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Abstract 
The aim of this paper is to broaden the application of Stochastic Configura-
tion Network (SCN) in the semi-supervised domain by utilizing common 
unlabeled data in daily life. It can enhance the classification accuracy of de-
centralized SCN algorithms while effectively protecting user privacy. To this 
end, we propose a decentralized semi-supervised learning algorithm for SCN, 
called DMT-SCN, which introduces teacher and student models by combin-
ing the idea of consistency regularization to improve the response speed of 
model iterations. In order to reduce the possible negative impact of unsuper-
vised data on the model, we purposely change the way of adding noise to the 
unlabeled data. Simulation results show that the algorithm can effectively 
utilize unlabeled data to improve the classification accuracy of SCN training 
and is robust under different ground simulation environments. 
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1. Introduction 

The popularity of smart devices and the rapid growth of the Internet have 
brought about an explosion of data. Typically, data is collected by devices and 
then transmitted to a fusion center for processing. Data explosion causes this 
approach to incur serious communication costs and data latency problems [1]. 
More importantly, for industries involving large amounts of private data (in-
cluding financial and healthcare industries), a fusion center may collect data 
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without authorization, and the risk of data leakage is greatly increased if the fu-
sion center is attacked during the data exchange process [2]. Therefore, it be-
comes particularly important to study machine learning systems where multiple 
interconnected agents are combined to complete a global inference model [3]. 

Distributed learning is mainly divided into two directions. The model distri-
buted cuts the model horizontally or vertically into a number of sub-networks 
and divides it into each agent responsible for a part of the model’s operation, 
reducing the amount of computation. This approach fails to solve the problem of 
private data. The other type of data distribution fits the current trend of data 
distribution more, where local data is stored on each agent, the model is trained 
based on the respective local data, and only the model parameters are uploaded 
to the server, which aggregates the calculations and then passes them back to the 
agents to update the parameters. But this method still can’t avoid the problem that 
if the server is attacked, the whole system will be down. Therefore, peer-to-peer 
decentralized machine learning becomes very necessary [4]. Each agent only ex-
changes parameters with its neighboring agents and agrees collaboratively, so 
that even if some of the data is damaged, the overall aggregation is not affected. 
Currently, most decentralized learning systems focus on supervised learning. 
However, in areas such as computer-aided diagnosis [5], drug development [6] 
and speech tagging, labeled data is scarce and expensive, and at such times, un-
der certain assumptions about the data distribution (e.g. the manifold assump-
tion) unlabeled data points can provide additional information to support mod-
eling and help obtain a better classifier [7]. 

The combination of semi-supervised theory and distributed algorithms has 
yielded some results so far. Semi-supervised learning has three basic assump-
tions: the low-density assumption, the streaming assumption, and the smoothing 
assumption [8]. These three assumptions derive corresponding semi-supervised 
methods that are applied in combination with distributed machine learning, 
such as maximum-margin methods relying on the low-density assumption ap-
plied to distributed SVM classification [9]. The popular regularization method 
based on the manifold assumption, on the other hand, completes the distributed 
adaptation of the method by means of a diffusion-adaptive framework for ma-
trix complementarity via adjacency matrices [10]. Smoothness assumptions are 
often combined with neural networks to require that the predictive model be 
robust to local perturbations in the inputs. The currently distributed combina-
tion of neural networks and semi-supervised learning usually remains in the ba-
sic single-layer feed-forward neural network or the superposition of layers [11], 
and we believe that the modification of the network can effectively improve the 
classification accuracy of semi-supervised learning. Therefore, we turn our goal 
into stochastic configuration network (SCN) [12]. SCN is simple and easy to im-
plement in terms of structure, has the advantages that deep neural networks 
lack, and because of their special training method, has better classification re-
sults than single-layer networks. 
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For the above reasons, we aim to develop a new distributed semi-supervised 
algorithm based on SCN. In this paper, the teacher model and student model are 
introduced in the SCN-based distributed learning algorithm to improve the dis-
tributed learning algorithm. On each agent, exponential moving average (EMA) 
aggregation is used for the model parameters instead of directly sharing the 
weights between the teacher model and the student model. Minimizing the con-
sistency regularization loss of the teacher model and the student model so that 
both get consistent results for the same samples can further improve the robust-
ness of the current parameters of the network. We call the newly proposed mod-
el CMT-SCN. 

The contributions of this paper are summarized as follows. 
• A decentralized learning algorithm is developed for the semi-supervised 

mean teacher method, which does not require a centralized data processing 
center and is suitable for handling massive data and protecting user privacy. 

• Introducing a randomized configuration network to achieve better modeling 
results under the same network structure. 

• The performance of the proposed DMT-SCN algorithm can effectively im-
prove the data performance while utilizing unsupervised data. 

The rest of the paper is organized as follows. In Section 2, the SCN formula-
tion and the structure of the distribution required for the discussion are pro-
vided. In Section 3, we propose a decentralized semi-supervised SCN algorithm 
with a mean teacher method. Numerical experiments between DMT-SCN and 
decentralized supervised SCN are presented in Section 4. Section 5 summarizes 
the findings. 

2. Preliminaries 

2.1. Stochastic Configuration Network (SCN) 

SCNs are structured by first constructing a small network and then continuously 
adding hidden nodes until meet a predetermined tolerance error or reach the 
predetermined number of hidden nodes. Specifically, for the objective function 

: d Cf →  , assuming the existence of a single-layer neural network with 
1L −  hidden nodes and a input value of x, the output of the network can be 

formulated as (1): 

( ) ( ) ( )
1 1

1
1 1

, , , 1, 2, ,
L L

L l l l l l l
l l

f x h x h x b Lθ θ β
− −

−
= =

= = =∑ ∑             (1) 

where 

( ) ( ), , .l l l l l lh x b x bβ φ β Τ= +                     (2) 

Here, lh  refers to the output of node l  in the hidden layer;  

,1 ,2 ,, , ,l l l l Cθ θ θ θ
Τ

 =    denotes the output weights of node l  and C refers to the 
number of categories of the label. Then the current residual can be expressed by 

( ) ( )1 1 1,1 1,2 1,, , , .L L L L L Ce f x f x e e e
Τ

− − − − − = − =               (3) 
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If 1Le −  does not satisfy the pre-determined requirements for the tolerance 
limit, the network will continue to generate new hidden layer nodes with a new 
random basis function Lh  (with input weights Lβ  and bias Lb ) allowing the 
function to be represented as 

( ) ( ) ( )1 , , ,L L L L L Lf x f x h x bθ β−= +                   (4) 

to make the residual smaller until the tolerance limit is met. The supervision 
mechanism of SCN is realized by the following inequalities: 

( )
( ) ( )( )
( ) ( ) ( ) ( ) ( )

2

1,
, 1, 1,1

0, 1, , ,

L q L
L q L L q L q

L L

e x h x
x r e x e x

h x h x
q C

Τ
− Τ

− −Τ= − − −

≥ = 

ξ µ        (5) 

where ( ) ( )1 1L r Lµ = − + , 0 1r< < . The optimization problem for the output 
weights can be obtained by the following equation: 

* * *
1 2

1
, , , arg min ,

L

L l l
l

f hθ θ θ θ
Τ

=

  = −  ∑

θ
               (6) 

where * *
1

L
L l llf hθ

=
= ∑  and * * * *

,1 ,2 ,, , ,l l l l Cθ θ θ θ
Τ

 =   . 

2.2. Mean Teacher Method 

Initially, the use of unsupervised data by Π model was achieved by applying 
noise with a mean of 0 to the data, which, according to the smoothness assump-
tion, should not affect the prediction results of the data after applying distur-
bances to it. Therefore, the unlabeled data can be utilized by feeding the noisy 
and raw data together into the model and optimizing the loss of consistency in 
their predictions. The formula for its loss is as follows: 

( ) ( ) ( )( )1 2ˆ, , , , , ,L L
x XL g x g x∈= θ θ ξ θ ξ               (7) 

where x̂  represents the input value after applying noise to the unlabeled x , 
and L shows the number of layers of Ladder network structure. 

Based on Π model, emporal ensembling combines the forecasts of the pre-
vious round with the results of the current round by introducing exponential 
moving average (EMA), which gives it a higher stability compared to a single 
forecast. The approach leads to the need for each data to calculate its EMA in a 
single round of prediction, which greatly increases the computational cost. 

Mean teacher method [13] uses EMA to update model weights instead of pre-
dictions. The mean teacher method for semi-supervised learning consists of two 
models, the teacher model and the student model. The teacher model is identical 
to the student model in terms of network structure, and the teacher model uses 
EMA to update model weights for the student model in each epoch. The consis-
tency loss added between two models is shown in (8): 

( ) ( ) ( ) 2
, , , , , , .xJ f x f x′

 ′ ′= −  
 η ηθ θ η θ η               (8) 

In general, the loss of consistency between predictions is obtained by calculating 
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RMSE. 

3. Decentralized Semi-Supervised SCNs  

In this section, we develop a semi-supervised decentralized algorithm called 
DMT-SCN. After summation it is mathematically equivalent to the learning 
problem of a centralized semi-supervised SCN. We use an undirected graph to 
model how agents communicate with each other, allowing unlabeled datasets 
scattered among different agents to be trained together and eventually output a 
unified model. 

3.1. Communication Network Model  

We use topology graphs to model the way different agents communicate with 
each other in real scenarios. A node represents a realistic agent that can store 
data and compute, while an edge represents nodes information interaction, if 
there is no edge between two nodes, it means that they cannot produce commu-
nication. Suppose a graph ( ),=   , where { }1, , J=   is the set of agents 
and ⊆ ×    is the set of edges. We use a weight matrix 0G ×∈    to 
represent the connectivity between agents. For agent m , 1mnW =  only if there 
is an edge connecting agent m  to agent n , otherwise it is equal to 0. 

3.2. Problem Formulation  

In a centralized learning framework, even if the data are initially distributed 
across different agents, they all need to be transferred to a central server in order 
to build the complete dataset  . In decentralized machine learning algorithms, 
we dispense with this data transfer step. The data maintains its original distribu-
tion among multiple agents, which are connected to each other through a com-
munication network. Each agent holds only a portion of the total dataset, and we 
consider these J  datasets to constitute an interconnected network in which 
each agent stores its unique dataset. Each agent j , all belonging to the set 

{ }1, , J=  , is able to access its corresponding natively labelled training data-
set { } 1

, jN
j j j j=
= x t  of size jN . Based on the above elements, we provide a 

clear definition of the decentralized cooperative learning problem. In a decentra-
lized environment, there exist J  agents that collectively pursue a unified goal: 
to minimise some joint objective function by means of a complete distribution. 
In other words, these agents are committed to solving the objective function de-
scribed below. 

22 2

1 1

1 1 ˆmin H T H H ,
2 2 2

J J

j j j j
j j

Rθ θ ω θ
= =

 
− + − + 

 
∑ ∑ 

θ
        (9) 

where H j  is the hidden layer output value of labeled data, while H j
  and Ĥ j  

are the hidden layer output values of unlabeled data after adding different nois-
es, respectively. Here θ  is the parameter value of the overall teacher model and 
ω  is the parameter of the student model. In order to transform it into a struc-
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ture suitable for distributed problems, we add the following new constraints: 

22 2

1 1 1

1 1 ˆmin H T H H
2 2 2

J J J

j j j j j j j j
j j j

R
J

θ θ ω
= = =

 
− + − + 

 
∑ ∑ ∑

θ
θ       (10) 

s.t. , .j i jj iθ θ= ∀ ∈ ∀ ∈                    (11) 

When jθ  on each agent is equal and equal to θ , the function realizes the 
equivalence with (9). 

In centralized learning, H  contains the output of all the data in the hidden 
layer, while H j  contains only the data local to agent j . Specifically, the two 
possess the following relationship in their structure. 

1 1H T
H , T ,

H TJ J

   
   = =   
      

                        (12) 

( )

( )

( )

( )

,1 ,1

, ,

H , T , .

j j

j j

j j

j N j N

h t

j
h t

   
   

= = ∈   
   
      

                   (13) 

We note that in the realized form, H  is obtained by splitting vertically into J 
copies of H j . Each matrix H j , j∈  has jN  rows from matrix H j . The 
analogy can be made not only with labels Tj  for labeled data, but also with un-
labeled data H j

  and Ĥ j  with added noise. 
In solving for jθ , we transform it using graph structures. Since the essence of 

the restriction of θ  is that the parameters of the neighboring agents are the 
same, the formula (10) can be represented as 

22 2

1 1 1

1 1 ˆmin H T H H w
2 2 2

J J J

j j j j j j j j
j j j

R
J

θ θ θ
= = =

 
− + − + 

 
∑ ∑ ∑

θ
     (14) 

( )s.t. G I 0,L⊗ =                        (15) 

where   is equal to (14). Trying to solve the above problem by ADMM [14] is 
equivalent to transforming: 

( ) ( )( )1 arg min , ,t L t+ = µ


 ρ                  (16) 

( ) ( ) ( ) ( )1 G I 1 ,Lt t tµ µ ρ+ = − ⊗ +                (17) 

( ) ( ) ( ) ( )1 1 1 ,t t tω αω α θ+ = + − +                 (18) 

where 0 0G G , G
ΤΤ Τ = −  , and 0G ×∈    is the edge-agent incidence matrix of 

the communication network ( ),   . In other words, iterations of θ  are up-
dated by 

( )

( ) ( )( ) ( )

22 2

2

ˆ1 arg min H T H H
2

.

j

j j

j j j j j j j j j

ij ji j i j
i N i N

Rt
J

t t t

θ θ θ ω θ

µ µ θ ρ θ θ
Τ

∈ ∈

+ = − + − +


+ − + − 


∑ ∑



θ

      (19) 
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We can obtain the solution to problems (10) in component form. The distri-
buted iterations for solving problem (19) are 

( )

( ) ( ) ( )( )

1

ˆ1 H H H H 2

ˆH T H H 2
j j

j j j j j i L

j j j j j i ij ji
i N i N

Rt N I
J

t t t

ρ

ω ρ θ µ µ

−
Τ

Τ Τ

∈ ∈

  + = + + +  
  

 
× + + − −  
 

∑ ∑





θ

    (20) 

( ) ( ) ( ) ( )( )1 1 ,ij ij i jt t t tµ µ ρ θ θ+ = − − +                (21) 

( ) ( ) ( ) ( )1 1 1 , , .j j j it t t j iω αω α θ+ = + − + ∈ ∈            (22) 

At the beginning of iteration, the model parameters are randomly selected. In 
the t-th round of iteration, the agent receives parameters from neighboring 
agents and also passes out its own t-th round parameters. The exchange process 
yields the parameters of the student model for the current round. The parame-
ters of the teacher model for round t are obtained through (24). In this cycle, the 
parameters of the student model will eventually converge, allowing decentralized 
learning to achieve a unified model. 

Figure 1 shows the steps in the process of generating the network structure of 
DMT-SCN more clearly and effectively in the form of a flowchart. 
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Figure 1. The flowchart of DMT-SCN. 
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4. Numerical Experiments 

Based on the centralised supervised SCN, we transform in addition to the cen-
tralised semi-supervised SCN, whose value of beta is derived from both unla-
belled and labelled data as follows: 

( )( )11
1 2 3 0 2.H y H Hβ −−= ⋅ + − ⋅                 (23) 

Subsequently, we obtain the classification effects of fully supervised SCN and 
semi-supervised SCN on the three datasets as shown in Table 1. It is observed 
that incorporating unlabelled data into the iterative operation of SCN in a simi-
lar way to labelled data, directly by inverse, does not provide excellent results as 
expected, but on the contrary, it may even cause negative effects. Therefore, it is 
more important to develop semi-supervised loss functions that incorporate un-
labelled data into the loss in a reasonable manner, which is exactly the work of 
this paper. 

Obviously, DMT-SCN incorporates unlabeled data into model training, which 
is different from distributed SCN that only utilizes labeled data. Therefore, in 
this section, we will compare the test accuracies of the two algorithms with dif-
ferent number of agendas to demonstrate that DMT-SCN can effectively im-
prove the data classification accuracy and is robust to different simulation envi-
ronments. In the next simulation experiments, we consider the cases of 4, 8 and 
12 number of agents for each dataset. The communication topologies are shown 
in Figure 2. We have chosen three datasets for our experiments, all of which are 
frequently used on single-layer neural networks. Considering that SCNs have 
been more often used in the past for processing and analysing structured data, 
such data are similarly chosen in this paper. 

4.1. Classification on Hill-Valley Dataset  

There are 600 data items in the dataset, each representing 100 points on a 
two-dimensional graph. When the data is plotted sequentially (from 1 to 100) in 
Y-coordinate, a pattern of hills (“bumps” in terrain) or valleys (“slopes” in ter-
rain) is created.  Since the data is inherently smooth, we applied two different 
types of noise to each piece of data, a Gaussian noise with ( )noi

i ix=µ µ  and 
( ) 10noi

i ix=δ δ . The other is impulse noise with 1/100th of the number of ele-
ments, appearing at random locations and with intensity ( )ixµ . In the other 
two datasets, we similarly used this data enhancement method to ensure the ap-
plicability of this noise on all types of datasets. 
 
Table 1. Classification accuracy of centralised SCN with different datasets.  

Model Hill-Valley Cancer Vehicle 

Supervised SCN 0.93536 0.87431 0.74675 

Semi-Supervised SCN 0.85439 0.90617 0.74327 
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(a) 

 
(b) 

 
(c) 

Figure 2. The graph structure composed of agents. (a) 4 agents; (b) 
8 agents; (c) 12 agents. 
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(a) 

 
(b) 

 
(c) 

Figure 3. RMSE and test accuracy for Hill-Valley dataset with different number of agents. 
(a) Hill-Valley (4 agents); (b) Hill-Valley (8 agents); (c) Hill-Valley (12 agents).  
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(a) 

 
(b) 

 
(c) 

Figure 4. Classification performance of three datasets on 
two models. (a) Hill-Valley; (b) Cancer; (c) Vehicle. 
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Figure 3 shows the RMSE and classification correctness of the data under the 
number of 4, 8, and 12 agents, and it can be seen that the RMSE of the data 
shows a continuous decline, and eventually stabilizes without repeated fluctua-
tions. While the classification correct rate rises rapidly when the number of 
agents is small, it takes more time to achieve high accuracy as the number of 
agents increases. Figure 4(a) shows the performance of DMT-SCN and DSCN 
on the Hill-Valley dataset. As the number of agents increases, the classification 
advantage of DMT-SCN is gradually highlighted. The classification accuracy of 
DSCN is 0.5% higher than that of DMT-SCN when the number of agents is 4, 
but the accuracy of DMT-SCN is higher than that of DSCN when the number of 
agents is both 8 and 12. 

4.2. Classification on Cancer Dataset 

This dataset covers tumour characteristic measurements taken from breast can-
cer patients with associated labels of whether the tumour is benign or malignant. 
Specifically, this dataset contains nine digitised features describing different 
measurement dimensions of breast tumours, such as tumour radius size, surface 
texture, and shape symmetry. Overall, this dataset contains 683 samples, of 
which 444 were labelled as benign, while the remaining 239 were classified as 
malignant. 

Here, we applied Gaussian noise and impulse noise to the unlabeled data. 
Figure 4(b) demonstrates the classification performance of our proposed DMT- 
SCN model and DSCN on this sample, and it can be seen that DMT-SCN does 
not show significant performance degradation due to the imbalanced class dis-
tribution of the data, on the contrary, it outperforms DSCN for different number 
of agents. 

4.3. Classification on Vehicle Dataset  

The Vehicle data is the most complex, which is processed from image data, and 
the 19 features extracted include data on scale variance, skewness, and kurtosis 
about the primary/secondary axes, and the classification includes four types of 
vehicles. The dataset has a total of 846 data sets. The performance of this dataset 
can be seen in Figure 4(c), where we find that the advantage of the classification 
accuracy of DMT-SCN is more obvious as the complexity of the dataset increas-
es. In the simplest Hill-Valley dataset, there is at most a 2% difference in the 
correctness of DMT-SCN classification, while in Vehicle, the difference in accu-
racy between the two reaches 11%. 

5. Conclusions 

In this paper, we design a fully decentralized algorithm DMT-SCN based on the 
mean teacher. Combining with ADMM, the global problem is effectively disas-
sembled, and a semi-supervised decentralized learning algorithm is proposed. 
From this, the problem of the final optimal output weights of DMT-SCN is 
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solved. The algorithm combines the idea of consistency regularization, intro-
duces teacher and student models to improve the accuracy of prediction, and ef-
fectively protects the data privacy of each agent. Finally, the effectiveness of the 
algorithm is verified using three datasets. The algorithm proposed in this paper 
shows significant results in improving the classification performance of decen-
tralized supervised learning algorithms, and at the same time, validation against 
the benchmark model on different numbers of agents and different datasets con-
firms that the model has a good generalisation performance. 

We have observed that DMT-SCN requires a longer time to accomplish its 
objectives when contrasted with centralized models and fully supervised decen-
tralized algorithms. Therefore, we are considering the implementation of an 
event-driven mechanism, wherein information is transmitted solely upon meet-
ing specific conditions. The intention behind this approach is to enhance effi-
ciency by conserving time and reducing communication overheads more effec-
tively. Furthermore, in the simulation experiments, although each intelligence 
operates in a safe and robust environment from external attacks, we must recog-
nise that in real application scenarios, intelligence may be subject to sudden at-
tacks. Therefore, how to ensure the robustness of the intelligence in such situa-
tions will be an important topic for our future research. 
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