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Abstract

Introduction

B-cells are essential components of the immune system that neutralize infectious agents

through the generation of antigen-specific antibodies and through the phagocytic functions

of naïve and memory B-cells. However, the B-cell response can become compromised by a

variety of conditions that alter the overall inflammatory milieu, be that due to substantial,

acute insults as seen in sepsis, or due to those that produce low-level, smoldering back-

ground inflammation such as diabetes, obesity, or advanced age. This B-cell dysfunction,

mediated by the inflammatory cytokines Interleukin-6 (IL-6) and Tumor Necrosis Factor-

alpha (TNF-α), increases the susceptibility of late-stage sepsis patients to nosocomial infec-

tions and increases the incidence or severity of recurrent infections, such as SARS-CoV-2,

in those with chronic conditions. We propose that modeling B-cell dynamics can aid the

investigation of their responses to different levels and patterns of systemic inflammation.

Methods

The B-cell Immunity Agent-based Model (BCIABM) was developed by integrating knowl-

edge regarding naïve B-cells, short-lived plasma cells, long-lived plasma cells, memory B-

cells, and regulatory B-cells, along with their various differentiation pathways and cytokines/

mediators. The BCIABM was calibrated to reflect physiologic behaviors in response to: 1)

mild antigen stimuli expected to result in immune sensitization through the generation of

effective immune memory, and 2) severe antigen challenges representing the acute sub-

stantial inflammation seen during sepsis, previously documented in studies on B-cell behav-

ior in septic patients. Once calibrated, the BCIABM was used to simulate the B-cell

response to repeat antigen stimuli during states of low, chronic background inflammation,

implemented as low background levels of IL-6 and TNF-α often seen in patients with condi-

tions such as diabetes, obesity, or advanced age. The levels of immune responsiveness

were evaluated and validated by comparing to a Veteran’s Administration (VA) patient

cohort with COVID-19 infection known to have a higher incidence of such comorbidities.
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Results

The BCIABM was successfully able to reproduce the expected appropriate development of

immune memory to mild antigen exposure, as well as the immunoparalysis seen in septic

patients. Simulation experiments then revealed significantly decreased B-cell responsive-

ness as levels of background chronic inflammation increased, reproducing the different

COVID-19 infection data seen in a VA population.

Conclusion

The BCIABM proved useful in dynamically representing known mechanisms of B-cell func-

tion and reproduced immune memory responses across a range of different antigen expo-

sures and inflammatory statuses. These results elucidate previous studies demonstrating a

similar negative correlation between the B-cell response and background inflammation by

positing an established and conserved mechanism that explains B-cell dysfunction across a

wide range of phenotypic presentations.

Author summary

In this work, we present a computational model of immune memory formation in B-cells,

the phenomenon that allows a human being to develop immunity against pathogens they

have previously encountered. The computational model was developed as an agent-based

model, in which cells are represented individually and perform their cellular functions

and actions in response to stimuli form the environment and other cells. We examine the

process of immune memory formation in the context of sepsis, a highly inflammatory

condition that can occur after serious injuries, diseases, or trauma. We then use this

model to offer an explanation for recent findings discussing the impact of repeated

COVID-19 infection; specifically, we note that the referenced study was performed in a

relatively narrow population, those that sought care at a Veterans Affairs (VA) hospital,

that would experience higher than normal levels of background inflammation. We use the

model to demonstrate that this background inflammation can impair the process of mem-

ory formation in response to a COVID-19 infection and posit one explanation for increas-

ing severity of reinfections in the VA population.

Introduction

The B-cell immune system is a complex system of cells, antibodies, and cytokines that serves to

aid in the body’s response to infection by neutralizing infectious agents through the phagocytic

actions of naïve and memory B-cells [1]. Furthermore, the B-cell immune system confers

immunity to future infection by microorganisms carrying the same antigen through genera-

tion of antigen-specific memory B-cells and antibody-secreting plasma cells.

There has been increasing interest in the role of B-cells during sepsis, which is characterized

by disordered inflammation that includes excessive pro-inflammation that leads to collateral

tissue and organ damage as well as pronounced immune dysfunction that leaves patients sus-

ceptible to infection by other opportunistic organisms [2]. This immune impairment contrib-

utes heavily to a patient’s failure to recover from the initial septic insult by rendering patients

susceptible to nosocomial infections, and both prolongs intensive care unit stays and increases
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mortality rates [3,4]. Specifically, B-cell immunoparalysis is thought to be a significant contrib-

utor to this immunosuppression, as sepsis can prevent the adequate formation of B-cell sub-

types that normally would aid in neutralizing an infectious challenge [5,6].

Studies have identified three important mechanisms behind B-cell dysfunction: B-cell apo-

ptosis, anergy, and differentiation into regulatory B-cells [5,6]. The causal factors that govern

these mechanisms can be attributed to specific cytokines. Tumor Necrosis Factor-alpha (TNF-

α) regulates the induction of apoptosis in all B-cell lineages [7]. Interleukin-10 (IL-10) and

Interleukin-6 (IL-6) induce B-cell anergy by downregulating the expression of the activation

marker Cluster of Differentiation Receptor 21 (CD21) on naïve and memory B-cells [5]. IL-6

also induces terminal differentiation into regulatory B-cells, which then exert a compounding

immunosuppressive effect on the circulating B-cells and other inflammatory cells [8].

While processes that generate a state of sepsis can result from the system’s response to a large

acute insult, these same processes remain present in chronic inflammatory conditions such as

type 2 diabetes mellitus or obesity [9,10]. In addition, aging populations have also been shown

to exist in chronic states of low inflammation, termed “inflammaging”, which may similarly

induce B-cell senescence [11,12]. These patients can experience an impaired B-cell responsive-

ness induced by IL-6 and TNF-α [11,13], similar to that seen during sepsis. This B-cell dysfunc-

tion contributes to a higher risk for not only primary infection but also re-infection by bacteria

or viruses. For example, a recent study found that patients with diabetes mellitus were more sus-

ceptible to re-infections by SARS-CoV-2 due to impaired immune function [14–16].

The range of clinical phenotypes and conditions potentially impacted by impaired B-cell

function presents both challenges and opportunities in terms of understanding the dynamics

of the B-cell response. Challenges arise from the heterogeneity of factors present in these diver-

gent populations, including differences in the insults and potential pre-existing immune

derangements present in each group. However, opportunities arise from the fact that the same

basic structure of the B-cell response can generate this wide range of distinct configurations.

While experimental biology is able to examine, in detail, the dynamics present in specific dis-

ease or intervention models (i.e., acute infection, chronic diseases, vaccine responsiveness,

etc.), computational/mathematical modeling can help integrate the hypotheses structures/con-

ceptual models generated from experimental work and evaluate, dynamically, whether such

models can recapitulate the features of different types of perturbations. We have termed this

process dynamic knowledge representation, but this principle unpins the concept of mathemati-

cal biology. Towards this end, we and others have proposed the use of a computational model-

ing method, agent-based modeling, as a means of dynamic knowledge representation [17,18].

Agent-based modeling involves representing complex systems as a population of interacting

components, or agents, that are driven by a specified set of rules for local interactions and has

been used extensively to study immune responses [19–21], allowing for the creation of

dynamic, in-silico models that enable interrogation of the represented variables. An agent-

based model (ABM) can serve as a means of dynamic knowledge representation that allows

the visualization of complex interactions that can sometimes produce unanticipated and para-

doxical results [17]. When properly validated, ABMs can even serve as experimental platforms

for simulation experiments that allow for a much larger range of manipulation compared to

what would be possible in a laboratory setting and greater precision in observation of cell

behaviors. The simulations may reveal new directions for laboratory experiments or act in lieu

of interventions that are too complex to perform in the real world.

Modeling the immune system with ABMs represents some of the earliest applications of

this method in the biomedical arena, and there have been previous studies that utilize ABMs

to study the B-cell immune system in particular. In 1992, Celada and Seiden developed a com-

puter model, the IMMSIM, in the form of a ‘cellular automaton’ [22] which represented

PLOS COMPUTATIONAL BIOLOGY Examining B-cell dynamics using an agent-based model

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011776 January 23, 2024 3 / 18

https://doi.org/10.1371/journal.pcbi.1011776


discreet cellular entities that progressed through timesteps as a boolean model. It included

interactions between B-cells, T-cells, and antigen-presenting cells, as well as antibody genera-

tion. However, the cellular automaton did not integrate the spatiotemporal relationship

between the interacting cell types in the context of a lymph node follicle. The Celada-Seiden

automaton was extended into an agent-based model by Stracquadanio et al. [23], who similarly

aimed to study antibody generation and antigen dynamics by integrating the actions of B-cells,

plasma cells, antigen-presenting cells, and T-cells. In addition, it incorporated antigen-recep-

tor epitope matching in the form of string matching to study the effects of cross-reactivity. In

both models, however, the B-cell subtypes and their differentiation dynamics were not distin-

guished, and cytokines were not present in the environment. Starting in 1997, a group of

researchers expanded the capabilities of cellular automata models of the immune system by

introducing the ability to parallelize their execution to take advantage of advances in high per-

formance computing architectures [24], and implemented additional optimizations to allow

for simulations of millions of interacting cells [25]. Refinements of this model of the immune

system [26] have been used to study, among other processes, the timing of vaccination boost-

ers [27] and immune dynamics arising from SARS-COV2 infection [28]. Other models have

studied specific processes within the B-cell response such as affinity maturation within germi-

nal centers, which is a crucial component of potent immune memory formation [29]. These

projects utilized mathematical modeling and original differential equations to study the rela-

tionship between clonal abundancy and affinity [30], as well as the effect of vaccine timing and

antigen dosage on the level of affinity formation [31].

Herein, we describe the B-cell Immunity Agent-based Model (BCIABM), a computational

model that incorporates the key steps of B-cell differentiation in response to antigenic stimuli

and secondary exposures. We build upon the aforementioned prior modeling projects by

describing a broader context of the B-cell response, from antigen inoculation to the formation

and subsequent waning of immune memory in the context of systemic inflammation. We

implement the differentiation pathways of an expanded set of B-cell subtypes: naïve, germinal

center, memory, short-lived and long-lived plasma, and regulatory B-cells. Importantly, we

implement the cytokines and mediators described earlier that influence B-cell fates in order to

study the effects of concurrent systemic inflammation on the B-cell response. Initial evaluation

focused on the ability of the BCIABM to reproduce the dynamics of mild antigen stimuli as

well as large insults seen in sepsis, and subsequently used to examine the effect of chronic,

baseline low-level inflammation.

Methods

Design rationale

This current version of the BCIABM is focused on the generation of B-cell lineages that occurs

in the lymph node follicle and includes the following B-cell subtypes: naïve B-cells, short-lived

plasma cells (SLPC), long-lived plasma cells (LLPCs), memory B-cells, germinal center B-cells,

and regulatory B-cells. Though there are higher granularity categorizations of B-cells, we chose

a more generalized subtyping schema to create a broad characterization of B-cell differentia-

tion that can still be useful in studying B-cell behavior. We included the cytokines that were

most prevalently described to influence B-cell differentiation fate, as these play a significant

role in the extent of antibody and memory generation in response to antigen. In addition, we

used the cytokines TNF-α, IL-6, and IL-10 along with their downstream effects on B-cells to

represent the features of systemic inflammation, either at transiently higher levels, as would be

seen in response to a significant septic insult, or at a lower, continuous levels more akin to

chronic disease states.
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Literature review and rule selection

A literature review was carried out to identify key features of the B-cell response and used to

construct state diagrams for each of the cell types involved. These components are represented

as “agents” in the ABM that behave according to specified rules, and each have a set of inputs

and outputs (see Table 1). The state diagram details each agent-type’s function in the immune

system and their interactions with other cells and cytokines.

Overview of ABM Architecture

The BCIABM represents a two-dimensional model of a single lymph node follicle and its sur-

rounding paracortex. It is constructed as a 100x100 2-dimensional square grid, where each

grid space represents a space within the follicle that can contain antigen, inflammatory cells,

and cytokines. The follicle includes one afferent and one efferent lymph vessel, which carry

lymph containing cytokines and antigen to and from the follicle (Fig 1). In the model, one

timestep represents thirty minutes in the real world. The model is not intended to have quanti-

tative spatial fidelity to a real lymph node, but rather to depict an interaction space where

some of the stochasticity present in cell-cell interactions can be represented. Therefore, the

grid size is arbitrary and the time step is used to specify/define the molecular events. The

movement across the space of the model is essentially calibrated to the needed cellular interac-

tions for the required system-level outputs resulting from the simulated molecular/cellular

events. As such, there is no calibration data to the actual movement rates of cells within the

lymph node, the absolute values are not necessary, and it is only the relative relationships of

these parameters relevant. This is analogous to the relational structure in ODE models between

experimentally identifiable parameters and the invariably larger number of unidentifiable

parameters that nonetheless are present and required in the model.

The BCIABM was implemented using NetLogo 6.3 [32], which can be downloaded through

the following link: https://ccl.northwestern.edu/netlogo/.

Cytokine/mediator implementation

In NetLogo, each grid space (called a patch) contains “patch variables” which are essentially

state variables assigned to that patch. Patch variables were used to implement cytokine levels of

Interleukin-2 (IL-2), Interleukin-4 (IL-4), IL-6, IL-10, Interleukin-21 (IL-21), Interferon-

gamma (IFN-γ), and TNF-α in each grid space. These cytokines are secreted by the various

cells that are present in the model based on the rules described in Tables 1 and 2. Once in the

extracellular environment, diffusion of these mediators is implemented via NetLogo’s default

“diffuse” function, which takes a defined percentage of the mediator variable from a patch and

then evenly distributes that amount to the each of the surrounding eight patches (Moore

Neighborhood). The degradation rate of these molecules is defined as fixed percentages during

each time step. The cytokines then act on other cells to induce actions such as differentiation,

apoptosis, and anergy.

Antigen and antibody implementation

Antigens were implemented as agents, similar to B- and T-cells, that move throughout the fol-

licle with random directionality. Although antigens do not have any associated state variables,

they were implemented as agents in order to model and investigate the stochastic and spatial

nature of antigen neutralization caused by direct collisions between B-cells and antigen.

Similarly, antibodies were implemented as agents as well, although the current model does

not include functions like antigen neutralization or opsonization that require collision
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Table 1. Cell Types and their Rules.

All Motile Cells

1. All motile cells move with a speed of one grid space per time step. The direction of

movement is initially randomized for each cell but can be influenced by surrounding

cytokines depending on cell type.

2. All B-cell lineages can undergo TNF-α-induced apoptosis [33].

3. All B-cell lineages can undergo differentiation into regulatory B-cells, which is

induced by IL-6 and IL-21 [34].

Follicular Dendritic Cells

(FDCs)

1. Located in the center of the follicle and are completely immobile [35].

2. Act as the primary antigen-presenting cell of the system. FDCs take up incoming

antigen from the lymph node’s subscapular sinuses during inoculation and then

display them to B-cells for a prolonged duration to help magnify the B-cell response

[36].

3. Secrete CXCL13, which is a chemokine used to help B-cells localize to the lymph

node follicle from the blood [1,35].

4. Secrete IL-6 [37], which influences the differentiation fate of activated B-cells.

Naïve B-Cells

1. Naïve B-cells enter into the follicle at a constant rate to represent newly matured

naïve B-cells from the bone marrow.

2. Chemotaxis is determined by two main chemokines: S1P1 and CXCL13, of which

the receptors on the B-cell are S1PR1 and CXCR5, respectively. Both chemokines are

implemented as patch variables.

a. CXCR5 expression allows the naïve B-cells to localize to the lymph node follicle via

CXCL13 secreted by the FDCs [1,38].

b. S1PR1 expression increases as the naïve B-cell matures, as long as it is not activated

by an antigen. This allows the B-cell to move out of the lymph node and towards new

lymphoid tissue [39,40].

3. Activate upon exposure to free-floating antigen or FDC-bound antigen when CD-21

expression is high enough. CD-21 is a measure of B-cell activaiton [41]. B-cell

activation is primarily decreased by the anti-inflammatory properties of IL-10.

Activated B-Cells

1. Created when a naïve B-cell is activated by a free (unbound) or FDC-bound antigen

[1].

2. Once activated, the B-cell will downregulate S1PR1 expression to prevent it from

leaving the follicle [40].

3. Activated B-cells can progress through one of two pathways: T-independent (Ti)

response and T-dependent (Td) response [1].

4. The forking point in Ti and Td pathways is determined by the type of antigen

encountered. Ti antigen such as protein antigen will induce the Ti pathway. Td antigen

such as LPS and repetitive epitopes will induce the Td pathway [1].

5. Activated B-cells undergoing the T-dependent response will upregulate CCR7 and

EBI2R, which use CCL19 and EBI2 Ligand as ligands, respectively. These two

chemokines are produced by cells in the lymph node paracortex, and allow the

activated B-cell to localize to the paracortex to interact with a helper T-cell (Tfh or

Th2) [1].

a. If the activated B-cell finds a helper T-cell, it will go on to become a germinal center

cell [1,42]. Activated B-cells undergoing the T-dependent response will become

germinal center B-cells.

6. The T-independent response cannot become a germinal center response. Instead,

the T-independent activated B-cell will differentiate into short-lived plasma cells [43].

Germinal Center B-Cells

1. These are differentiated from activated B-cells undergoing a T-dependent response,

and represent the cells undergoing a germinal center response [1].

2. The germinal center B-cell is able to produce both long-lived plasma cells and

memory B-cells [44–46].

3. The lifespan of each germinal center B-cell is set at 700 time steps (roughly 14 days)

in order to calibrate the net total length of the germinal center response to be 3 weeks

in duration [47].

Short-Lived Plasma Cells

(SLPCs)

1. SLPCs have a total lifespan of 240 time steps, or 5 days [48].

2. Secrete antibodies at a constant rate [1, 42].

Long-Lived Plasma Cells

(LLPCs)

1. LLPCs have a total lifespan of 8000 time steps, or roughly 6 months [48].

2. Secrete antibodies at a constant rate [1, 42].

(Continued)
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calculation. Instead, antibodies were implemented as agents in order to monitor each anti-

body’s total and remaining lifespan after it is produced by a plasma cell. This allows us to

model the antibody titer decay as a direct function of agent death, rather than as an approxi-

mated mathematical decay curve. More importantly, though, it facilitates the addition of anti-

body functionality of antigen neutralization in future iterations of the model.

Calibration

The BCIABM was calibrated in two sets of simulations. The first set of simulations aimed to

calibrate accurate responses to mild antigen stimuli that are easily neutralizable. The second

set of simulations aimed to calibrate B-cell responses to a severe antigen challenge representing

the infectious load seen during sepsis.

In each of the mild and severe antigen challenge simulations, there were two periods of

antigen introduction: the first on day 10 (time step 480) and the second on day 60 (time step

2880). The first inoculation of antigen was performed to set up a resting population of B-cell

lineages, since day 0 represents a B-cell immune system that has never been exposed to any

antigen and only consists of naïve B-cells. This first inoculation is analogous to a “wild-type”,

sensitizing first exposure to a novel antigen. Then, once the baseline population cells was estab-

lished, a second antigen stimulus was given on day 60. The magnitude of this second stimula-

tion was how we distinguished between the mild and septic simulations. For the mild antigen

stimulus, we used 50 antigen (arbitrary units), which represents an abstracted level of recover-

able antigen exposure. For the sepsis simulation, we introduced a four-fold increase in antigen

number of 200 (arbitrary units) to represent the severe antigen challenge seen during sepsis.

Table 1. (Continued)

Memory B-Cells

1. Circulate through the lymph node follicles using CXCR5 and S1PR1 to dictate entry

and egress, similar to the naïve B-cell [38, 39].

2. Activate upon antigen exposure via free-floating antigen or FDC-bound antigen

when CD-21 expression is high enough. CD-21 is a measure of B-cell activation [41].

B-cell activation is primarily decreased by the anti-inflammatory properties of IL-10.

Regulatory B-Cells 1. Can be differentiated from naïve B-cells, memory B-cells, short-lived plasma cells,

and long-lived plasma cells. Differentiation is induced by IL-6 and IL-21 [34].

2. Secretes IL-10 [8].

Follicular T-Helper (Tfh)

Cells

1. Patrols the follicle-paracortex border using its receptors CXCR5, CCR7, and EBI2R

[49].

2. Secretes IL-2, IL-4, IL-10, and IL-21 [50–52].

3. If it comes into contact with an activated B-cell undergoing a T-dependent response,

it allows the B-cell to form a germinal center B-cell [1, 49].

T-Helper 2 (Th2) Cells

1. Patrols solely the paracortex space using its receptors CCR7 and EBIR2 [1].

2. Secretes IL-4 [53] and IL-10 [51].

3. If it comes into contact with an activated B-cell undergoing a T-dependent response,

it allows the B-cell to form a germinal center B-cell [1].

T-Helper 1 (Th1) Cells

1. Patrols solely the paracortex using its receptors CCR7 and EBIR2 [1].

2. Secretes IFN-γ [51].

Antigen

1. A manipulatable number of antigen are inoculated into the the afferent lymphatic

region of the follicle [1].

2. At the same time, a proportional amount of IL-6 and TNF-α are added to the system

as markers/mediators of sepsis. A large amount of antigen results in large amounts of

IL-6 and TNF-α introduced, which corresponds with sepsis [54].

Antibody

1. Produced by SLPCs and LLPCs [1].

2. Each antibody has a lifespan of 900 time steps, or roughly 20 days [55].

3. Antibodies currently have no downstream function, but rather, are used as a metric

of level of immunity generation.

https://doi.org/10.1371/journal.pcbi.1011776.t001
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The expected behavior for the mild antigen exposure was for the B-cell response on the sec-

ond antigen stimulus to be larger in magnitude than the first stimulus administered to estab-

lish a resting B-cell population. This would represent sensitization to an antigen following

naïve exposure, reflected as larger responses in all B-cell subtypes: SLPCs, LLPCs, memory B-

cells, and regulatory B-cells [44].

Next, the BCIABM was calibrated to severe antigen challenges seen during sepsis. The

expected behavior would be a significant level of B-cell apoptosis induced by the influx of

TNF-α, reflecting the systemic pro-inflammatory response seen in the initial phases of sepsis

[6]. Both memory and naïve B-cells would downregulate their expression of CD21, which cor-

responds to a decrease in their activation level and thus produces the B-cell anergy seen during

sepsis. Finally, there would be an increased rate of differentiation into regulatory B-cell and a

consequent increase in IL-10 production [5], which induces the prominent anti-inflammatory

signal to the septic stimulus. B-cell apoptosis, anergy, and differentiation into regulatory B-

cells contribute to a prolonged period of B-cell immunosuppresion where we see very little B-

cell activity. We expected to see immunosuppresion that lasted roughly 30 days [6] before

Fig 1. NetLogo grid-space layout. The black area represents the lymph node follicle, and the gray area represents the

surrounding paracortex tissue. Each brown dot represents a follicular dendritic cell. Each blue and teal circle

represents a helper T-cell. The afferent lymph flows into the follicle from the right side of the follicle and efferent

lymph flows out on the left.

https://doi.org/10.1371/journal.pcbi.1011776.g001
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enough antigen is neutralized by other means (in this case, follicular dendritic cell phagocyto-

sis) such that the B-cells regain enough activity to neutralize.

Simulation of Ongoing Background Inflammation (Chronic Disease)

Once the model was calibrated to reflect accurate physiologic responses to both mild and sep-

tic levels of antigen stimuli, we ran a set of simulation experiments to investigate B-cell behav-

iors during states of background inflammation. Low-level background inflammation

consistent with aging and chronic disease was implemented as increasing steady-state levels of

IL-6 and TNF-α, which are the dominant inflammatory cytokines present during sepsis and

chronic inflammatory conditions like aging, diabetes, and obesity [62,63]. We were particu-

larly interested in the downstream effects of increasing IL-6 and TNF-α levels as they are

known to negatively correlate with functional ability and immune responsiveness in elderly

patients and patients with chronic disease [13]. In these simulations, both the first and second

exposures were set as exposures of 50 antigen (aribtrary units) in order to simulate mild anti-

gen challenges that are easily neutralized in healthy patients. We measured the efficacy of the

B-cell response to the first and second antigen exposures separately by using the maximumum

cell counts of each B-cell subtype created by each exposure.

Results

The BCIABM successfully integrates and models the B-cell response to both mild and severe

antigen challenges with respect to the following B-cell subtypes: short-lived plasma cells, long-

lived plasma cells, memory B-cells, and regulatory B-cells. In addition, it successfully imple-

ments the cytokine influences of IL-2, IL-4, IL-6, IL-10, IL-21, TNF-α, and IFN-γ.

Calibration of the Control: 1st Sensitizing Exposure, 2nd Mild Exposure

The BCIABM was first calibrated to reflect accurate responses to mild antigen stimuli. The

goal was to see a larger immune response upon 2nd antigen exposure in all four of the B-cell

Table 2. Cytokines, Chemokines, and their Functions.

Mediator Source Function

IL-2 Tfh Cells [52] No downstream function currently, but included in the model

for future work.

IL-4 Tfh Cells [50] and Th2 Cells [53] Induces B-cell differentiation into memory B-cells [56], and

Th0 cell differentiation into Th2 cells [57].

IL-6 FDCs [37] and systemic inflammation

[9, 10, 58]

Affects naïve and memory B-cell CD21 activation level [5] and

induces differentiation into regulatory B-cell [34].

IL-10 Regulatory B-Cells [8] Inhibits naïve and memory B-cell activation [8].

IL-21 Tfh cells [50] Induces differentiation into regulatory B-cells [34].

IFN-γ Th1 cells [51] Induces differentiation into plasma cells [59].

TNF-α Activated B-cells [60] and systemic

inflammation [9,10,58]

Induces B-cell apoptosis [7].

S1P1 Static gradient that is highest in

concentration in the follicle exit [1]

Induces naïve B-cell exit from the follicle after a time limit [1].

CXCL13 Follicular dendritic cells [1] Attracts B-cells towards the follicular dendritic cells [1].

CCL19 Stromal cells in paracortex [61] Attracts activated B-cells towards the follicle-paracortex

border for T-dependent responses [1].

EBI2 Stromal cells in paracortex [1] Attracts activated B-cells towards the follicle-paracortex

border for T-dependent responses [1].

https://doi.org/10.1371/journal.pcbi.1011776.t002
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subtypes of SLPCs, LLPCs, memory B-cells, and regulatory B-cells. This represents immune

sensitization to a previously seen antigen. These calibration goals were met (see Fig 2).

In addition to the cell population counts, we also measured IL-10 secretion by regulatory B-

cells, CD21 expression by B-cells, and level of apoptosis. These parameters are more relevant

to the sepsis calibrations, but we first needed a control simulation for comparison. Here, our

calibration goal was to see a mild increase in IL-10 secretion corresponding to the mild

increase in regulatory B-cells. Additionally, we wanted to see little to no decrease in the CD21

expression of B-cells since there is no septic state to induce B-cell anergy. Finally, we wanted to

see no signficant level of B-cell apoptosis since there is not elevated TNF-α present in the sys-

tem. These calibration goals were met (see Fig 3).

Calibration of Sepsis: 1st Sensitizing Exposure, 2nd Severe Exposure

In the simulations of sepsis, the 2nd exposure was modified to be a larger, more severe antigen

challenge. The 1st exposure was kept constant from the control simulations in order to create

similar post-first-exposure B-cell population counts, while the 2nd exposure dose was increased

as the independent variable. Our primary calibration goal was to see a prolonged period of low

B-cell activity in the SLPC, LLPC, and memory B-cell subtypes for roughly 20 to 30 days after

the second exposure. The model behavior showed that the SLPC and memory B-cell levels did

not begin to significantly increase until roughly 25 days post-exposure. Similarly, the LLPC

population did not begin to significantly increase until roughly 20 days post-exposure. On the

Fig 2. B-cell responses to mild antigen stimuli. (A) Demonstrates the SLPC response. (B) Demonstrates the LLPC response. (C) Demonstrates

the memory B-cell response. (D) Demonstrates the regulatory B-cell response. All four B-cell subtypes show a larger response upon second

antigen exposure (day 60) compared to the first exposure (day 10). (B, C) The cells produced after the first and second exposure were color-

coded black and red, respectively, in order to distinguish the magnitude of response for each exposure. This is necessary since the LLPCs and

memory B-cells produced after the first exposure persist well into the second exposure. (A, D) The majority, if not all, of the cells produced after

the first exposure die prior to the second exposure.

https://doi.org/10.1371/journal.pcbi.1011776.g002
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other hand, we wanted to see an immediate and large increase in the differentiation into regu-

latory B-cells, which represents the large anti-inflammatory response to the septic insult. Here,

we see a nearly five-fold increase in the regulatory B-cell population compared to the first

exposure response (see Fig 4). In contrast, there was only an approximate 1.5x increase during

the control simulations.

Additionally, our calibration goals for the sepsis simulations included IL-10 secretion,

CD21 expression levels, and apoptosis. Our goals were to see a significantly increased IL-10

secretion corresponding to the larger regulatory B-cell population, significantly diminished

CD21 expression representing the B-cell anergy induced by IL-6 seen during sepsis, as well as

a large rise in the total level of B-cell apoptosis induced by TNF-α seen during sepsis. Our cali-

bration goals in all three of these categories were met (see Fig 5). We see a nearly 5-fold

increase in IL-10 secretion upon sepsis induction, corresponding to the 5-fold increase in reg-

ulatory B-cell count. We also see a significant decrease in CD-21 expresion, which does not

recuperate to normal levels until roughly 30 days after sepsis exposure. Finally, there is a sharp

increase in the total level of apoptosis.

Validation Experiments with Background Inflammation (Chronic Disease)

In the B-cell responses to both the first and second antigen exposures, we see a decrease in

maximum B-cell response in SLPCs, LLPCs, and memory B-cell populations as the overall

level of background TNF-α and IL-6 increase. This represents a decreased efficacy of the anti-

gen-neutralizing B-cell response with increasing levels of background inflammation. On the

Fig 3. B-cell apoptosis, activation, and IL-10 levels during mild antigen stimuli. (A) Shows the total number of B-cells that undergo

apoptosis. There is no appreciable level of apoptosis upon first or second exposures. (B) Shows the average CD21 expression by naïve and

memory B-cells. There is no change in CD21 expression upon first or second exposures. (C) Shows the total level of IL-10 secreted by regulatory

B-cells. There is a slight increase in the IL-10 levels following second exposure compared to the first exposure, corresponding to the increased

regulatory B-cell differentiation.

https://doi.org/10.1371/journal.pcbi.1011776.g003
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other hand, we see a steady increase in the maximum regulatory B-cell count with increasing

background inflammation, induced by a similar IL-6-mediated mechanism that caused the ele-

vated regulatory B-cell counts seen during the sepsis simulations. These findings match cur-

rent literature showing regulatory B-cell induction during disease and autoimmunity [64]. The

steadily elevated IL-6 and TNF-α levels induce a chronic state of B-cell anergy and apoptosis

mediated by regulatory B-cells (see Fig 6).

Discussion

The B-cell immune system is composed of a highly intricate network of cells, cytokines and

chemokines, and antigen that interact with one another to neutralize antigen and confer future

immunity. Due to the complexity of the system, it can be diffult to fully appreciate the nuances

of each interaction, especially when the influence of ongoing inflammation is considered. For-

tunately, agent-based models presents a unique solution that integrates all of the complex steps

in immunity generation. The BCIABM succesfuly models the B-cell response during both

mild antigen stimuli and severe antigen challenges in regards to the behaviors of SLPCs,

LLPCs, regulatory B-cells, and memory B-cells. In addition, it integrates the various cytokine

influences that determine B-cell differentiation.

When we simulated the B-cell response amidst chronically increased baseline inflamma-

tion, we found diminishing B-cell efficacy, which in real-world patients would manifest as

poor antibody and memory formation. In fact, the results may represent an underlying

Fig 4. B-cell responses to severe antigen challenges seen in sepsis. (A) Demonstrates the SLPC response. (B) Demonstrates the LLPC

response. (C) Demonstrates the memory B-cell response. (D) Demonstrates the regulatory B-cell response. The SLPCs, LLPCs, and memory B-

cells demonstrate a roughly 30-day period of low activity after the second exposure on day 60 corresponding to immunosuppresion. On the

contrary, the anti-inflammatory regulatory B-cells demonstrate a large spike in activity. (B, C) The cells produced after the first and second

exposure were color-coded black and red, respectively, in order to distinguish the magnitude of response for each exposure. This is required

since the LLPCs and memory B-cells produced after the first exposure persist well into the second exposure. (A, D) The majority, if not all, of

the cells produced after the first exposure die prior to the second exposure.

https://doi.org/10.1371/journal.pcbi.1011776.g004
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mechanism for the findings that aging populations or patients with diabetes or obesity have a

greater susceptibility to re-infection with viruses like SARS-CoV-2 due to impaired antibody

and memory formation. In these populations, the chronically elevated baseline inflammation

is primarily mediated by IL-6 and TNF-α [62,63], which is known to induce a state of impaired

immune responsiveness in B-cells [13] and thus results in the phenotype of frequent primary

infections and re-infections. Specifically, we draw attention to a study [65] in which the

authors demonstrated increasing systemic sequelae effects from repeated SARS-CoV-2 infec-

tions in a population with increased levels of background inflammation compared to the gen-

eral population with respect to obesity-status, current/former smoker status, and disease state

(e.g., chronic kidney disease, cardiovascular disease, diabetes). Importantly, the results of the

above-referenced study were not considered in the calibration or development of the

BCIABM, which further validates the mechanisms and abstractions present in this model.

A similar phenomenon is seen when testing efficacy of vaccines for patients in developing

countries, who due to lack of quality care, are more likely to have underlying inflammatory

diseases that impair the B-cell response to endemic infections. This can unfortunately decrease

the efficacy of vaccines developed in wealthier, more developed countries once they are trans-

ferred to these developing countries.

Overall, this model gives rise to a platform that can easily be manipulated to closely study

B-cell behaviors with greater granularity since agent-based modeling specifically allows exami-

nation of the characteristics of each individual cell, or agent, and its interactions with other

components of the system. Future work for the project includes further calibration of the

Fig 5. B-cell apoptosis, activation, and IL-10 during sepsis. (A) Shows the total number of B-cells that undergo apoptosis. There is a

significant increase in apoptosis after the septic antigen challenge on day 60. (B) Shows the average CD21 expression by naïve and memory B-

cells. There is a significant decrease in CD21 expression, and therefore, level of activation, upon the septic antigen challenge. (C) Shows the total

level of IL-10 secreted by regulatory B-cells. There is a large increase in the IL-10 levels following the septic exposure.

https://doi.org/10.1371/journal.pcbi.1011776.g005
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model using additional real-world data in order to refine how closely the model reflects real B-

cell behavior. Additionally, we aim to explore how vaccine efficacy is affected by states of back-

ground inflammation. Ultimately, we hope to utilize this model as a tool to predict the B-cell

response to an array of vaccines in order to enhance development of efficacious vaccines

against infectious diseases.

Supporting information

S1 Text. Parameter Sensitivity Analysis.

(DOCX)

S1 Table. Parameter Ranges and Intervals. This table shows the ranges of parameters that

were swept over to calibrate the model.

(DOCX)

S2 Table. Effects of Manipulating Parameters on the Mild Antigen Stimulus Simulations.

This table provides detailed descriptions of the effects of the parameters in S1 Table when the

model is exposed to a mild antigen load.

(DOCX)

S3 Table. Effects of Manipulating Parameters on the Severe Antigen Challenge Simula-

tions. This table provides detailed descriptions of the effects of the parameters in S1 Table

Fig 6. B-cell responses amidst increasing levels of background inflammation. In all panels, the black line represents the B-cell response to

the first exposure while the red line represents the response to the second exposure. (A) Shows the maximum SLPC responses in relation to

background inflammation. (B)Shows the maximum LLPC responses. (C) Shows the maximum memory B-cell responses. (D) Shows the

maximum regulatory B-cell responses.

https://doi.org/10.1371/journal.pcbi.1011776.g006
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when the model is exposed to a significant/severe antigen load.

(DOCX)

S1 Fig. The effects of changing CD-21 activation thresholds by cell type. In all panels, the

increasingly saturated blue lines represent cell responses to decreasing CD-21 activation

thresholds over which naïve and memory B-cells activate. The red line in each panel represents

the median value of incremented thresholds, which was set as the baseline threshold to which

to compare. Panels A, C, E, and G demonstrate the responses to the mild antigen stimulus sim-

ulations for SLPCs, LLPCs, memory B-cells, and regulatory B-cells, respectively. Panels B, D,

F, and H demonstrate the responses to the severe antigen challenge simulations for SLPCs,

LLPCs, memory B-cells, and regulatory B-cells, respectively.

(TIF)

S2 Fig. The effects of changing TNF-α-induced apoptosis thresholds by cell type. In all pan-

els, the increasingly saturated blue lines represent cell responses to decreasing TNF-α thresh-

olds over which cells undergo apoptosis. The red line in each panel represents the median

value of incremented thresholds, which was set as the baseline threshold to which to compare.

Panels A, C, E, and G demonstrate the responses to the mild antigen stimulus simulations for

SLPCs, LLPCs, memory B-cells, and regulatory B-cells, respectively. Panels B, D, F, and H

demonstrate the responses to the severe antigen challenge simulations for SLPCs, LLPCs,

memory B-cells, and regulatory B-cells, respectively.

(TIF)

S3 Fig. The effects of changing the IL-6 thresholds to differentiate into regulatory B-cells

by cell type. In all panels, the increasingly saturated blue lines represent cell responses to

decreasing IL-6 thresholds over which cells undergo differentiation into regulatory B-cells.

The red line in each panel represents the median value of incremented thresholds, which was

set as the baseline threshold to which to compare. Panels A, C, E, and G demonstrate the

responses to the mild antigen stimulus simulations for SLPCs, LLPCs, memory B-cells, and

regulatory B-cells, respectively. Panels B, D, F, and H demonstrate the responses to the severe

antigen challenge simulations for SLPCs, LLPCs, memory B-cells, and regulatory B-cells,

respectively.

(TIF)
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