isotherms. 
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