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Abstract 
This study intends to explore the determinants of AI adoption and its impact 
on HRM effectiveness in Tanzanian medium enterprises (MEs). With a focus 
on providing insights for HR professionals and decision-makers, data from 
185 respondents comprising HR professionals, IT professionals, and CEOs 
who have already adopted AI was analyzed using PLS-SEM, where factors of  
Relative advantage, Complexity, Compatibility, Security/Privacy, Top man-
agement, Organisation readiness, Competitive pressure, External support and 
Government support were tested to the adoption of AI. Results highlight rela-
tive advantage, compatibility, and competitive pressure as key drivers of AI 
adoption in Tanzania’s context, subsequently enhancing HR systems’ effec-
tiveness. The study bridges the existing gaps and offers recommendations for 
AI integration into HRM practices. Implications for managers and solution 
providers were discussed to facilitate a better understanding of the determi-
nants influencing the adoption process within Tanzanian MEs. The study un-
derlies the theoretical understanding of AI adoption by utilizing the TOE mod-
el and incorporating technological, organizational, and environmental fac-
tors. This study recommends future exploration of additional factors and in-
cluding a larger sample to enhance the universality of the results. 
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1. Introduction 

The evolution of HRM roles has shifted from traditional administrative func-
tions to strategic activities such as manpower planning and performance man-
agement (Fenwick et al., 2024). AI has revolutionized HR practices, enabling 
more advanced and efficient processes (Basnet, 2024). AI adoption in HR de-
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partments has the ability to meaningfully impact business outcomes and em-
ployee management, leading to a new era of data-driven and strategic HR prac-
tices (Dhamija & Bag, 2020). By 2022, the Global Business Forum expects that AI 
would displace 75 million employment opportunities, yet generate 133 million 
new employment opportunities (Satell, 2019). (Hossin et al., 2021) suggested 
that AI-driven HR strategies can significantly enhance employee productivity, 
recruitment, training, and retention, ultimately contributing to a transition. In 
Tanzania, medium enterprises perform as an important part in the economy, 
accounting for approximately 90% of all registered businesses and employing 
over 70% of the workforce (International Finance Corporation, 2022). A recent 
research by the World Economic Forum (WEF) anticipates that AI might con-
tribute up to 2.9% of Tanzania’s GDP by 2030 (World Economic Forum, 2020). 

This research is expected to improve researchers’ experience and knowledge 
in writing scientific papers and understanding AI adaptation in HR within me-
dium enterprises, specifically through the exclusive use of the TOE model. This 
provides a valuable methodological framework for studying technological adop-
tions in specific contexts, particularly in developing economies like Tanzania. 
Also, the findings can aid the Tanzanian community by guiding companies and 
governments in making informed decisions, fostering responsible AI integra-
tion, boosting local business efficiency, and promoting economic growth and job 
opportunities. Additionally, HR managers will gain insights into improving HRM 
procedures through AI adoption, optimizing HR practices, and enhancing orga-
nizational performance through better talent acquisition, streamlined opera-
tions, and informed decision-making. 

There are some literature review which relates to the adoption of technology 
that needs to be developed that includes, a study by (Kshetri, 2020) with the 
heading “Evolving uses of artificial intelligence in human resource management 
in emerging economies in the global South: some preliminary evidence”, the 
study of (Goswami et al., 2023) “Exploring the antecedents of AI adoption for 
effective HRM practices in the Indian pharmaceutical sector”, the study of 
(Qahtani & Alsmairat, 2023) “Assisting artificial intelligence adoption drivers in 
human resources management” and the study of (Singh & Pandey, 2024) “Ar-
tificial intelligence adoption in extended HR ecosystems: enablers and barriers. 
An abductive case research”. All these studies are more based in HRM as a whole 
without looking the side of medium enterprises in developing country which 
might help the decision makers and other researchers to know the level of adop-
tion of technologies in this area. 

The research problem addressed in this study focuses on determining the fac-
tors considered by Tanzanian medium enterprises to the adoption of AI within 
HRM and if the management perceives the effectiveness of the adoption in HR 
activities. The study aims to fill the research gap by analyzing the interplay of 
technological readiness, organizational dynamics, and external environmental 
influences during the adoption. Additionally, the study aims to conclude with 
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specific factors and recommendations to enhance HRM processes through the 
effective use of AI technologies.  

2. Literature Review and Hypothesis Development  
2.1. Theoretical Background 

The study includes an examination of technology adoption models such as the 
Technology Acceptance Model (TAM) which emphasizes the significance of per-
ceived ease of use and perceived usefulness in determining an individual’s attitude 
and intention to use a particular technology, the Theory of Reasoned Action 
(TRA) by (Ajzen & Fishbein, 1980) focuses on the initial acceptance of new prod-
ucts, considering the role of individual attitudes and subjective norms in predict-
ing behavioral intentions, The Technology Organization Environment Model 
(TOE) by (Tornatzky & Fleischer, 1990) underscores the influence of technologi-
cal, organizational, and environmental factors on technology adoption within or-
ganizations. The Innovation Diffusion Theory (IDT) is also highlighted, empha-
sizing the spread of new ideas, products, or technologies within a social system and 
identifying different adopter categories and factors influencing the rate of adop-
tion by (Rogers, 1985). By considering Tanzanian context of the level of technolo-
gy adopted and other researchers such as AI within HRM (Kaur et al., 2021) adap-
tation of BA (Horani et al., 2023), adoption of technology (Kumar et al., 2022), 
adoption of mobile banking in SMEs (Mujahed et al., 2021), big data adoption. 
(Agarwal, 2022) described TOE as a “generic” theory applicable to analyzing ele-
ments impacting AI adoption in HRM, emphasizing its relevance in assessing how 
technology take place in fulfilling HR responsibilities.  

2.2. Research Model 

This study proposes a framework rooted in the TOE model to explore determinants 
to AI adoption in HRM within MEs since it’s more based on dimensions within 
Organization, Technology and Environmental factors. The findings of this research 
study provide useful perspectives into the determinants of AI adoption and its im-
pact on HRM effectiveness in medium-sized enterprises in Tanzania. The sup-
ported hypotheses highlight the benefits of relative advantage, compatibility, com-
petitive pressure in the adoption of AI and it shows the valuable impact of adopting 
and implementing AI in stimulating HRM effectiveness (as shown in Figure 1). 

Relative Advantage and Artificial Intelligence. 
It refers towards the acknowledged superiority of a technology in comparison 

to other current company innovations, as well as the expected advantages, such 
as operation (Kurup & Gupta, 2022). Adopting new technologies might fail due 
to perceived complexity and difficulty (Almaiah et al., 2022). (Boonsiritomachai 
et al., 2016) indicates that technological adoption begins with relative advantage 
and companies that see technologies as superior to their current procedures and 
processes are more likely to implement it effectively. Hence, 
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Figure 1. Research model frame work. 

 
H1. Organization factor of Relative advantage influence the adoption of AI. 
Compatibility and Artificial Intelligence. 
It is a degree of consistency with the firm’s present state which may be meas-

ured based on the firm’s innovation adoption. Compatibility is a key factor in 
driving technology adoption and influencing AI decision-making and organiza-
tions may improve their procedures and policies to promote favorable compati-
bility and AI adoption (Chong & Lim, 2022). Compatibility increases the option 
AI advancement and adoption (Neumann et al., 2022). Factors related to com-
patibility include technical compatibility and commitment (Jöhnk et al., 2021). 
Aligning AI technologies with technological systems can help organizations le-
verage new technology and reduce uncertainty in the HR function regarding its 
adoption (Gangwar, 2018). Hence,  

H2. Organization factor of Compatibility influence the adoption of AI. 
Complexity and Artificial Intelligence.  
Complexity discusses the degree of difficulties, challenges and risks that HRM 

face in adopting and implementing AI technologies (Jöhnk et al., 2021). Suc-
cessful AI adoption requires coordinated activities and simplicity of technologi-
cal functions across the organization towards AI implementation (Xu et al., 
2023). The flexibility of utilizing a system is connected to its applicability or ac-
cessibility, as a result, the ease in which technology can be implemented and 
used will encourage the company to adopt it. Complexity in technology adoption 
may be measured by job completion time, process integration, data processing ef-
ficiency, system functionality, and interface design. Factors such as the use of 
technology and automation in HRM might impact the outcome (Almaiah et al., 
2022). Hence, 

H3. Organization factor of Complexity influence the adoption of AI. 
Security and Privacy and Artificial Intelligence. 
The perceived risk of using technology for work and data transmission (Jöhnk 
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et al., 2021). Technology adoption relies heavily on security and privacy consid-
erations. Yabanci (2019) indicates that adopting technology raises concerns re-
garding security and privacy, particularly with regard to the potential risks to 
confidentiality, trustworthiness, and accessibility in human-computer interac-
tion. These reflect the level in where AI is considered to be not safe for conduct-
ing work and exchange (Kaur et al., 2021). Hence, 

H4. Organization factor of Security/Privacy directly influence the adoption of 
AI. 

Top Management and Artificial Intelligence. 
This is very vital for the effective implementation of AI in HRM. It is critical 

in implementing any significant change to an organization (Lutfi et al., 2022). 
Support from top management is evident in the way they assess and frame the 
importance of technological innovation in creating value for businesses. In order 
to handle change-related obstacles and any opposition to the implementation of 
new technologies, this support guarantees the commitment of resources and fos-
ters a constructive environment. The implementation of technologies in HRM re-
quires the backing of upper management. Hence,  

H5. Technology factor of Top management support directly influence the 
adoption of AI. 

Organization Readiness and Artificial Intelligence. 
This includes processes, structures, and resources that encourage the use of 

technology, including automation and AI (Alam et al., 2016). In an organization, 
HR professional’s should conduct an assessment of how ready they think the 
organization is in terms of the level of knowledge, loyalty, resource allocation 
and successful implementation of adopting a technology (Chong & Lim, 2022). 
To be efficiently deployed in enterprises, AI in HRM requires effective infra-
structure, the necessary HRM knowledge, and financial allocation of resources 
(Pillai & Sivathanu, 2020). Organizational technological preparation is thought 
to influence technology implementation. In order for businesses to use AI to 
enhance their HRM process, they must retrain and restructure their staff. Hence,  

H6. Technology factor of Organization Readiness directly influence the adop-
tion of AI. 

Competitive Pressure and Artificial Intelligence. 
It discusses the perceived pressure a company feels from its competitors (Al-

maiah et al., 2022). Businesses must assess, derive lessons from past experiences, 
and come up with creative solutions to challenging issues in the global economy 
(Shet et al., 2021). More efficient and economical use of resources can lead to bet-
ter human resource management (Bhatiasevi & Naglis, 2018). Market competition 
pushes firms to implement human resource technologies (Alam et al., 2016). When 
several firms adopt different AI systems in their HRM activities, they gain a stra-
tegic advantage over their competitors. This creates pressure and compels the 
corporation to adopt the technical upgrade (Nguyen et al., 2022). Hence,  

H7. Environmental factors of Competitive pressure directly influence the 
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adoption of AI. 
External Support and Artificial Intelligence. 
Third parties provide guidance for business enterprises in adopting technolo-

gy solutions including consulting, training and technical assistance in overcom-
ing problems related to the adoption of new technology (Horani et al., 2023). 
Since AI is termed as a relatively new product, the positive involvement of AI 
suppliers throughout the introduction process is an important element affecting 
its acceptance (Malik et al., 2021). For soft adoption, the supplier is expected to 
offer everything needed throughout every stage, including training and post- 
implementation assistance (Singh & Pandey, 2024). Depending on the organiza-
tion’s unique demands, the HRM function may need a supplier to create and 
implement customized AI solutions. Hence,  

H8. Environmental factors of external support directly influence the adoption 
of AI. 

Government Support and Artificial Intelligence. 
Government rules and regulations, such as motivations, technical require-

ments, and legislation, may alternatively promote or restrict technology adop-
tion (Horani et al., 2023). Government restrictions may encourage or prevent 
firms from implementing technology breakthroughs (Dincbas et al., 2021). Fi-
nancial assistance, necessary tools, and tax incentives can all help to encourage 
adoption (Chong & Olese, 2017). Hence,  

H9. Environmental factors of Government support directly influence the adop-
tion of AI. 

Artificial Intelligence and HRM effectiveness. 
The implementation of AI presents the field of HRM with a number of ad-

vantages and prospects (Agarwal, 2022). AI can increase satisfaction with work 
and retention rates, quicken hiring, enhance onboarding for staff, and offer in-
dividualized opportunities for professional growth (Meister, 2023). Through the 
analysis of several variables including job happiness, work-life balance, and ca-
reer advancement, AI can also assist HR managers in creating strategies that will 
effectively draw in and keep top applicants (Visier, 2013). AI can give HR direc-
tors insight into the knowledge and abilities that will be in high demand, enabl-
ing them to plan ahead for their hiring needs (Visier, 2013). However, HR pro-
fessionals must be conscious about some of the weaknesses of using AI in HR, 
such as AI bias during the hiring process, which can lead to major consequences 
(Heinze, 2023).  

H10. The Artificial intelligence adoption has a significant impact on effective 
HRM in the medium enterprises in Tanzania. 

3. Methodology  
3.1. Research Variables Measurements 

To create a questionnaire aligned with hypotheses, the study referred to relevant 
questionnaire from different literatures, which is presented in Table 1 including 
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name of the variables, item of measurement from questionnaire, and corres-
ponding references. 
 

Table 1. Research variable measurement. 

Variables Items Source 

Relative Advantage 
(RA) 

RA 1. AI adoption in HRM improves the quality of work (Wael Al-Khatib, 2023) 

RA 2. AI adoption in HRM makes work more efficient  

RA 3. Adoption of AI in HRM helps in lowering costs (Lutfi et al., 2022) 

RA 4. AI Adoption attracts and expands new HRM services to employees  

Compatibility (CB) 

CB 1. AI adoption in HRM is consistent with our organization’s practices  

CB 2. AI adoption in HRM fits with our organizational culture (Lutfi et al., 2022) 

CB 3. It easy to incorporate AI into our HRM practices  

Complexity (CO) 

CO 1 Learning to use AI tools in HRM is difficult for our employees  

CO 2. AI tools in HRM and technologies are high to maintain (Lutfi et al., 2022) 

CO 3. AI tools in HRM is difficult to operate  

Security/Privacy (SP) 

SP 1 AI adoption in HRM create concerns regarding data security and privacy  

SP 2. Implementing AI in HRM creates vulnerability in access control of the  
organization’s information assets 

 

SP 3. Implementation of AI in HRM create risks through excessive dependency on 
external vendors (AI tools developers) 

(Lutfi et al., 2022) 

SP 4. Implementation of AI in HRM complicate the process of adhering to  
corporate policies in protecting individual privacy and data security 

 

Top Management 
(TM) 

TM 1. Our Top management promotes the use of AI in our HR department  

TM 2. Our top management creates support for AI adoption within the  
organization 

 

TM 3. Our top management promotes AI adaption as a strategic priority in our 
HR department 

(Lutfi et al., 2022) 

TM 4. Our top management is interested in the news about AI adoption  
specifically in HRM 

 

Organization  
Readiness (OR) 

OR 1. Lacking financial resources has prevented our organization from fully 
adopting AI in HRM 

 

OR 2. Lacking needed IT infrastructures has prevented our organization from 
adopting AI 

(Lutfi et al., 2022) 

OR 3. Lacking skilled resources/labor prevent our organization fully exploit AI  

Competitive Pressure 
(CP) 

CP 1. Our choice to adopt AI in HRM would be strongly influenced by what 
competitors in the industry are doing 

 

CP 2. Our organization is under pressure from competitors to adopt AI in HRM (Lutfi et al., 2022) 

CP 3. Our organization would adopt AI in response to what competitors are doing  

External Support (ES) 

ES 1. Community agencies/vendors/AI tools developers can provide required 
training for AI adoption in our HR department 

 

ES 2. Community agencies/vendors/AI tools developers can provide Effective 
technical support for AI adoption in our HR department 

(Maroufkhani et al., 
2022) 
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Continued 

 
ES 3. Community agencies/vendors/AI tools developers actively market AI  
adoption in our HR department 

 

Government Support 
(GS) 

GS 1. The government policies encourage us to adopt new information technology 
especially in HRM 

 

GS 2. The government provides incentives for adopting AI such as offering  
technical support, training and funding for AI technologies 

(Lutfi et al., 2022) 

GS 3. There are some laws and regulations to deal with the security and privacy 
concerns over the AI technologies 

(Maroufkhani et al., 
2022) 

AI adoption 
AI 2. Our organization has already adopted AI in HR department (Wael Al-Khatib, 2023) 

AI 3. AI adoption encourages the integration of HR practices with other functions (Agarwal, 2022) 

Effective HRM 

EHRM 1. AI enhances the operational efficiency of HR functions  

EHRM 2. AI improves the candidate experiences during recruitment, onboarding 
and offboarding 

(Agarwal, 2022) 

EHRM 3.AI improves overall employee experience in the company  

Source: Author’s analysis. 

3.2. Research Method 

A structured questionnaire survey in English was utilized to examine the hy-
pothesized connection indicated in the model as Figure 1 indicates. It intends to 
evaluate the determinants of AI adoption in HRM within Tanzanian MEs and its 
impacts on effective HRM. The total number of respondents of this study is 
based on (Hair et al., 2013) calculation, which is 5 - 10 times the number of 
questionnaire items. The number of items included in this research question-
naire was 37 items, this study chose the multiplication of 5, so the required pop-
ulation is 37 items × 5 = 185 respondents includes both HR Profesionals IT pro-
fesionals and CEO from different sectors. The questionnaire incorporated a Li-
kert scale, specifically utilizing a 5 point scale (1 “strongly disagree” to 5 
“strongly agree”) (Goswami et al., 2023). For the accuracy of data collection, the 
study collects 200 total number of respondents, in where after the deletion of 
incomplete questionnaires only remain with 185 respondents. To assess the re-
sponse rate, the study, calculated the percentage of people who completed and 
returned the questionnaire out of the total number of people contacted which is 
the number of completed questionnaires (185)/Number of contacted people 
(200) × 100 where the total response rate was 92.5% which is efficient according 
to (Fowler Jr., 2009). 

3.3. Unit of Analysis, Population and Sampling Technique 

This study is based on the individual who belongs to a group specifically, human 
resource professionals, IT professionals and CEOs from medium enterprises. 
According to (Sekaran & Bougie, 2016), the unit of analysis can be at the indi-
vidual, dyad, and group levels. The present study comprises a diverse population 
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of the HR, IT managers and CEOs. The sample in this study was taken from dif-
ferent sectors in the category of medium enterprises which are categorized by 
considering the number of employees starting from 50 - 99 (Ministry of Industry 
and Trade, 2003). The sample is part of the total population selected for re-
search, and the researcher can draw/generalize conclusions about the entire 
population, so the sample must represent the population (Tabachnick et al., 
2013). It must be considered that there are two aspects determined in the sam-
ple: the number of samples (sampling size) and the sampling technique. The 
number of samples in this study is based on (Hair et al., 2013) calculation, which 
is 5 - 10 times the number of questionnaire items. Number of items in this study 
questionnaire was 37 items. The technique of sampling for the present study ap-
plied purposive and convenience sampling rather than probability sampling 
(Cooper & Schindler, 2014), Purposive sampling aims to discover informa-
tion-rich scenarios that can give the most useful information for achieving the 
study’s goals which divides the population into strata depending on important 
factors such as experience, (Campbell et al., 2020). 

3.4. Data Analysis Technique 

In the hypothesis testing phase of research, inferential statistical analysis plays a 
crucial role (Sekaran & Roger, 2016). In the context of this study, inferential 
analysis is conducted using Structural Equation Modeling (SEM)-PLS with the 
assistance of SmartPLS 4 software. Evaluating PLS-SEM involves assessing the 
outer model, inner model, and hypothesis testing, as outlined by (Maroufkhani 
et al., 2022).  

For the outer model, reflective model evaluation includes criteria such as in-
dicator reliability, discriminant validity, and internal consistency. Indicator re-
liability is assessed with outer loadings ideally between 0.4 and 0.7. Indicators 
within this range may be considered for removal if their deletion improves 
composite reliability or average variance extracted (AVE) above the threshold, 
though their contribution to content validity must also be considered (Hair et 
al., 2014). Discriminant validity ensures that indicators of a construct are not 
highly correlated with those of other constructs. This is evaluated through 
cross-loading tests and the Fornell-Larcker criterion, where indicators should 
load higher on their respective latent variable than on others, and each con-
struct’s AVE should ideally exceed its correlations with other latent variables 
(Agarwal, 2022). Internal consistency is tested using composite reliability and 
Cronbach’s alpha, with a preferred composite reliability limit of 0.6 (Hair et al., 
2019). Composite reliability does not assume equal weighting for each indicator, 
whereas Cronbach’s alpha does (Hair et al., 2014; Hair et al., 2011). These crite-
ria ensure the robustness and validity of the PLS-SEM analysis in hypothesis 
testing within HRM research contexts. 

In the inner model analysis, the focus is on the accuracy of the structural 
model. Multicollinearity is assessed using the Variance Inflation Factor (VIF) 
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with a low Tolerance value (below 0.10) or a high VIF value (above 10) indicat-
ing problematic multicollinearity. The coefficient of determination (R2) meas-
ures the extent to which an exogenous construct explains an endogenous con-
struct, with higher R2 values indicating a stronger model. Path coefficient values 
range from −1 to +1, indicating the strength and direction of relationships be-
tween constructs, with values closer to +1 denoting strong positive relationships 
and values closer to −1 indicating strong negative relationships (Maroufkhani et 
al., 2022). These metrics, along with additional criteria, are essential for evaluat-
ing the overall structural integrity and explanatory capacity of the model, ensur-
ing its reliability and validity in HRM research. 

4. Results 
4.1. Demographic Results 

The 200 responses were received from different sectors including Manufactur-
ing, food processing, Mining, Agriculture, Education, Financial, Entertainment, 
Hospitality, Health, Law aid, ICT and Turism sector. After the elimination of 
incomplete and invalid questionnaires, only 185 responses were finalized for da-
ta analysis. Table 2 shows the demographic results. 

 
Table 2. Demographic results. 

Gender Female Male  

 54 131  

Age    

20 - 30 111   

31- 40 50   

41 - 60 24   

Education  Job tittle  

Certificate 9 HR professionals 104 

Diploma 28 IT professionals 54 

Bachelor 94 CEO 27 

Masters 49   

Ph.D. 5   

Source: Author’s analysis. 

4.2. Measurement Model 

In the evaluation of the results derived from the PLS SEM, the initial phase in-
cludes investigating of the measurement model as suggested by (Hair et al., 
2014). It involves a thorough examination of the indicator reliability (Hair et al., 
2013). The reliability of an item is confirmed by factor loadings that exceed 0.5, 
which also implies that the construct explains 50% of the variance (Hair et al., 
2014). In the context of this study, all item loadings are above the threshold, 
thereby, confirm item reliability (Table 3). 
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Table 3. Factor loading for variables. 

Variables Items Factor Loading 

Relative Advantage (RA) 

RA 1. AI adoption in HRM improves the quality of work 
0.839 

RA 2. AI adoption in HRM makes work more efficient 

RA 3. Adoption of AI in HRM helps in lowering costs 0.773 

RA 4. AI Adoption attracts and expands new HRM services to employees 0.866 

Compatibility (CB) 

CB 1. AI adoption in HRM is consistent with our organization’s practices 0.874 

CB 2. AI adoption in HRM fits with our organizational culture 0.861 

CB 3. It easy to incorporate AI into our HRM practices. 0.847 

Complexity (CO) 

CO 1 Learning to use AI tools in HRM is difficult for our employees 0.864 

CO 2. AI tools in HRM and technologies are high to maintain 0.877 

CO 3. AI tools in HRM is difficult to operate 0.855 

Security/Privacy (SP) 

SP 1 AI adoption in HRM create concerns regarding data security and privacy 0.83 

SP 2. Implementing AI in HRM creates vulnerability in access control of the  
organization’s information assets 

0.866 

SP 3. Implementation of AI in HRM create risks through excessive dependency on 
external vendors (AI tools developers) 

0.811 

SP 4. Implementation of AI in HRM complicate the process of adhering to corporate 
policies in protecting individual privacy and data security 

0.825 

Top Management (TM) 

TM 1. Our Top management promotes the use of AI in our HR department 0.916 

TM 2. Our top management creates support for AI adoption within the organization 0.91 

TM 3. Our top management promotes AI adaption as a strategic priority in our HR 
department 

0.902 

TM 4. Our top management is interested in the news about AI adoption specifically in 
HRM 

0.903 

Organization Readiness 
(OR) 

OR 1. Lacking financial resources has prevented our organization from fully adopting 
AI in HRM 

0.863 

OR 2. Lacking needed IT infrastructures has prevented our organization from  
adopting AI 

0.892 

OR 3. Lacking skilled resources/labor prevent our organization fully exploit AI 0.924 

Competitive Pressure (CP) 

CP 1. Our choice to adopt AI in HRM would be strongly influenced by what  
competitors in the industry are doing 

0.852 

CP 2. Our organization is under pressure from competitors to adopt AI in HRM 0.833 

CP 3. Our organization would adopt AI in response to what competitors are doing 0.911 

External Support (ES) 

ES 1. Community agencies/vendors/AI tools developers can provide required training 
for AI adoption in our HR department 

0.874 

ES 2. Community agencies/vendors/AI tools developers can provide Effective  
technical support for AI adoption in our HR department 

0.923 

ES 3. Community agencies/vendors/AI tools developers actively market AI adoption 
in our HR department 

0.835 
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Government Support (GS) 

GS 1. The government policies encourage us to adopt new information technology 
especially in HRM 

0.812 

GS 2. The government provides incentives for adopting AI such as offering technical 
support, training and funding for AI technologies 

0.856 

GS 3. There are some laws and regulations to deal with the security and privacy  
concerns over the AI technologies 

0.831 

AI adoption 
AI 2. Our organization has already adopted AI in HR department 0.908 

AI 3. AI adoption encourages the integration of HR practices with other functions 0.916 

Effective HRM 

EHRM 1. AI enhances the operational efficiency of HR functions 0.876 

EHRM 2. AI improves the candidate experiences during recruitment, onboarding and 
offboarding 

0.9 

EHRM 3. AI improves overall employee experience in the company 0.856 

Source: Author’s analysis. 

4.3. Discriminant Validity 

Positioning The discriminant validity assessment aims to determine whether the 
indicators of a construct exhibit low correlation with indicators from other con-
structs (Hair et al., 2019). This evaluation was conducted using two methods 
namely Heterotrait–Monotrait (HTMT) criterion and Fornell-Larcker criterion. 
HTMT is a comparison of the mean of the heterotrait-heteromethod correla-
tions to the geometric mean of the monotrait-heteromethod and monotrait- 
monomethod correlations, In terms of acceptance criteria, an HTMT value of 
less than 0.85 is generally considered to indicate adequate discriminant validity 
(Agarwal, 2022) as Table 4.  

 
Table 4. Discriminant validity test (HTMT). 

 AI CB CO CP EHRM ES GS OR RA SP TM 

AI            

CB 0.728           

CO 0.420 0.673          

CP 0.613 0.671 0.604         

EHRM 0.645 0.740 0.504 0.647        

ES 0.545 0.597 0.597 0.770 0.647       

GS 0.567 0.685 0.679 0.730 0.754 0.658      

OR 0.381 0.558 0.710 0.716 0.561 0.613 0.672     

RA 0.823 0.879 0.537 0.694 0.691 0.617 0.644 0.500    

SP 0.456 0.634 0.773 0.628 0.643 0.608 0.646 0.733 0.618   

TM 0.51 0.688 0.557 0.726 0.685 0.618 0.744 0.571 0.657 0.683  

Source: Author’s analysis. 
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The subsequent discriminant validity valuation employs the Fornell-Larcker 
measure, which involves comparing the Average Variance Extracted (AVE) val-
ues with the relationship between constructs. This comparison is depicted in 
Table 5. According to the Fornell-Larcker criterion, each latent variable’s AVE 
value should exceed the correlations with other latent variables, ensuring discri-
minant validity. 

 
Table 5. Discriminant validity results with Forner Larcker. 

 AI CB CO CP EHRM ES GS OR RA SP TM 

AI 0.912           

CB 0.595 0.861          

CO 0.350 0.567 0.866         

CP 0.512 0.562 0.500 0.866        

EHRM 0.534 0.624 0.428 0.551 0.877       

ES 0.456 0.507 0.503 0.647 0.550 0.878      

GS 0.450 0.552 0.553 0.582 0.620 0.698 0.833     

OR 0.325 0.478 0.605 0.611 0.491 0.528 0.551 0.893    

RA 0.693 0.748 0.463 0.591 0.594 0.532 0.537 0.436 0.836   

SP 0.385 0.536 0.651 0.525 0.561 0.518 0.539 0.627 0.541 0.833  

TM 0.441 0.604 0.496 0.705 0.614 0.550 0.634 0.514 0.590 0.618 0.908 

Source: Author’s analysis. 

4.4. Construct Reliability 

Positioning the following step in the assessment of internal consistency reliabili-
ty is the calculation of composite reliability, with the acceptance threshold set 
between 0.6 and 0.7. The current study exhibits Composite Reliability (CR) val-
ues that range from 0.949 to 0.872, thereby indicating a high degree of reliability 
as suggested by (Hair et al., 2011). Furthermore, Cronbach’s alpha, another meas-
ure of composite reliability, is employed to measure the internal consistency of 
the constructs utilized. The acceptable level for Cronbach’s alpha is set at 0.7 
(Hair et al., 2019). As per Table 3, all constructs have higher Cronbach’s alphas 
that exceed the 0.7 level, thereby implying that these measures possess high re-
liability and are suitable for measuring each of the stated constructs.  

Additionally, the following step in the evaluation of the measurement model is 
the assessment of the convergent reliability of each construct measure (Hair et 
al., 2019). The convergent validity can be assessed using the Average Variance 
Extracted (AVE) value, which indicates a high correlation between the items and 
the factor, and confirms their belonging to the construct. The minimum accept-
able level for AVE is set at 0.5 (Hair et al., 2011; Agarwal, 2022). As per Table 6, 
all constructs formed in this study have high AVE values that exceed 0.5, thereby 
indicating that the construct elucidates at least 50% of the variance of its items. 

https://doi.org/10.4236/ojbm.2024.124131


P. Faustine, R. Rachmawati 
 

 

DOI: 10.4236/ojbm.2024.124131 2545 Open Journal of Business and Management 

 

Table 6. Construct reliability. 

Variables 
Cronbach’s 

alpha 
Composite 
Reliability 

Average variance 
extracted (AVE) 

Technological factors    

Relative Advantage (RA) 0.857 0.902 0.698 

Compatibility (CB) 0.825 0.895 0.741 

Complexity (CO) 0.835 0.900 0.749 

Security/Privacy (SP) 0.855 0.901 0.694 

Organizational factors    

Top Management (TM) 0.929 0.949 0.824 

Organization Readiness (OR) 0.875 0.922 0.798 

Environmental factors    

Competitive Pressure (CP) 0.835 0.900 0.750 

External Support (ES) 0.852 0.910 0.771 

Government Support (GS) 0.780 0.872 0.694 

Dependent variables    

Artificial Intelligence (AI) 0.798 0.908 0.832 

Effective Human Resource Management 0.851 0.909 0.770 

Source: Author’s analysis. 

4.5. Structural Model 

After confirming the adequacy of the measurement model, the study evaluates 
the structural model which encompasses several key metrics, including the coef-
ficient of determination (R square), and their statistical significance, as outlined 
by (Hair et al., 2019). The outcomes of these assessments are detailed in Table 7 
and Table 8. The model demonstrates no collinearity, as evidenced by Variance 
Inflation Factor (VIF) values under 3 (Agarwal, 2022). The model also displays a 
respectable predictive capability, with an R-square value nearing 0.5, which is 
perceived moderately high by (Hair et al., 2011). 

 
Table 7. Coloniality Statistics (VIF). 

 AI CB CO CP EHRM ES GS OR RA SP TM 

AI     1.000       

CB 2.785           

CO 2.219           

CP 2.868           

EHRM            

ES 2.433           

GS 2.568           
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OR 2.228           

RA 2.681           

SP 2.489           

TM 2.783           

Source: Author’s analysis. 
 

Table 8. R square. 

 R-square 

AI 0.516 

EHRM 0.585 

Source: Author’s analysis. 

4.6. Hypothesis Testing 

Table 9 shows hypothesis testing results of this study based on the t values and p 
values that was obtained after the calculation. 

 
Table 9. Hypothesis testing. 

Hypothesis t values p values Decisions 

H1 Relative Advantage -> AI 5.043 0.000*** Supported 

H2 Compatibility -> AI 2.122 0.034** Supported 

H3 Complexity -> AI 0.463 0.643 Rejected 

H4 Security/Privacy -> AI 0.071 0.944 Rejected 

H5 Top Management -> AI 1.087 0.277 Rejected 

H6 Organization Readiness -> AI 0.945 0.345 Rejected 

H7 Competitive Pressure -> AI 1.678 0.093* Supported 

H8 External Support -> AI 0.471 0.638 Rejected 

H9 Government Support -> AI 0.629 0.529 Rejected 

H10 Artificial Intelligence -> EHRM 8.156 0.000*** Supported 

Source: Author’s analysis. Note: *p < 0.10, **p < 0.05, and ***p < 0.01 (two tailed test). 

5. Discussion 

The study utilized the TOE model to examine the determinants of AI adoption 
in HRM. The hypothesis test results indicate that several factors significantly in-
fluence the adoption of AI in HRM in MEs in Tanzania. First hypothesis (H1) 
suggested that the organization factor of Relative advantage influences the adop-
tion of AI which indicates a significant influence. This aligns with the conclu-
sions of (Sharma et al., 2024); (Almaiah et al., 2022) and (Na et al., 2022) who 
argued The relative advantage is a strong determinant of technological adoption, 
So it generally implies that Tanzanian enterprises that perceive a relative advan-
tage in using AI are more likely to adopt it. 
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The second hypothesis (H2) proposed that the organization factor of Compa-
tibility influences the adoption of AI, suggesting that the compatibility of AI 
with existing systems and processes is a key determinant of its adoption. This is 
consistent with the work of (Tuffaha & Perello-Marin, 2022) and (Park & Kim, 
2019) who found that compatibility is a substantial factor in the implementa-
tions of innovations and technologies in different fields. Therefore, AI technolo-
gies that align with the existing operations of Tanzanian enterprises are more 
likely to be adopted. 

The seventh hypothesis (H7) posited that environmental factors of Competi-
tive pressure directly influence the adoption of AI, indicating that competitive 
pressures can drive AI adoption. This finding supports the work of (Alam et al., 
2016) and (Yoon Kin Tong & Sivanand, 2005) who found that competitive pres-
sure is a significant driver of technology adoption. It suggests that Tanzanian 
enterprises facing significant competitive pressure may turn to AI to obtain a 
competitive advantage. 

Tenth hypothesis (H10) proposed that the adoption of AI has substantial in-
fluences on effective HRM in medium enterprises in Tanzania, indicating a sig-
nificant positive impact of AI adoption on HRM effectiveness. This supports the 
work of (Goswami et al., 2023); (Wamba-Taguimdje et al., 2020) and (Anderson 
& Johnson, 2017) who found that AI can significantly enhance HRM effective-
ness by automating routine tasks and enabling strategic decision-making. (Agar-
wal, 2022) found that AI may improve HRM effectiveness by automating regular 
processes and allowing data-driven decision-making. So, this suggests that Tan-
zanian enterprises that adopt AI can improve their HRM effectiveness which 
may stimulate productivity. 

However, not all hypotheses were supported. Hypotheses H3, H4, H5, H6, H8, 
and H9 were not supported, indicating that factors Complexity, Security/Privacy, 
Top management support, Organization Readiness, external support, and Gov-
ernment support may not directly impact the adoption of AI. Reasons for the 
rejection of technological factor of Organizational readiness in the Tanzanian 
context may consider factors such as limited access to advanced technology in-
frastructure, lack of technical expertise, and inadequate resources for imple-
menting AI systems (Strusani & Houngbonon, 2019). For the rejection of orga-
nizational factor of Security/Privacy could be attributed to various factors, in-
cluding concerns about data privacy and security, lack of awareness about 
AI-related security measures, and limited resources for implementing robust 
security measures within a company (Holl et al., 2024). Additionally the rejec-
tion of external support factors might be caused by the restricted accessibility to 
affordable financing (Croucher et al., 2013) which can hinder the adoption of AI, 
as it requires significant investment and resources. Furthermore, the lack of a 
developed entrepreneurial ecosystem in Tanzania, as highlighted by (Jeje, 2022), 
can also limit the availability of external support and resources for MSEs to 
adopt AI. 
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6. Conclusion 

In conclusion, the findings of this research study provide useful perspectives into 
the determinants of AI adoption and its impact on HRM effectiveness in me-
dium-sized enterprises in Tanzania. The supported hypotheses highlight the 
benefits of relative advantage, compatibility, competitive pressure in the adop-
tion of AI and it shows the valuable impact of adopting and implementing AI in 
stimulating HRM effectiveness. Since the research was conducted specifically in 
the context of MEs in Tanzania, the findings may not be applicable and genera-
lizable to different circumstances or organization sizes. This study recommends 
future exploring of additional factors and including a larger sample to enhance 
the universality of results. Additionally, some factors are more important in adopt-
ing AI in HRM; however, they were rejected by this study. These include internal 
factors which are Top management support and organizational readiness which 
is very key in new technologies and organisational culture to the adoption ac-
ceptance (Chong & Lim, 2022). Also it is more important for HR managers to be 
cautious, acknowledge and implement ethical practices when adopting AI in 
HRM processes (Rodgers et al., 2023) because of the complexity in adopting and 
implementing new technologies (Almaiah et al., 2022). 
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