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Abstract

This paper proposes an efficient approach for tuning feedback filter of adaptive controller for multi-input
multi-output (MIMO) systems. The feedback filter provides performance that trades off fast closed loop
dynamics, robustness margin, and control signal range. Thus appropriate tuning of the filter’s parameters
is crucial to achieve optimal performance. For MIMO systems, the parameters tuning is challenging and
requires a multi-objective performance indices to avoid instability. This paper proposes a fuzzy-based
feedback filter design tuned with multi-objective particle swarm optimization (MOPSO) to remove these
bottlenecks. MOPSO guarantees the appropriate selection of the fuzzy membership functions. The proposed
approach is validated using twin rotor MIMO system and simulation results demonstrate the efficacy of here
proposed while preserving the system stabilizability.

Keywords: Fuzzy logic control; multi-objective particle swarm optimization; fuzzy- adaptive controller; pareto
front; filter tuning; twin rotor MIMO system.

1 Introduction

Recently, adaptive controller has been proposed to handle both single-input single-output (SISO) and multi-input
multi-output (MIMO) nonlinear systems with uncertain parameters, unmodeled dynamics and/or unmeasurable
external disturbances. adaptive controller provides fast adaptation and robustness to complete unknown
dynamics. It was initially introduced for SISO system with unknown uncertainties [1] and since then, it has been
developed successfully for linear SISO systems with time varying uncertainties [2], nonlinear SISO systems with
uncertainty [3, 4], nonlinear MIMO systems with unmatched uncertainties [5], and for many other systems [6].
In addition to the aforementioned applications, adaptive controller has also been used extensively in aerospace
applications [7, 8]. It has three fundamental components namely the predictor, projection operators, and a
low pass filter [6]. The low pass filter functions to mitigate the effect of both the system uncertainties and the
frequency range of the control signal. Thus a careful design of this filter is crucial since it ensures both the fast
adaptation and boundedness of transient and steady state performance.

The selection of the feedback filter coefficients has been long debated due to the trade-off between fast closed loop
dynamics and robustness margin [6, 9, 10]. The optimal selection of the filter parameters for different structures
have been studied extensively in [6]. Several heuristics have been proposed in the literature to estimate optimal
filter coefficient. The list includes but not limited to using convex optimization with linear matrix inequalities
(LMI) [11, 6], MATLAB solver for multi-objective optimization [12], and more recently a greedy randomized
algorithm [9].

It is remarked that the range and rate of the error between reference signals and actual outputs play an important
role in the trade-off between fast closed loop dynamics and robustness margin. Most of the previous work that
address filter design assumed constant filter coefficients [6, 9, 10, 11, 12, 13] and optimal filter parameters
are selected offline. One important inference from these work highlights the tradeoff between filter bandwidth
and the robustness margin and to avoid deteriorating the robustness, slower closed loop dynamics is imposed.
However, this imposition degrades the output performance of the system [6]. This problem is more pronounced
especially in the case of trajectory tracking problems. One way to overcome this limitation is to tune feedback
filter parameters online in order to into account the adverse relationships between error values and the feedback
filter gains [14].
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Fuzzy logic controller (FLC) has been widely used in control applications to design smooth control signals for
nonlinear systems. It has also been used to tune controller parameters for enhancing closed loop performance.
For instance, FLC has been deployed for optimal tuning of PID controllers [15, 16]. FLC achieves optimality
in many applications through proper choice of membership functions, scaling factors of input values, and rule-
based [17]. Defining membership functions, linguistic variables, and other parameters of FLC using a trial and
error approach is nontrivial and time consuming. To circumvent this bottleneck, global optimization tools such
as Particle Swarm Optimization (PSO) can be employed to find optimal solutions in the search space with
predefined constraints.

PSO [18] is a global search technique that has been found efficient in many control applications and other fields
of study. It has been used to tune membership functions variables [14], and find optimal control parameters of
adaptive fuzzy controller [19]. In addition, the multi objectives version of PSO known as Multi-Objective Particle
Swarm Optimization (MOPSO) was introduced to obtain best compromise solution among many conflicting
objectives [20]. In total, heuristic techniques provide effective global search solution for complex problems
14, 20, 21].

In recent years, significant research efforts have focused on leveraging Al and global search algorithms to optimize
MIMO systems. Techniques such as machine learning, deep learning, and evolutionary algorithms have been
employed to enhance performance in areas such as beamforming, resource allocation, and interference mitigation
[22, 23, 24, 25]. For instance, Al-driven methods, including reinforcement learning and neural networks, have
been applied to adaptively optimize signal processing and system capacity in dynamic environments [22].
Additionally, global search algorithms like genetic algorithms, particle swarm optimization [25], and differential
evolution have been utilized to solve complex multi-objective optimization problems in MIMO systems, offering
robust solutions for balancing trade-offs between spectral efficiency, energy consumption, and signal quality.
These approaches demonstrate the growing potential of Al and heuristic-based algorithms in addressing the
inherent complexity and scalability challenges of modern MIMO systems.

This paper considerably expands the scope of the fuzzy- adaptive controller for nonlinear SISO system introduced
in [26, 14]. In [14], PSO is responsible for finding best parameters of the input-output membership function
based on a trade-off cost functions:

tsim
Obj =Y (mie® (t) +you’ (1)) (1.1)
t=0
where e (t) =7 (t)—y (t), e (t) and u (t) are the system error and control signal respectively. 1 and 2 are weights
that can be selected arbitrarily. The single objective function in (1.1) is designed to handle SISO systems which
could result in loss of controllability when directly applied to MIMO systems. A closer scrutiny of (1.1) reveals
that one objective could be favored over the other because the implementation results in linear weighting of two
objectives. By consequence, the imposed weights and the final solution confines the solution on the pareto front
and will not guarantee a best compromise solution. To avoid this problem, a Multi-objective PSO (MOPSO) is
here proposed to optimize the parameters of input and output membership functions of FLC-based £1 adaptive
controller. Fuzzy logic is implemented to tune the feedback filter gains according to the values of the error and
its rate. A compromise solution can be obtained between control signal and error regardless of the difference in
their range. The best compromise solution will be obtained through the Pareto-optimal front which is regarded
to be a more feasible solution [20]. It is remarked that during preliminary experiment for small initial error
and in accordance with robustness margin reduction, traditional £; adaptive controller became unstable. This
observation reinforces one of the limitations of traditional £, adaptive controller. For this reason, we could not
benchmark the proposed enhancement with traditional £; adaptive controller in the result discussion section. In
the future, the problem can be extended to regulate the output consensus of heterogeneous uncertain nonlinear
multi-agent systems for example ([27, 28, 29]), using tuned £1 adaptive controller.

The problem addressed here is two-fold: (¢) fuzzy- adaptive controller is developed for nonlinear MIMO systems,
(ii) multi-objective optimization is adapted to find the optimal parameters of the tuned filter. This paper is
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organized as follows. Section 2 presents a brief overview of adaptive controller for unmatched nonlinear systems.
Section 3 details the idea of fuzzy filter design and the structure of the proposed control. Section 4 formulates
the optimization problem and presents multi-objective particle swarm optimization for FLC design. Illustrative
examples are used to validate the robustness of the proposed approach in section 5. Concluding remarks are
highlighted in section 6.

2 General Overview of Adaptive Controller

For convenience, this section gives a brief review of adaptive control design. Consider the following nonlinear
system dynamics

Z(t) = Amz (1) + Bnwu (t) + f (z (¢),2 () ,t), z(0) =z

S g(x (t) » Lz (t) 7t)7 Tz (O) = Tz

z(t) = go (z= (1) ,1)

y(t) =Cxz(t)
where z (t) € R" is the system measured state vector, u () € R™ is the control input vector, y () € R™ is
the system output vector, B, € R™*™ is the desired input state matrix which is assumed to be known and
constant with full column rank; the pair (Am, Bm) is controllable and C € R™*"™ is known output state matrix
and constant with full row rank and (A,,,Cy) is observable. A, € R™*™ known as Hurwitz matrix, includes
the desired dynamics for the closed-loop system, w € R™*™ is a gain matrix that signifies uncertain system
input; z (t) is the state vector of unmodeled internal dynamics and z (¢) is the output of internal dynamics.
f RxR*"XR? 5 R" go:R' xR — RP and g : R x R x R® — R! are unknown nonlinear continuous functions.
The system in (2.1) can be written as

() = Amz (t) + Bm (wu (t) + fi (z (t) , 2 (1) ;1)) + Bum (f2 (2 (t),2(2) , 1)),  x(0) =0
=g (x(t),2:(t),t), x:(0) =z
z(t) = go (2= (1) ,1)
y(t) =Cxz(t)
With reference to (2.2), highly nonlinear system with strong coupling and unmatched nonlinearities is divided
into two parts. The first part fi (-) includes the matched unknown nonlinear components and the second part
f2 (+) contains unmatched unknown nonlinear components. Bym € R™*("=™) i5 4 constant matrix and should be

selected such that B, X Bum = 0 and rank([Bm, Bum]) =n. Let X £ [¢7,27], f1 (t,X) : RxR" xR? — R™ and
fo (£, X) : RxR" xRP — R"™™ be unknown nonlinear functions that align with the following assumptions [5, 6].

(2.1)

(2.2)

Assumption 2.1. The control input is partially known with known sign and the system input gain matrix w is
assumed to be nonsingular and unknown with strictly row-diagonally dominant matrix form but with the signs
of diagonal elements known.

weQCR™™
where € is assumed to be known convex compact set.
Assumption 2.2. Let B € Rt f(0,t) be uniformly bounded such that f; (0,t) < BV t>0
Assumption 2.3. Partial derivatives of the nonlinear functions are continuous and uniformly bounded, where
for any 0 > 0, there exist dy,, (6) > 0 and dy,, (§) > 0 such that for arbitrary |lz||, < ¢ and any u, the partial
derivatives of f; (¢, X)) is piecewise-continuous and bounded,

afi (t, X) afi (t, X)
HTH <dy,, (9), ‘ ——

ot
Assumption 2.4. The internal dynamics are BIBO stable with respect to z.0 and z (t) and there exist L, > 0
and B, > 0 such that

HSWﬂ®i2L2

Izl < Lella @), + Bt >0

[
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Assumption 2.5. Transmission zeros of the transfer matrix are stable where zeros of H.y, (s) = C(sI — A,) "' B,
are located in the open left half of the complex plane.

Considering the following notations:

Hum (5) 2 C (sly — Am) ™" Bum,

D (s) is a strictly proper transfer matrix, K € R™*™ with w € Q included in adaptive controller and guarantees

stability of the strictly proper transfer function C (s) such as:
C(s) 2 wKD(s) (I +wKD(s))™" (2.3)

D (s) should be selected such that C (s) H ' (s) is a proper stable transfer matrix and in this case, D (s) =
1/s - Ln, which leads to
C (s) 2 WK (sl + wK) ™" (2.4)

The structure of adaptive controller can simply be described as in Fig. 2 where the controller is divided into
state predictor, projection operators and feedback filter. Although adaptive controller allows decoupling between
adaptation and robustness margin through high gain, the structure of adaptive controller introduces coupling
between fast closed loop dynamics and robustness margin.

State Predictor: The following state predictor is considered:
F(6) = Amd (8) + B (0.(6) + 01 [l2 (9]« + 1)
+ Bum (é2 (&) +&2), #(0) = z (0) (2.5)
g (t) = ct (t)

where & € R" is the predicted state vector and § € R™ is the predicted output vector. @ € R™X™ 6, (t) e R™,
02 (t) e R*™™, 61 (t) € R™ and 62 (t) € R™™™ are all adaptive estimates and they are defined using the following
adaptation laws [6].

X . N ~T T T - -~
@ =TProj | w, — (x PBm) (u (®) ) ,w (0) = o
X A T T ~
91 = FPI“OJ 91, — (17 PBm) HCL‘ (t)”oo ,91 (0) = 010
X A T T A A
02 = TProj ( 62, — (a: PBum) e @)l ) 62 (0) = fao (2.6)
. T T
&1 = I'Proj (&1, - (a: PBm) ) .61 (0) = 610
A . A~ ~T T A~ A~
UQZFPrOJ 0'1,—(33 PBm> , 02 (0)20'20
where & = 2—x (t), I € R" is the adaptation gain, and P is the solution of Lyapunov equation A} P+PA,, = —
with P and @ are symmetric and positive definite matrices. The projection operator ensures that w € (2,
[10i|]oc € ©s, ||6:]] < Ay, where Oy; and 0p; are determined numerically. Projection operators will be evaluated

as defined in [30].

Control Law: Control signal is calculated as follows

u(s) = —kD (s)7 (s) (2.7)
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where r (s) and 7 (s) are the Laplace transforms of r (¢) and 7 (t) = ©u (t) + 1 + 7l — Kgr (t) respectively. The
feedforward gain for zero steady state error is calculated using K, £ —1(CA,,' Bn)™'; K > 0 is a feedback
diagonal matrix gain and D (s) = % is a strictly proper transfer function. D (s) and K ensure strictly proper

stable closed loop system with 71 and 72 evaluated using
i 201 ||z (t)]| o + 61 (2.8)

iz £ 02 ||z ()] o, + 62 (2.9)

The DC gain is C (0) = I,,. More details on adaptive controller for highly nonlinear unmatched system are
given in [5, 6]. The schema of adaptive control is depicted in Fig. 1.

-
r()1 e Feedback |1U(t) | System x(t)
! 9 Filter : | Model

Estimated
System

Adaptive estimates by
£, Adaptive Control projection operators X(t)

Fig. 1. General structure of adaptive controller

3 Optimal Fuzzy-tuning of the Feedback Filter

In this work, the main objectives are to design FLC to tune the parameters of adaptive feedback filter and to
produce a smooth output signal y (¢) that tracks a reference signal r (¢) with the desired performance as depicted
in Fig. 2. The tuned filter enables the selection of fast closed loop dynamics with proper robustness margin.
The appropriate parameters of the feedback filter are determined online during the control process.

3.1 Structure of Fuzzy Logic Controller

The difference between the regulated output vector y () and the reference input vector r (t) is the error vector
e(t). The infinity norm of error e(t) and rate of error é(t) are the two fuzzy inputs. Each of |le(t)|| ., and
[|€(t)||oo are multiplied by weight gains k, and kq respectively, where k, and kq are proportional and the
differential weights respectively. The selection of these gains will be adjusted such that the input of FLC is
normalized between 0 and 1.
by < s
llell
The selection of the norms guarantees stable dynamics of adaptive controller with FLC feedback filter. The
output of FLC is the inverse of the feedback filter gain K;; = 1/k; where ¢ = 1,...,m. The feedback gain
matrix of adaptive controller will be selected such as K = kI, if ||e ()|, is less than or equal k. where k is a
constant. k. is a constant value and will be defined based on prior knowledge. The formulation of MOPSO will
be covered in details in Section 3. Fig. 2 gives the general schema of the proposed control structure.

1
kg < —— 1
" el oy

In adaptive controller, fast closed loop dynamics improve tracking capabilities but increase the control signal
range and reduce robustness margin. Fuzzy- adaptive controller is proposed to ensure fast closed loop performance
and to enhance the robustness margin. The design of FLC considers two objective functions that account for
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e(t)—>| MOPSO tuning |~—U(t)

4 N
Me—_ il el Sttty 1
”e(t)"w':" Input N Rule | | Output Membership :
"é(t)"m.l.. Membership Base i} Function I
1 » ’ 7, - A ——
rq(t 1 7’
10 e P Feedback 1ut) | system X(t)
rm®)_ ] "9 Filter : Model
,' - Parameter & T T 1
1 Tuning "| Estimated :
I »| System |
I
| v :
: Adaptive estimates by X(t) |
rojection operators |
LFuzzy- £y Adaptive Control proJ P |

Fig. 2. Proposed fuzzy- adaptive control structure with MOPSO tuning

the control signal range and summation of the tracking error. Reducing the control signal range contradicts
the reduction of error tracking. Therefore, multi-objective optimization technique is necessary to achieve an
optimal compromise solution. In this scenario, a set of trade-off solutions will be obtained. This set is otherwise
known as Pareto-optimal front [31]. The input and output of FLC membership functions will be optimized using
MOPSO.

4 Multi-Objective Particle Swarm Optimization

Particle Swarm Optimization (PSO) is an evolutionary heuristic that mimics the social behavior of bird swarming
or fish schooling [18]. PSO initiates population of particles randomly in space with each particle representing
a potential solution. Each particle has a set of parameters and moves randomly in a multi-dimensional space
in search of optimal solution. The velocity of each particle in space has a significant role in targeting the best
candidate solution. In addition, velocity and position adjustments for each particle rely on the experiences
gained from its own velocity, location and neighboring particles’ locations. The velocity and position of each
particle are updated as follows:

Vi,d (t) =« (t) Vi,d (t — 1) +cir (p:-id (t — 1) — Di,d (t — 1)) (4 1)
+ cara (pig (t —1) — pia (t — 1)) .

Pid (1) = vi,a (t) +pia (t—1) (4.2)

where P; is the candidate solution with P; (t) = [pi1 (t),...,pim (t)] € RM; M is the number of optimized
parameters, V; is the velocity of candidates given as V; (t) = [vi1 (£),...,vinm ()] € RM, i =1,2,...,N; N is
the population size, and P (t) = [Py (t),..., Px (t)] € RY*M_ Tt should also be noted that across all dimensions

the velocity should be bounded such that v; q (t) € [—v;7q™, vi\¢"], where the maximum velocity is defined as in
(4.3) [20].

max minsx - m?lén
Vig = ——"— 4.3
a Nint *3)
where Ny is the number of intervals and d = 1,2, ..., M; p; and p;™ are local and global best solutions for each

particle respectively. Other parameter settings such as ¢; and ¢ are personal and social behavior of parameters
and r1 and rp are randomly set to values between 0 and 1 [18].
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In MOPSO, non-dominated local best set S; with pre-specified size stores a set of non-dominated solutions. At
the initial stage, non-dominated local set starts with S; = P; (0) after which non-dominated solutions will be
added to the set with predefined size. Clustering is employed to reduce size of the non-dominated local set to a
predefined value. Average distance between two pairs of clusters will be evaluated and the minimal distance will
be combined into one cluster. Larger distances are retained for search enhancement and for coverage of more
space. Non-dominated global set S;™ stores all non-dominated solutions starting from P; (0) up to last iteration.
Similarly, clustering algorithm is implemented to reduce the non-dominated global set into a predefined set size.
The output of non-dominated global set clustering will constitute the Pareto optimal front. All historical records
of non-dominated solutions through the search process is stored in the external. The external set is updated
continuously through the dominance algorithm [20] and then the clustering algorithm is subsequently used to
find the non-dominated solutions of the union between external and global set.

Local best P;" and global best P,"* respectively belong to S; and S;*. The complete multi-objective algorithm
can be found in [20] and the multi-objective optimization problem can be formulated as follows

t

sim

E@) =) [ea(®)+. .. +en(t)]

t=0
U@i) = llur (Bl + -+ llum ()] (4.4)
min Obj(i,:) = (E (i), U (i)) '
P < pia(t) < pide
U?fcizn < wig(t) <vlg™

where P; is the candidate solution that contains the optimized parameters or variables of the membership
functions; e (t) = r(t) — y(t); e(t) and u (t) are system’s error and control signal respectively. Parameters of
input and output membership functions are optimized to minimize the constrained objective function in (4.4).
MOPSO is formulated to search for the Pareto-optimal front and a compromise solution will be selected from
the set of nondominated solutions.

The flow diagram of MOPSO algorithm is shown in Fig. 3. The algorithm is used with adaptive controller
for uncertain MIMO nonlinear systems to find the optimal parameters of fuzzy membership functions for a
predefined number of generations [20].

Remark 4.1. In the proposed approach filter properties such as strictly proper and low pass characteristics with
C (0) = 1 are preserved. In addition, the control input constitutes an independent objective in the optimization
that freely moves within the sets. Controllability and stability of the Fuzzy-based-adaptive controller are
preserved in line with stability analysis in [1].

5 Results and Discussions

The performance in terms of tracking capability and robustness of the proposed controller is evaluated using a
highly nonlinear unmatched system with strongly coupled dynamics. Robustness of the controller was examined
by imposing uncertainties in the TRMS parameters. TRMS was chosen to evaluate the performance of adaptive
control because it belongs to the class of unmatched system with very aggressive model nonlinearity and coupled
dynamics. Also, the system is nonlinear in terms of control input w.

5.1 Twin Rotor MIMO System Description

Twin Rotor has strong coupling between the main and tail rotors and it emulates the helicopter dynamics in
the pitch and yaw angle dynamics [32, 33]. The laboratory set up of TRMS is shown in Fig. 4.
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Initialize population, velocity, weight and
set iteration = 1
v

| Evaluate the objective function |

v
Search for nondominated solutions
Form nondominated global set
Set the external set = global set
Local best set = particle current position
N
| Update particle velocity |

v

Update particle Position

¥

Evaluate objective function

I
I
v
I
I

Find nondominated solutions
v

Expand and update local set

v

| Expand and update global set |

v

| Update the external set |

v

Find local best and global best for each
particle

Update weight

A

Size of each set >
predefined size

Iteration =
Iteration + 1
A

Apply Clustring
N|

No

Stopping criteria met?

( Stop )

Fig. 3. Flowchart of multi-objective particle swarm optimization

The system is controlled by two control signals w1, uz which are transferred into momentum torques 71 and 7.
The pitch angle ¥ describes the motion of the main propeller which is to be controlled vertically. The tail rotor
is controlled in the horizontal direction through the yaw angle ¢. Pivot beam with a weighted mass in TRMS
is installed for stabilization and to allow free motions.

The mathematical model of TRMS is described by six states: vertical angle, yaw angle, pitch angular velocity,
yaw angular velocity, and two momentum torques. Two potentiometers are fitted at the pivot in order to measure
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f tail rotor main rotor

tail shield -1 ___ L i« main shield

DC-motor +

tachometer DC-motor +

tachometer
. free-free beam
counterbalance

pivot

Fig. 4. Laboratory set-up of TRMS

¢ and 1. The full description of TRMS are detailed in [32]. The model of TRMS is as given in (5.1):

.fl = T2
. as o a7 as 0.0362 , . ai2 9
Xy = —x5 + 95 05 — —sin(z1) — —x2 + zisin(2x1) — — (asa3 + asws)zacos(z1)
ai ai ai ay ai ai
T3 = T4
. a4 2 aio 2
Ty = —xg+ —mg A0, 1 75(kc/az)(a3m5 + a5x5)
a2 az a2
. aie a13
Ty = ———T5 + —u1
ais a15
. ais 14
Te = ——T5 + 7u2
air air

where the state vector [w,zﬁ,qb,é,ﬁ,m]—r are designated as = = [z1, 22,3, T4, T5,26]  ; the output vector y =
[¢,#]" as [z1,23]" and input vector is u = [u1,u2] . The parameters of TRMS used for the experiments are
listed in Table 3.

5.2 Fuzzy- adaptive controller implementation

The TRMS model in more general form can be expressed as:

& (1) =Ama (t) + Bm(wu (t) + fi(z (1), 2 (1) , 1))
+ Bum(wu (t) + fa(x (), 2 (1) , 1)),  x(0) = o

y(t) = Cx (1)
where
0o 1 0 0 0 0 0 0 1 00 0
0 -2 0 0 & 0 0 0 01 0 0
0 0 o0 1 0 0 0 0 00 1 0
A=1y 0 o —40  _1.75%2q5 2 |7 Bu=1o o Bm=1g ¢ 0 1
0 0 0 0 — e 0 a9 00 0 0
0O 0 0 0 0 _a1s ai4 00 0 0
al7 ai7
1 000 0 0
C=10 0100 0
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and
0
0
0
.0 =0
0
0
0
Z—fxg — Z—Isin(wl) + 0‘3§62xﬁsin(211) — %(agxg + a5m5)az4cos(ac1)
0
t),t) = .
oz (t),1) ﬁx% - 1.75(kc/a2)(a3x§)
0
0

Adaptive estimates are defined as 61 (t) € [=50,50]12, 2 (t) € [—50,50]14, 61 (t) € [~15,15]12, 62 (t) €
[-15,15]14, with 1, := [1,...,1] 4, @11 (t), 022 (t) € [0.25,5], @ = Is, I' = 100000 and desired poles are
assigned to —20 + 0.34,—25 £ 0.5¢ and —27 £ 0.5¢ and the steady state feedback gain K = 10((1) (1]), with k£ = 10
and D (s) = K%. Fuzzy control parameters kj, k4, and ke are given as 3.45 , 0.05, and 0.09 respectively. The
complete schematic of fuzzy- adaptive controller is shown in Fig. 5.

~—

| I e T A
le®].! ko |—» |
1 1
COUREIN o BN Nc,@ Yes !
: K=k || K=k |
0 ! —
r L
S B Y L o] 1 MO ] 0 = A+ B (0u0)+ £ (6X0)) + Bun 2 (1. 50)) x®
Mm() 9 "mxm S Ly =cx
¥ : Actual System

o] 50) = AnE0) + B (GOUO + GO I XO o +610) | gy A

}

}

1

1

' ; iilg
: +Bum (G20 1 XO e +62(0) na®
| , [ 9 =Cx()

1

}

1

1

1

}

}

7(t) A AEOU(E) +7(0) +7om (t) Estimated System
1 . < 1 | ~ Evaluate ) X(t)
fom(8) A Hn "G Hum&)72(8) [T 5 [ 50,610 610, 60, 620

l_Fuzzy- £, Adaptive Control

Fig. 5. The proposed fuzzy- adaptive controller for nonlinear MIMO system

The relationship between error values and robustness margin are portrayed in Fig. 6, where classical adaptive
control was applied to highly nonlinear TRMS. It can be observed that robustness margin was reduced to
certain level due to the selection of adaptive control coefficients. Two scenarios are considered in Fig. 6. In the
first scenario, the nonlinear TRMS was supposed to start from zero initial conditions with initial error vector
e(0) = [0,0]T when the reference input was r (t) = 0.45sin(0.2t) for both angles. The outcome of the first
scenario is shown in Fig. 6(a) and it can be observed that excellent tracking output performance was achieved
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with small control signal range. In the second scenario, the initial error vector was set to e (0) = 0.2875[1,1]"
and desired reference was defined to be r (t) = 0.45sin(0.2¢t + %) for both angles. In accordance with robustness
margin reduction, the system stability became unstable as shown in Fig. (b). It is remarked that the observations
in Figs. 6 (a) and (b) reinforces the limitations of traditional controller.

The aforementioned limitations are addressed by enforcing slower closed loop dynamics, which could also
deteriorate the tracking performance [9]. These conflicting objectives are best handled using multiobjective
optimization approach to achieve a compromise solution.

L; Adaptive Control with ¢y = 0. L, Adaptive Control with e, = 0.2827.
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Fig. 6. adaptive controller for nonlinear TRMS

5.3 Membership function optimization

Input and output membership functions for fuzzy- adaptive controller are here designed to improve robustness
margin and reduce the control signal range in comparison with traditional adaptive controller. Triangular
membership functions are selected and the constraint values of input and output membership functions are
parameterized by lower, center and upper values. Each error-range or error-rate membership functions have four
triangular linguistic variables covered by 8 optimized parameters. The output membership functions include
six triangular linguistic variables covered by 16 parameters. It must be noted that the optimized parameters of
membership functions are p; for ¢ = 1,...,32. The rule base of the proposed FLC feedback filter is defined in
Tablel with linguistic variables: V' L for very large, L for large, M for medium, S for small, V'S for very small
and Z for zero.
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Table 1. Rule base of FLC
[Aefe [ L[S VS| Z |

L VL | VL | L M
S VL | L M S
VS L | M S | VS
Z M S |VS| Z

The two input membership functions have linguistic variables L, S, V.S and Z and the output membership
functions have six linguistic variables VL, L, M, S, V.S and Z.

5.4 MOPSO results

Each particle in MOPSO has been designed to have 32 parameters. Parameters of p;,i = 1,...,32 are optimized
to minimize E and U simultaneously. Initial settings of MOPSO algorithm are listed in Table 2 with maximum
number of generations equal to 50. These parameters were empirically determined after several simulations.

Table 2. Parameters setting for MOPSO

’ Parameter \ ! \ c1 \ 2 \ Global Set Size (Pareto-Optimal Front) \ Local Set Size ‘
| Settings [ 099 2 | 2] 50 \ 10 \

The system was simulated for 23 seconds and the data was captured every 0.01 seconds. The reference input
was chosen to be cos(0.5¢) with zero initial conditions. After 50 generations, the optimal variables of the input
and output membership functions based on the best trade-off solution are illustrated in Figs. 7, 8 and 9. Fig. 10
shows the locations of all fitness values including non-dominated solutions in MOPSO search process. MOPSO
was implemented to generate a compromise solution through error and control signal range minimization. A
quick observation from Fig. 10 reveals that reduction in control signal range increases the error with performance
deterioration and vice versa. The pareto optimal front was formed by clustering a set of non-dominated solutions
into best 50 solutions and most realistic compromise solution obtained. The output performance of fuzzy-
adaptive controller with optimized membership functions is presented in Fig. 11. The behavior of the feedback
filter and the reduction in the error signal are depicted in Fig 12.

™M L.

| — T v T v T v T v 1
o 0.2 0.4 0.6 0.8 1

Fig. 7. Optimized error membership function

FLC with optimized parameters obtained from best compromise solution is incorporated into adaptive controller
to tune the parameters of the feedback filter. In order to study the effect of fuzzy feedback filter with adaptive
controller, the performance of the proposed control structure was examined for tracking capability, control signal
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N

Fig. 8. Optimized error rate membership function

Z S M L VL

)
o 4 8 12 16 20

Fig.9. Optimized output membership function

Multi-Objective Particle Swarm Optimization with £; Adaptive Contorl

[ Pareto-Optimal Front

Pareto Compromise Solution
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=

‘ | e
30 100 150 200 250 300 350 400
Objective 2

Fig. 10. Multi-Objective minimization of PSO search
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Control Tnput
|
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Fig. 11. Output performance of fuzzy- adaptive controller with best compromise solution on
nonlinear TRMS

Filter Gain

I I I
o 5 10 15 2
Time(sec)

Fig. 12. Performance of feedback gain filter and error for nonlinear TRMS under
fuzzy- adaptive controller

range and robustness to uncertainties using TRMS. Two-case experiments were conducted using a composite
reference signal which comprises of cosine wave, step input and other smooth functions.

Case 1: the controller is implemented on a nonlinear TRMS model without uncertainties and time variant
parameters.

Case 2: the controller is applied to a nonlinear TRMS model with time variant and uncertain parameters.
For case 1, the output performance of the proposed control signal is shown in Fig. 13. It can be observed that
both angles were able to track different reference signals considered. The behavior of fuzzy feedback gain filter
was shown in Fig. 14 for the purpose of simulating change in filter gain with respect to output response and
error signals. Fig. 14 presents the change in error signal with respect to tracking performance of Fig. 13.
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Control Tnput

Filter Gain

Fig. 14. Case (1): Feedback gain and output error of fuzzy- adaptive controller for nonlinear
TRMS

For case 2, time-varying parameters uncertainties in TRMS were considered. The output performance of fuzzy-
adaptive controller is shown in Fig. 15. The proposed fuzzy- adaptive controller was applied on nonlinear TRMS
with parameters a; = a;(1 4 0.2sin(0.3t)) for ¢ = 1,3,...,13 and a; = a;(1 + 0.2cos(0.25¢)) for i = 2,4, ...,14.
It is revealed in this case that the proposed approach is efficient and robust against parameter uncertainties and
unmodeled dynamics. Similarly, combinations of different reference signals were considered for both pitch and
yaw angles. The output performance shows that the proposed controller was able to track the desired response.
The closed-loop system was also shown to be robust to presence of time-varying uncertainties as revealed in Fig.
15. Fig. 16 shows the gain of filter response of the proposed controller and the corresponding change in errors.

It can be observed that the proposed controller guarantees smooth tracking performance and improves the
robustness margins. In the case of classical adaptive controller, the robustness margin was exceeded and the
system was into instability. The results validate the effectiveness and robustness of the fuzzy- adaptive controller
compared to the traditional adaptive controller. The proposed approach is capable of tuning the feedback filter
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ControlInput

er Gain

Filte

Fig. 16. Case (2): Feedback gain and output error of fuzzy- adaptive controller for nonlinear
TRMS

gains for both SISO and MIMO systems and providing a fast closed loop dynamics while maintaining the
robustness margin and stability. The fast tracking performance and less control signal range shown are further
reinforced by the results shown in Figs. 13 and 15.

6 Conclusions

In this paper, fuzzy- adaptive controller has been proposed for nonlinear MIMO systems. Fuzzy controller has
been designed to tune the parameters of the feedback filter gain of adaptive controller. Multi-objective particle
swarm optimization algorithm has been employed to find optimal variables for input and output membership
functions based on best compromise solution between two conflicting objectives. Feedback filter parameters
of the adaptive controller were tuned by FLC in order to improve the robustness margins. Highly nonlinear
MIMO system was used to show the efficacy of the proposed approach. Results validate the effectiveness and
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robustness of the proposed approach on nonlinear system with time-varying uncertainties. The smooth tuning
of the feedback filter enhances the robustness margin and reduces the control signal range. In addition, fast
closed loop dynamics has been attained with better robustness performance.
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Table 3. Twin-Rotor Parameters

Appendix

variable \ Description Value
a; (kg.m? Moment of inertia 6.8 x 10~2
as Ekg.m% Moment of inertia 2.0x 1072
as Static parameter 0.0135
aq Static parameter 0.0924
as Static parameter 0.02
ag Static parameter 0.09
a7 (N.m) Gravity momentum 0.32
ag (N.m.sec/rad) | Friction momentum 6 x 1073
ag (N.m.sec/rad) | Friction momentum | 1x 1073
a1o (N.m.sec/rad) | Friction momentum 0.1
a1 (N.m.sec/rad) | Friction momentum 0.01
a12 (rad/sec) gyroscopic momentum 0.5
a3 rotor gain 1.1
a4 rotor gain 0.8
ais Vertical rotor gain 1.1
a1 Vertical rotor gain 1
a7 Horizontal rotor gain 1
ars Horizontal rotor gain 1
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