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Identification of novel therapeutic targets for type 2 diabetes is a key area of
contemporary research. In this study, we screened differentially expressed genes
in type 2 diabetes through the GEO database and sought to identify the key
virulence factors for type 2 diabetes through a transcription factor regulatory
network. Our findings may help identify new therapeutic targets for type
2 diabetes. Data pertaining to the humoral (whole blood) gene expression
profile of diabetic patients were obtained from the NCBI’s GEO Datasets
database and gene sets with differential expression were identified.
Subsequently, the TRED transcriptional regulatory element database was
integrated to build a gene regulatory network for type 2 diabetes. Functional
analysis (GO-Analysis) and Pathway-analysis of differentially expressed genes
were performed using the DAVID database and the Kyoto Encyclopedia of Genes
and Genomes (KEGG) database. Finally, gene-disease correlation analysis was
performed using the DAVID online annotation tool. A total of 236 pathogenic
genes, four transcription factors related to the pathogenic genes, and
261 corresponding target genes were identified. A transcription factor-target
gene regulatory network for type 2 diabetes was constructed. Most of the key
factors of the transcription factor-target gene regulatory network for type
2 diabetes were found closely related to the immune metabolic system and
the functions of cell proliferation and transformation.
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1 Introduction

Globally, an estimated 366 million people are affected by diabetes mellitus and its
incidence has shown an increasing trend (Joanne and Jose, 2020). Diabetes ranks as the
third most harmful disease after cancer and coronary atherosclerotic heart disease (Chen
et al., 2017). The high incidence, high disability rate, and lifelong harm caused by diabetes
imposes a heavy economic burden on the society and families (Le et al., 2018). Type
2 diabetes accounts for over 90% of all diabetic patients (Shen et al., 2018). Therefore, the
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prevention and treatment of type 2 diabetes have attracted great
attention from domestic and overseas scholars and governments
(Wang and Wei, 2017).

Type 2 diabetes is a complex metabolic disorder involving the
metabolism of sugars, proteins, fat, water, and electrolytes. The
condition results from hypofunction of the pancreas and insulin
resistance; the underlying etiopathogenetic mechanisms are
complex and involve genetic factors, immune disorders, infection,
and toxins (Guess, 2018). Traditional single gene screening for type
2 diabetes has been unable to meet the needs of clinical medicine (Yi
et al., 2022; Kaul and Ali, 2015).

Homeostasis regulation depends on common pathways of the
metabolic and immune systems, and metabolic regulation and
immune response interact. When dysfunction occurs, it can lead
to chronic metabolic disorders in the body. If endogenous or
exogenous infections can cause immune responses and metabolic
disorders, metabolic abnormalities that occur when nutrient and
energy intake and expenditure are out of balance can also induce
immune responses.

Transcription factors are a class of proteins with DNA-binding
domains that bind to specific DNA sequences and regulate gene
transcription by promoting or preventing the recruitment of RNA
polymerase. Transcription factors play an important regulatory role
in complex networks through thousands of genomic binding sites.
Therefore, the construction of a regulatory network of transcription
factors may facilitate the identification of novel diagnostic and
therapeutic targets for type 2 diabetes (Da et al., 2017).

In this study, the humoral (whole blood) gene expression profile
of type 2 diabetic patients was obtained through the GEO Datasets
database of the National Center for Biotechnology Information
(NCBI), and the differentially expressed gene sets were selected.
Subsequently, the TRED transcriptional regulatory element database
was integrated to build a gene regulatory network for type 2 diabetes
based on the differentially expressed gene set. Gene-disease
correlation analysis was performed using the DAVID online
annotation tool. Our findings may help identify some novel
diagnostic targets and lay the foundation for early clinical
diagnosis of type 2 diabetes and the development of novel drugs.

1.1 Methodology

1.1.1 Microarray data
The microarray data used in this study was obtained from GEO

Datasets of the NCBI database (Barrett et al., 2013); the index word

used was “Diabetic”. The filter subjects were “Homo sapiens,” “CEL
original document,” and “Affymetrix”. Three groups of microarrays
were eventually identified.

We chose gene expression profiles of GSE15653, GSE64998, and
GSE23343 from the GEO database, which are freely available in the
public domain. The GSE15653 datasets were based on the
Affymetrix GPL96 platform and included 13 samples (4 diabetic
samples and nine healthy samples). The GSE64998 datasets were
based on the Affymetrix GPL11532 platform and included
13 samples (7 diabetic samples and six healthy samples). The
GSE23343 datasets were based on the Affymetrix
GPL570 platform and included 17 samples (10 diabetic samples
and seven healthy samples) (Table 1).

1.1.2 Microarray data processing
The Expression Console™ software tool of Affymetrix was used

to perform background correction and probe fluorescence
conversion to microarray data. The Transcriptome Analysis
Console tool of Affymetrix was used to standardize and perform
logarithmic conversion of the microarray data. The significance
analysis of microarrays (SAM) method was used to identify
differentially expressed mRNA between healthy individuals and
patients with type 2 diabetes. Fold change >1.0 or fold
change < −1.0 and p-value <0.05 were used as the criteria to
identify differentially expressed genes in this study.

1.1.3 Construction of TF mRNA gene network
Based on mRNA expression profiles after microarray data

analysis and after searching the Transcriptional Regulatory
Element Database (TRED) (Zhao et al., 2005), we obtained four
transcription factors (TFs) and 236 target genes. Four transcription
factors (TF) and 236 target genes were predicted to combine for a
total of 261 TF-to-target pairs. The relation obtained from the
analysis of the differential co-expression was mapped to the
transcription factors and target gene pairs to obtain transcription
regulation pairs. Finally, Cytoscape3.9.1 software (Shannon et al.,
2003) was used for plotting. The yellow rhombus in the TF-gene
network represented transcription factors and the blue rhombus
represented target genes. The TFs as well as their target genes were
connected by dotted lines with arrows indicating the direction from
the source to the target.

1.1.4 Construction of PPI network
The genes with more than 15 nodes were input into the String

database (https://stringdb.org/) to construct the PPI network, the

TABLE 1 Microarray data.

Dataset
ID

Sample ID Sample
number

Control
sample
number

Disease
sample
number

Platforms Organism Submission
date

Manufacturer

GSE64998 GSM1585585-
GSM1585597

13 6 7 GPL11532 Homo sapiens 08 Mar 2016 Affymetrix

GSE15653 GSM391698-
GSM391710

13 9 4 GPL96 Homo sapiens 01 Jun 2009 Affymetrix

GSE23343 GSM572800-
GSM572816

17 7 10 GPL570 Homo sapiens 31 July 2010 Affymetrix
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species was selected asH. sapiens, the score was set to ≥0.9, and other
parameters were set as default.

1.1.5 Gene function annotation analysis
The DAVID (Database for Annotation Visualization and

Integrated Discovery) database (Huang et al., 2007) was used for
the Gene Ontology (GO) function annotation enrichment analysis
and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
analysis (Xu et al., 2014) on the screened differential genes.
According to the GO significance reflected by the differentially
expressed genes (p < 0.05), the differentially expressed genes
were further analyzed from the functional perspective.

2 Results

2.1 Microarray data processing

The Transcriptome Analysis Console tool of Affymetrix
was used to standardize and perform logarithm conversion of
the microarray data, while the SAM method was used to
identify the differentially expressed miRNAs between
healthy individuals and patients with type 2 diabetes. The
numbers of differentially expressed genes on each platform
were 1,210, 341, and 1,502, respectively. These genes were
cross-screened and a total of 236 genes were identified
(Figures 1, 2). Of these, 23 differentially expressed genes
were identified on three platforms, while 37, 121, and
55 differentially expressed genes were identified on
two platforms.

2.2 Transcription factor-target gene
regulatory network for type 2 diabetes

The TRDE database was used to predict the possible
transcription factors for the 236 genes; a total of four
transcription factors and 261 corresponding target genes were
identified (Table 2).

The transcription factors and their corresponding
261 target genes were mapped using the cytoscape software
(Figure 3). In Figure 3, the number of target genes regulated by
transcription factor Jun is the largest, followed by Stat1, Fos
and Atf5 (Table2).

We found that 13 target genes were regulated by more than two
transcription factors (Table 3); of these, Pik3r1 (regulated by four
transcription factors) was the most regulated target gene in this
network. There were eight target genes regulated by three
transcription factors and four target genes regulated by two
transcription factors. The transcription factor Fos gene has a
regulatory effect on all target genes.

FIGURE 1
Screening results of differentially expressed genes overlapping
on two or more platforms. The blue color is GSE15653, the yellow
color is GSE23343, and the green color is GSE64998.

FIGURE 2
Volcano plot of GSE15653, GSE64998 and GSE23343. The red represents upregulated differentially expressed genes, and the green represents
downregulated differentially expressed genes.

Frontiers in Molecular Biosciences frontiersin.org03

Xu et al. 10.3389/fmolb.2024.1410004

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2024.1410004


2.3 Node of network

We performed a statistical analysis of the network nodes in the
transcription factor-target gene regulatory network for type
2 diabetes. We identified 14 genes that existed in more than
15 nodes and three (Jun, Fos and Stat1) of these existed in more
than 80 nodes; among these, Jun had the most network nodes
(115 network nodes) (Table 4).

Furthermore, we found that Lepr, Hsp90ab1, Igf1 and Pik3r1 were
closely related to the regulation of multiple transcription factors.

2.4 Construction of PPI network

The 14 key nodes (Table 4) were input into the String database to
construct the PPI network (Figure 4), and it was found that JUN,

TABLE 2 Four transcription factors and their corresponding target genes.

TF Target gene no. Gene ID Description

Jun 78 16,476 jun proto-oncogene

Stat1 66 20,846 signal transducer and activator of transcription

Fos 69 14,281 FBJ osteosarcoma oncogene

Atf5 48 107,503 sactivating transcription factor 5

FIGURE 3
Transcription factor regulatory network map of differentially expressed genes in diabetes. The yellow boxes are transcription factors, while the blue
boxes are targets genes.
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STAT1, FOS, PIK3R1, ATF5 were closely related in the PPI network,
and they were regarded as the key targets of type 2 diabetes.

2.5 GO functional annotation analysis of
differentially expressed genes in diabetes

GO functional annotation was performed on 236 differentially
expressed genes and the first 10 pathways were sequenced according
to the p-value (Figure 5). Of those 10 pathways, Drug Metabolism-
Cytochrome P450 pathway, Metabolism of xenobiotics by
cytochrome P450 pathway, Steroid hormone biosynthesis
pathway and Type I These four pathways are closely related to
the metabolic system. The Influenza A pathway, Staphylococcus
aureus infection pathway, Toxoplasmosis pathway and
Leishmaniasis pathway are all pathogenic infectious diseases that
are closely related to the body’s immune system.

3 Discussion

The prevalence of diabetes has shown a rapid increase owing to
sedentary lifestyles in modern society and progressive population
aging. Development of new hypoglycemic drugs and the
identification of novel drug targets are a key areas of
contemporary research (Vyas et al., 2015). With the advent of
the post-genome era and the rapid development of
bioinformatics, it is possible to construct information networks
based on big data and to identify potential drug targets through
network nodes (Li, 2012).

In this study, microarray data pertaining to type 2 diabetes was
obtained from the GEODatasets of the NCBI database. Further, The
Transcriptome Analysis Console tool of Affymetrix was used to
standardize and logarithmize the microarray data. A total of

236 differentially expressed pathogenic genes for diabetes were
identified. These 236 genes were analyzed using the TRDE
database, and four transcription factors (Jun, Stat1, Fos and Atf5)
and their 261 corresponding target genes were predicted. Lastly, a
transcription factor-target gene regulatory network for type
2 diabetes was constructed (Table 2).

Jun is closely related to systemic lupus erythematosus (SLE). SLE
is a typical autoimmune disease involving multiple organs and
systems. Doníz-Padilla et al. found that the expression level of
Jun in peripheral blood mononuclear cells (PBMC) of patients
with SLE was significantly higher than that in normal controls
(Doniz et al., 2011; Linan et al., 2015). Olferiev et al. showed that Jun
may play an important role in transcriptional regulation of FCGR2B
promoter activity; FCGR2B has been shown to be closely related to
the pathogenesis of SLE (Olferiev et al., 2007). These studies
suggested that jun may be involved in the pathogenesis of SLE.

Gene Stat1 translated as STAT1, is a transport protein for
interferon (Dale et al., 2015; Halupa et al., 2005) subsequent
research showed that it is an important component of cellular
response to interferon stimulation. STAT1 belongs to the STAT
transcription factor family, which includes STAT1, STAT2, STAT3,
STAT4, STAT5α, STAT5β, and STAT6. STAT1 plays a key role in
cellular immune response against viruses, bacteria, and parasites
(Chauche et al., 2017).

As a member of the Fos family, Fos along with the members of
the Jun family and the activated transcription factor protein family
were shown to form activated protein 1 (ap-1) (Wang et al., 2006).
Activator protein-1 (ap-1) is an important intranuclear
transcription regulator that plays an important role in many
signal transduction processes; it represents the intranuclear
intersection of a series of cell signal transduction pathways.

Gene Atf5 translated as ATF5 (activating transcription factor 5),
is a member of the ATF/CREB (camp response element binding
protein) family. In previous studies, full-length TRB3 was used as the

TABLE 3 Target genes regulated by transcription factors.

Target genes regulated by
transcription factors

Number of transcription factors that
regulate target genes

Transcription
factors

Number of
network nodes

Pik3r1 4 Atf5 Jun Fos Stat1 22

Ephb2 3 Fos Jun Atf5 3

Gpx6 3 Fos Jun Atf5 3

Rela 3 Jun Fos Stat1 3

Mapk8 3 Jun Fos Stat1 3

Il6 3 Jun Fos Stat1 3

Mapk3 3 Jun Fos Stat1 3

Col4a1 3 Jun Fos Stat1 3

Grap2 3 Jun Fos Stat1 3

Junb 2 Fos Atf5 2

Creb1 2 Fos Atf5 2

Cpd 2 Fos Atf5 2

Egr1 2 Fos Atf5 2
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TABLE 4 Statistical table of transcription factor network nodes (>15 nodes).

Gene Nodes of network The number of regulatory transcription factors

Jun 115 1

Fos 88 1

Stat1 83 1

Atf5 48 1

Lepr 43 3

Hsp90ab1 32 3

Igf1 23 3

Pik3r1 22 4

Cxcl10 19 2

Cyp7a1 17 1

Serpine1 16 2

Apoe 15 1

Cyp1a2 15 1

Fasn 15 0

FIGURE 4
PPI network diagram.
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decoy protein to screen the human liver cDNA gene bank and to
identify the interaction between TRB3 and ATF5 (Yasuda et al.,
2014). However, no studies have specifically reported the interaction
between the two. Therefore, we concluded that the ATF5 protein has
an unpredictable role in glucose metabolism or lipid metabolism. In
particular, the function of ATF5 in preadipocyte differentiation
through its interaction with TRB3 has not been reported.

After statistical analysis of the target genes regulated by
transcription factors, we found that only one target gene (Pik3r1)
was regulated by the four transcription factors, while eight target
genes were regulated by three transcription factors. Pik3r1 is
regulated by all four transcription factors and has 22 network
nodes; therefore, it seems to play an important role in the
transcription factor regulatory network. Pik3r1 is a member of
the PI3K family, which is an important kinase of inositol and
fluidomyositol (PI). As an important intracellular signal
transduction molecule, Pik3r1 is involved in the processes of cell
proliferation, apoptosis, and differentiation (Zhang et al., 2019). An
increasing body of evidence suggests that Pik3r1 plays an important
role in tumor biomolecular mechanisms (Vander et al., 2015).
Several studies have shown that diabetes, particularly type
2 diabetes, is associated with an increased risk of breast,
colorectal, endometrial, pancreatic, liver, and gallbladder cancer
(Sanae et al., 2019; Zhao et al., 2021).

We also performed statistical analysis pertaining to the nodes of
the ranscription factor-target gene regulatory network for type

2 diabetes; we found 14 genes that existed in more than
15 nodes, while eight genes existed in more than 20 nodes, (Jun,
Fos, Stat1, Atf5, Lepr, Hsp90ab1, Igf1, and Pik3r1). The greater the
number of nodes, the more important is the gene in the regulatory
network. Of the eight genes with the largest number of nodes in the
network, the first four were transcription factors (as discussed
earlier) that were closely related to the immune system and
signal transduction. Of the remaining four genes, Lepr plays an
important role in maintaining energy hemostasis in the body. Ridker
et al. identified the expression of LEPR in pancreatic β cells and
found that it regulates insulin secretion in consort with leptin
(Ridker et al., 2008). In addition, animal experiments have shown
that the variation of LEPR plays an important role in the
pathogenesis of obesity and diabetes in mice (Brito et al., 2016).
Heat shock protein 90 (Hsp90) is widely found in eukaryotic and
prokaryotic cells and is the most active molecular chaperone in the
cytoplasm. Human Hsp90 is divided into two categories,
Hsp90AA1 and Hsp90AB1, based on whether it contains
abundant glutamine fragments. The Hsp90AB1 gene has been
implicated in the pathogenesis of SLE via regulating the
expression of Hsp90 through translation, which increases the
expression of Hsp90 and interleukin-6 (IL6); this induces the
differentiation of B lymphocytes into plasmocytes, promotes the
production of autoantibodies, reduces the activity of CD8+

inhibitory T cells, and increases the secretion of
immunoglobulins (Stephanou et al., 1998). As translated as

FIGURE 5
KEGG pathway enrichment analysis.
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insulin-like growth factor 1 (Igf1), IGF1 can promote cell
proliferation and inhibit apoptosis; in addition, its role in tumor
development is a hot topic in contemporary research. The biological
function of IGF1 is mediated by its surface specific target cell
receptor (IGF1R), which plays an important role in cell
transformation and tumorigenesis in many tissues including
ovaries; in addition, it can activate the MAPK and PI3K/AKT
signaling pathways (Cheng et al., 2022). AKT is protein kinase B,
which regulates cell proliferation, apoptosis, and cell cycle (Jae et al.,
2020). We have also discussed that Pik3r1 gene is involved in
regulating a variety of cellular functions including cell growth,
proliferation, transformation and survival; it also plays an
important role in tumor biomolecular mechanisms. To
summarize, these eight genes are mainly involved in the immune
response, cell proliferation, transformation, and other functions, all
of which are closely related to type 2 diabetes.

We performed gene ontology (GO) functional annotation analysis
of 236 differentially expressed genes, and the first 10 pathways were
obtained according to the p values (Figure 5). These 10 pathways were
closely related to diabetes and related diseases, of which the type

1 diabetes pathway is the sixth, and the toll-like receptor signaling
pathway is closely related to immunity.

Eight network nodes including four transcription factors
(Jun, Stat1, Fos and Atf5) that regulate the most target genes,
the target gene that was most regulated by transcription factors
(Pik3r1), and the eight genes with the most network nodes (Jun,
Fos, Stat1, Atf5, Lepr, Hsp90ab1, Igf1, and Pik3r1) were put
together for network construction analysis (Figure 6). We found
that these genes were closely related to and were regulated by
Stat5a, Mapk9 and Mapk8, all of which play a role in the STAT
and MAPK signaling pathways for regulation of immune and
inflammatory-related functions. At the same time, we also
found that the two genes Stat1 and Pik3r1 were located in
the central location of the networks, which indicated their
importance.

Type 2 diabetes is generally believed to be related to the
abnormal cell structure caused by the interaction of
inflammatory factors with the endocrine system, immune system,
oxidative stress, abnormal fat metabolism, and other factors; in
addition, insulin resistance and microvascular disease plays a key

FIGURE 6
Networkmap of the relationship between transcription factors and network nodes. The circles represent transcription factors; the size of the circle is
directly proportional to the number of genes it is linked with.
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role in its pathogenesis (Hiroki and Kazuhiro, 2022). We performed
GO functional enrichment analysis of 236 differentially expressed
genes through the DAVID website and selected the top 10 pathways
associated with the most significant p-value. We found that most of
these 10 pathways were related to immune, metabolism, and
diabetes (such as the toll-like receptor signaling pathway and the
type I diabetes mellitus pathway). There were also some
transcription factors and signaling pathways related to diseases
and immunity, such as Drug kibone-cytochrome P450,
metabolism of xenobiotics by cytochrome P450, and chemical
carcinogenesis.
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