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1 Introduction
Fredholm integral equation of the first kind is an important type of integral equation which arises in different
scientific applications. It appears in many different fields like Mathematics (backward heat equation, differentiation),
Physics (geophysics, atomic physics, spectroscopy, gravitational problem), Image processing (medical imaging,
radiography) and physical problems (angular variation of scattered light, measurement of spectral distribution).
Inverse problem of Laplace transform and diffuse optical tomography can be easily expressed in the form of first
kind Fredholm integral equation.

The Fredholm integral equation of the first kind is given as

v(x) =

∫ 1

0

K(x, t)F (u(t))dt, x ∈ [0, 1), (1.1)

where F (u(t)) is a function of u(t) and K(x, t) represents kernel of equation. Equation (1.1) is called linear
or nonlinear depending upon whether F (u(t)) is linear or nonlinear function of u(t). Here, the problem is to
determine the function u(x) for given values of K(x, t) and v(x) which is an inverse problem. It is an ill-posed
problem [1]. Because of its ill-posed nature, regularization method is required to solve this problem.

Regularization method converts an ill-posed problem into a well posed problem. There are different techniques
used for regularizing first kind Fredholm integral equation. In this paper, we have used regularization method to
convert first kind integral equation into second kind integral equation. As second kind Fredholm integral equation
is a well posed problem, we can apply any suitable method to find solution to this problem. The regularization
method is combined with different techniques like homotopy perturbation method [2], direct method, successive
approximation and Adomian decomposition method [3] and mean value method [4] to solve first kind Fredholm
integral equations. Adomian decomposition method has also been applied to solve vector born and smoking
model [5, 6, 7]. For more details about these methods see [2].

Wavelet based methods have been successfully employed to solve integral equations. Haar wavelet collocation
method [8] and Wavelet Galerkin [9] have been developed to solve Fredholm integral equations of the first kind.
Maleknejad et.al. [10] applied Legendre wavelet Galerkin discretization and CG method to solve Fredholm
integral equations of the first kind. Finite difference method has been applied to solve non-linear Volterra integro-
differential equation by Cakir et.al.[11]. Numerical solution of Volterra-Fredholm integral equation systems have
been obtained by Bernstein multi-scaling polynomials [12]. Also, solution to Fredholm and Volterra integral
equations of the second kind has been obtained using Legendre wavelet [13] and Chebyshev wavelet [14]. In this
paper, we proposed a technique wavelet collocation method combined with regularization method.

The paper is organized as follows. Section 2 provides a brief introduction to wavelets and its approximation
properties. Section 3 describes the proposed numerical method. In section 4, the proposed method is applied to
some numerical problems using Legendre and Chebyshev wavelets and presents their results. The conclusion is
drawn in section 5.

2 Wavelets
We have used Legendre and Chebyshev wavelets for obtaining numerical solution of first kind Fredholm integral
equations. In this section we will give introduction to these wavelets.

2.1 Legendre wavelets
Let Pm(x) be Legendre polynomials of order m ≥ 0, then the Legendre wavelets ψn,m(x) on interval [0,1) are
defined by
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ψn,m(x) =


√

(m+ 1
2
)2k/2Pm(2kx− n̂), for n̂−1

2k
≤ x < n̂+1

2k
,

0, otherwise
(2.1)

where n̂ = 2n− 1, n = 1, 2, . . . , 2k−1; k ≥ 1. The polynomials P0(x) and P1(x) are given as

P0(x) = 1

P1(x) = x

and all higher degree Legendre polynomials are obtained using recursive formula

Pm+1(x) =

(
2m+ 1

m+ 1

)
xPm(x)−

(
m

m+ 1

)
Pm−1(x), for m = 1, 2, 3, . . . .

Legendre wavelets form a complete orthonormal basis for L2[0, 1) [15].

2.2 Chebyshev wavelet
Let Tm(x) be Chebyshev polynomials of the first kind of degree m defined by

T0(x) = 1,

T1(x) = x,

Tm+1(x) = 2xTm(x)− Tm−1(x), m = 1, 2, ....

Chebyshev polynomials Tm(x) are orthogonal with respect to the weight function w(x) = 1/
√

(1− x2), on the
interval [-1,1]. Chebyshev wavelets are defined on [0,1) as

ψn,m(x) =

{
αm2k/2√

(π)
Tm(2kx− 2n+ 1), for n−1

2k−1 ≤ x < n
2k−1 ,

0, otherwise
(2.2)

where

αm(x) =

{
1, m = 0√
2, m > 0

, (2.3)

n = 1, 2, . . . , 2k−1, k = 1, 2, 3, . . .. and m = 0, 1, 2, . . . ,M − 1 where M is a positive integer. The Chebyshev
wavelets ψn,m(x) form an orthonormal basis with weight function wn(x) = w(2kx− 2n+ 1) on L2[0, 1) [14].

2.3 Approximation of function
Any square integrable function u(x) defined over [0, 1) can be written as sum of series of wavelets as

u(x) =

∞∑
n=1

∞∑
m=0

cn,mψn,m(x), (2.4)

where ψn,m(x) represents wavelets and cn,m are wavelet coefficients given by

cn,m = 〈u(x), ψn,m(x)〉 =

∫ 1

0

u(x)ψn,m(x)dx. (2.5)

After truncating the series at m = 0, 1, 2, . . . ,M − 1 and n = 1, 2, . . . , 2k−1, (2.4) can be written as sum of series
of 2k−1M terms.
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u(x) '
2k−1∑
n=1

M−1∑
m=0

cn,mψn,m(x), (2.6)

Writing it in matrix notation,

u(x) = CΨT (x),

where C and Ψ(x) are 1× 2k−1M matrices and are given by

C = [c1,0, c1,1, . . . ., c1,M−1, c2,0, . . . , c2,M−1, . . . , c2k−1,0 . . . .c2k−1,M−1], (2.7)

Ψ(x) = [ψ1,0(x), ψ1,1(x), . . . , ψ1,M−1(x), ψ2,0(x), . . . , ψ2,M−1(x), . . .

. . . , ψ2k−1,0(x), . . . , ψ2k−1,M−1(x)]. (2.8)

The convergence for Legendre wavelet series is given by following theorem.

Theorem 2.1. [16] A function u(x) ∈ L2[0, 1) with bounded second derivative, say |u′′(x)| ≤ N can be expanded
as an infinite sum of Legendre wavelets, and the series converge uniformly to u(x), i.e.,

u(x) =

∞∑
n=1

∞∑
m=0

cn,mψn,m(x)

and the value of wavelet coefficients cn,m is given by

|cn,m| <
√

12M

(2n)5/2(2m− 3)2
.

The convergence for Chebyshev wavelet series is given by following theorem.

Theorem 2.2. [17] A function u(x) ∈ L2[0, 1) with bounded second derivative, say |u′′(x)| ≤ N can be expanded
as an infinite sum of Chebyshev wavelets, and the series converges uniformly to u(x), i.e.,

u(x) =

∞∑
n=1

∞∑
m=0

cn,mψn,m(x)

and the value of wavelet coefficients cn,m is given by

|cn,m| <
√

2πN

(2n)5/2(m2 − 1)
.

3 Numerical Method
First, we convert ill-posed first kind Fredholm integral equations into well posed second kind Fredholm integral
equations using regularization method. This regularization method has been used by many authors and is found
to be very reliable [4, 2, 18].

Consider Fredholm integral equation of the first kind of form

v(x) =

∫ 1

0

K(x, t)u(t)dt, x ∈ [0, 1). (3.1)

where u(x) ∈ L2[0, 1). We will transform (3.1) into a well posed second kind Fredholm integral equation using
regularization method.

αuα(x) = v(x)−
∫ 1

0

K(x, t)uα(t)dt, (3.2)
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where α > 0 is known as regularization parameter and uα(x) converges to u(x) as α→ 0 [2], i.e.,

u(x) = lim
α→0

uα(x). (3.3)

Now we will apply wavelet collocation method to handle the resulting well posed problem. To employ this
method, expand uα(x) as sum of series of wavelets as

uα(x) =

2k−1∑
n=1

M−1∑
m=0

cn,mψn,m(x). (3.4)

Putting these values in (3.2), we get

α

2k−1∑
n=1

M−1∑
m=0

cn,mψn,m(x) = v(x)−
2k−1∑
n=1

M−1∑
m=0

cn,m

∫ 1

0

K(x, t)ψn,m(t)dt

α
2k−1∑
n=1

M−1∑
m=0

cn,mψn,m(x) = v(x)−
2k−1∑
n=1

M−1∑
m=0

cn,mRn,m(x), (3.5)

where Rn,m(x) =
∫ 1

0
K(x, t)ψn,m(t)dt.

Define collocation points as

xi =
2i− 1

2p
, i = 1, 2, . . . , q,

where q = 2k−1M . Satisfying (3.5) at all collocation points xi, we get the following linear system of equations,

α

2k−1∑
n=1

M−1∑
m=0

cn,mψn,m(xi) = v(xi)−
2k−1∑
n=1

M−1∑
m=0

cn,mRn,m(xi), i = 1, 2, . . . , q.

Writing this system in matrix form, we have

αCΨ = V − CR
C(αΨ +R) = V

C = V (αΨ +R)−1. (3.6)

The function V , Ψ and R are given by

V = [v(x1), v(x2), ....., v(xq)],

Ψ =



ψ1,0(x1) ψ1,0(x2) . . . . . ψ1,0(xq)
ψ1,1(x1) ψ1,1(x2) . . . . . ψ1,1(xq)

. . . . . . . .
ψ1,M−1(x1) ψ1,M−1(x2) . . . . . ψ1,M−1(xq)
ψ2,0(x1) ψ2,0(x2) . . . . . ψ2,0(xq)

. . . . . . . .

. . . . . . . .
ψ2k−1,M−1(x1) ψ2k−1,M−1(x2) . . . . . ψ2k−1,M−1(xq)


,
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R =



R1,0(x1) R1,0(x2) . . . . . R1,0(xq)
R1,1(x1) R1,1(x2) . . . . . R1,1(xq)

. . . . . . . .
R1,M−1(x1) R1,M−1(x2) . . . . . R1,M−1(xq)
R2,0(x1) R2,0(x2) . . . . . R2,0(xq)

. . . . . . . .

. . . . . . . .
R2k−1,M−1(x1) R2k−1,M−1(x2) . . . . . R2k−1,M−1(xq)


.

Eq.(3.6) is solved to find unknown coefficients C = {cn,m} and uα(x) is calculated using (3.4). Then u(x) is
obtained from uα(x) using (3.3).

The value of α is chosen in such a way that numerical solution converges to exact solution. To compare efficiency
of wavelets we use root mean square error (rms)

rms =
1

N

N∑
i=1

|u(xi)− uex(xi)|,

where u(xi) and uex(xi) are numerical and exact solution and N is the number of points at which data is
measured.

Also, nonlinear Fredholm integral equation of the first kind can be solved by same method by converting it into
linear Fredholm integral equation of the first kind by putting

F (u(x)) = v(x).

4 Numerical Examples
In this section, we presents some examples to check efficiency of the proposed method. The numerical results
obtained using Legendre and Chebyshev wavelets are shown in tables and figures. All examples are solved using
k = 2, M = 3, i.e., collocation points q = 6. All computations are done with help of Matlab.

Example 4.1. Solve the following first kind Fredholm integral equation:∫ 1

0

et sin xu(t)dt = −e
sin x(0.54 sinx+ 0.84)− sinx

cosx2 − 2
, 0 ≤ x ≤ 1.

The exact solution is u(x) = cosx.

Chebyshev wavelet gives accurate results at α = 10−4 with rms value 3.31917747e-03. Legendre wavelet gives
good results for α = 10−4 and rms value obtained is 3.95338299e-03. The results obtained are shown in Table 1
and Fig. 1 .

Example 4.2. Consider the following first kind Fredholm integral equation:∫ 1

0

et(sin(x− t+ 1) + 1)u(t)dt = 1 + cos(x)− cos(x+ 1), 0 ≤ x ≤ 1.

The exact solution is u(x) = e−x.

Chebyshev wavelets gives rms=4.987735534706514e-03 at α = 10−8 and Legendre wavelet gives rms=6.07245313e-
03 for α = 10−8. The results obtained are compared in Table 2 and Fig. 2.
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Table 1. Exact and numerical solution for Example 4.1
x Exact solution Error using Error using

Chebyshev wavelet Legendre wavelet
uex(x) |uex(x)− u(x)| |uex(x)− u(x)|

0 1.00000000 5.71557321e-03 1.48847206e-03
0.1 0.99500416 1.39596756e-03 2.02011478e-03
0.2 0.98006657 1.53444359e-03 2.53185302e-03
0.3 0.95533648 2.92640884e-03 1.95994098e-04
0.4 0.92106099 2.53283330e-03 4.74036713e-03
0.5 0.87758256 4.09080798e-03 6.58689337e-03
0.6 0.82533561 2.53117784e-03 2.92061636e-03
0.7 0.76484218 4.76224551e-03 6.56532489e-03
0.8 0.69670670 3.20682536e-03 4.95166254e-03
0.9 0.62160996 1.45429542e-03 1.23958349e-03

Fig. 1. Plot of exact and numerical solution for Example 4.1

Table 2. Exact and numerical solution for Example 4.2
x Exact solution Error using Error using

Chebyshev wavelet Legendre wavelet
uex(x) |uex(x)− u(x)| |uex(x)− u(x)|

0 1.00000000 1.26155666e-02 1.51007686e-02
0.1 0.90483741 2.15261123e-03 1.71091928e-03
0.2 0.81873075 3.49454337e-03 5.27043699e-03
0.3 0.74081822 5.18768159e-03 6.70508465e-03
0.4 0.67032004 3.70657822e-03 3.37279851e-03
0.5 0.60653065 1.56230523e-03 6.14034096e-03
0.6 0.54881163 2.09369718e-03 3.46187840e-03
0.7 0.49658530 3.85879937e-03 1.74263893e-03
0.8 0.44932896 3.21030266e-03 4.59923853e-04
0.9 0.40656965 3.24750286e-04 8.59224167e-04
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Fig. 2. Plot of exact and numerical solution for Example 4.2

Example 4.3. Consider Fredholm integral equation of the first kind∫ 3

1

(E + E′)−1ρ(E′)dE′ = E−1ln

(
1 + E/a

1 + E/b

)
, 1 ≤ E ≤ 2,

with exact solution p(E) = E−1.

This problem arises in field of electron atom scattering problem. Here the value of rms=3.55584416e-03 is
obtained using Chebyshev wavelet at α = 10−10. Legendre wavelet gives rms= 3.66677100e-02 at α = 10−6.
The results obtained are shown in Table 3 and Fig. 3.

Table 3. Numerical results for Example 4.3

E Exact solution Error using Error using
Chebyshev wavelet Legendre wavelet

ρex(E) |ρex(E)− ρ(E)| |ρex(E)− ρ(E)|
0 1.00000000 7.67691060e-03 5.13346488e-02
0.1 0.83333333 3.97340715e-03 1.46594466e-02
0.2 0.71428571 1.40485767e-03 3.30253721e-02
0.3 0.62500000 5.95456224e-03 2.16202708e-02
0.4 0.55555555 2.44928366e-04 9.63522261e-03
0.5 0.50000000 4.09051930e-05 3.44779193e-02
0.6 0.45454545 1.02978267e-03 5.22655310e-02
0.7 0.41666666 2.47754457e-03 4.44633333e-02
0.8 0.38461538 2.63593915e-03 9.32307457e-03
0.9 0.35714285 2.56215158e-04 5.44039965e-02
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Fig. 3. Plot of exact and numerical solution for Example 4.3

Example 4.4. Consider the following integral equation∫ 1

0

sin(xt)u(t)dt =
sin(x)− x cos(x)

x2
, 0 ≤ x ≤ 1,

with exact solution uex = x.

For Chebyshev wavelet the minimum value of rms is obtained for regularization parameter α = 10−9 and its
value is rms=6.18630084e-07 whereas Legendre wavelet gives rms=7.2886464e-07 at α = 10−8.The exact solution
and absolute errors are shown in Table 4 and Fig. 4.

Table 4. Numerical results for Example 4.4

x Exact solution Error using Error using
Chebyshev wavelet Legendre wavelet

uex(x) |uex(x)− u(x)| |uex(x)− u(x)|
0 0 1.57931568e-06 5.35284295e-07
0.1 0.1 1.22161464e-07 5.84695099e-07
0.2 0.2 5.58852303e-07 1.13921518e-06
0.3 0.3 4.63725617e-07 1.12827595e-06
0.4 0.4 4.07541520e-07 5.51877424e-07
0.5 0.5 7.11529881e-07 1.09102228e-06
0.6 0.6 3.29155136e-07 2.13893066e-07
0.7 0.7 7.61371329e-08 3.29615161e-07
0.8 0.8 4.75241279e-08 5.39502397e-07
0.9 0.9 4.18286467e-08 4.15768641e-07
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Fig. 4. Plot of exact and numerical solution for Example 4.4

Example 4.5. Solve the following integral equation∫ 1

0

extu(t)dt =
ex+1 − 1

x+ 1
, 0 ≤ x ≤ 1.

Exact solution to this problem is uex = x.

The optimal value of rms obtained 1.05867302e-03 is at α = 10−4 using Chebyshev wavelet and for Legendre
wavelets we get rms =9.00670259e-03 at α = 10−6.

Table 5. Numerical results for Example 4.5

x Exact solution Error using Error using
Chebyshev wavelet Legendre wavelet

uex(x) |uex(x)− u(x)| |uex(x)− u(x)|
0 1.00000000 1.35271584e-03 1.22334929e-02
0.1 1.10517091 4.05806339e-04 7.62623195e-03
0.2 1.22140275 3.89218922e-04 4.58136562e-03
0.3 1.34985880 2.39190779e-04 4.26218127e-03
0.4 1.49182469 1.93791446e-04 7.95431022e-03
0.5 1.64872127 2.92369155e-03 1.44208237e-02
0.6 1.82211880 2.37555122e-04 8.71257258e-03
0.7 2.01375270 4.44572538e-04 5.18342313e-03
0.8 2.22554092 3.84702754e-04 5.75131196e-03
0.9 2.45960311 1.30623055e-04 1.25358867e-02
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Fig. 5. Plot of exact and numerical solution for Example 4.5

Example 4.6. Solve the following Fredholm integral equation∫ 1

0

(t− x)2

1 + t2
u(t)dt = 0.179171− 0.532108x+ 0.487495x2, 0 ≤ x ≤ 1.

Exact solution to this problem is uex =
√
x.

Here both wavelets give same results and attains minimum rms given by 4.81549806e − 02 at α = 10−3. The
results obtained are presented in Table 6 and Fig. 6.

Table 6. Numerical results for Example 4.6

x Exact solution Error using Error using
Chebyshev wavelet Legendre wavelet

uex(x) |uex(x)− u(x)| |uex(x)− u(x)|
0 0.00000000 1.36960097e-01 1.36960097e-01

0.1 0.31622776 2.80533570e-02 2.80533570e-02

0.2 0.44721359 2.37570634e-02 2.37570634e-02

0.3 0.54772255 4.91609102e-03 4.91609102e-03

0.4 0.63245553 1.37686800e-02 1.37686800e-02

0.5 0.70710678 2.66029878e-02 2.66029878e-02
0.6 0.77459666 3.06664680e-02 3.06664680e-02

0.7 0.83666002 2.42242901e-02 2.42242901e-02
0.8 0.89442719 6.14611643e-03 6.14611643e-03
0.9 0.94868329 2.43531886e-02 2.43531886e-02
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Fig. 6. Plot of exact and numerical solution for Example 4.6

In present method the error is large only at point x = 0 and at all other points

‖u− uex‖∞ < 1.66074364e− 02.

From the results obtained, we can see that the method provides good results except around point x = 0.

Example 4.7. Solve the nonlinear Fredholm integral equation of the first kind∫ 1

0

xtu3(t)dt = x/5, 0 ≤ x ≤ 1,

with exact solution u(x) = x.

Table 7. Numerical results for Example 4.7

x Exact solution Error using Error using
Chebyshev wavelet Legendre wavelet

uex(x) |uex(x)− u(x)| |uex(x)− u(x)|
0 0.00000000 4.85811927e-06 3.61861628e-05
0.1 0.39148676 3.91486686e-08 3.91408483e-05
0.2 0.49324241 4.93242315e-08 4.93143788e-05
0.3 0.56462161 5.64621505e-08 5.64508717e-05
0.4 0.62144650 6.21446376e-08 6.21322238e-05
0.5 0.66943295 6.69432816e-08 6.69299098e-05
0.6 0.71137866 7.11378518e-08 7.11236418e-05
0.7 0.74888723 7.48887089e-08 7.48737494e-05
0.8 0.78297352 7.82973371e-08 7.82816969e-05
0.9 0.81432528 8.14325121e-08 8.14162459e-05

Here, with Chebyshev wavelet the minimum value of rms=1.53753862e-06 is attained at α = 10(−7). Legendre
wavelet gives rms=6.34203116e-05 at α = 10(−4). Table 7 and Fig. 7 shows the absolute errors obtained using
both wavelets.
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Fig. 7. Plot of exact and numerical solution for Example 4.7

5 Conclusion
In this paper, approximate solution to linear Fredholm integral equations of the first kind is derived by combining
regularization and collocation method based on Legendre and Chebyshev wavelets. Both the wavelets are applied
to some examples and results are presented in tables. Absolute error and rms value are calculated for both
wavelets. The results obtained shows efficiency of the proposed method. After analyzing results we have found
that both the wavelets give accurate results but Chebyshev wavelet gives better results than Legendre wavelet.
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