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The primary aim of this work is to introduce a new class of functions called p-(w, ¢)-pseudo-almost periodic functions. Using the
measure theory, we generalize in a natural way some recent works and study some properties of those p-(w, ¢)-pseudo-almost
periodic functions including two new composition results which play a crucial role for the existence of some y-(w, ¢)-pseudo-
almost periodic solutions of certain semilinear differential equations and partial differential equations. We also investigate the
existence and uniqueness of the p-(w, ¢)-pseudo-almost periodic solutions for some models of Lasota-Wazewska equation with
measure (w, ¢)-pseudo-almost periodic coefficient and mixed delays.

1. Introduction

Most of the natural phenomena we consider as periodic are
in fact almost periodic; in other words, they are periodic up
to epsilon. The concept of almost periodic functions was
introduced in the literature in the mid-1920s by the Danish
mathematician Harald Bohr [1]. It was later generalized in
various directions by many researchers [2-12]. As we all
know, many phenomena in nature have oscillatory charac-
ter, and their mathematical models have led to the introduc-
tion of certain classes of functions to describe them. Such a
class form pseudo-almost periodic functions which is a nat-
ural generalization of the concept of almost periodicity (in
Bohr’s sense). In this work, we introduce the notion of mea-
sure (w, ¢)-pseudo-almost periodic functions (or p-(w,c)
-pseudo-almost periodic functions) with values in a complex
Banach space and enlighten their applications throughout
the study of a biological model. This work generalizes the
concept of p-pseudo-almost periodic functions introduced
by Blot et al. [4] which already generalizes the class of
weighted pseudo-almost periodic functions of Diagana [6,

13]. Here, we investigate many interesting properties of this
new class of functions and present new and more general
results based on measure theory that extend the existing
ones.

The concept of (w, c)-periodicity was introduced by
Alvarez et al. [2] motivated by the qualitative properties of
solutions to the Mathieu linear second-order differential
equation

y"'(t) +[a—2q cos (2t)]y(t) =0, (1)

arising in seasonally forced population dynamics. Fur-
ther on, Alvarez et al. proposed a new concept of (w,c)
-pseudoperiodicity and proved the existence of positive (w,
c)-pseudo-periodic solutions to the Lasota-Wazewska equa-
tion with (w, ¢)-pseudoperiodic coeflicients

y' (£) = =8y(t) + h()e T ¢ >0, (2)

This equation describes the survival of red blood cells in
the blood of an animal. The works of Khalladi et al. [14]
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have shown that (w, ¢)-pseudoperiodic functions can be also
solutions time varying impulsive differential equations and
linear delayed equations.

The concept of pseudo-almost periodicity was intro-
duced in the literature in the early nineties by Zhang
[11, 12, 15], as a natural generalization of the classical
almost periodicity in the sense of Bohr. Then, Diagana
[6, 13] introduced the concept of weighted pseudo-
almost periodicity which generalizes the latter, and the
author gave some properties of the space of weighted
pseudo-almost periodic functions such as the completeness
and a composition theorem. The concept of weighted
pseudo-almost periodic functions became an interesting
field of dynamical systems that attracted many authors.
A few years later, Blot et al. [4] came up with a new con-
cept of weighted pseudo-almost periodic functions under
the light of measure theory. Giving a positive measure y
on R, they defined the concept of y-pseudo-almost peri-
odic functions as follows: it is said that a function f is u
pseudo-almost periodic if

f=9+¢ (3)

where g is almost periodic and ¢ is y-ergodic in the
sense that

1
lim — t)||du(t) = 0. 4
e ALGIC 0 (4)

Here, the classical theory of weighted pseudo-almost
periodicity became a particular case of Blot et al
approach. Indeed, one can observe that a weighted
pseudo-almost periodic function of weight p is y-pseudo-
almost periodic where the measure y is absolutely contin-
uous with respect to the Lebesgue measure, and its Radon-
Nikodym derivative is p:

du(t) = p(t)dt. (5)

In their work, Blot et al. have investigated many
important results on the theory of y-pseudo-almost peri-
odicity; they studied the completeness and provided a
composition theorem on the functional space of u
-pseudo-almost periodic functions. They also gave some
applications for evolution equations which include
reaction-diffusion  systems and partial  differential
equations.

In this work, we introduce a new class of u-(w, c)-ergo-
dic components, and we investigate many important results
on the new theory of y-(w, ¢)-pseudo-almost periodic func-
tions. We study the completeness and the composition the-
orem on the functional space of u-(w,c)-pseudo-almost
periodic functions.

The organization of this work is as follows: in the next
section, we recall the basic definitions and properties of y
-pseudo-almost periodic functions. In Section 3, we give
the new concept of y-(w, c)-pseudo-almost periodicity and
study the convolution product on the spaces of c-bounded
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functions, y-(w, ¢)-ergodic functions, and u-(w, c)-pseudo-
almost periodic functions. In Section 4, we introduce the
concept of (w, ¢)-type compactness, and then we study a
composition theorem which plays a crucial role to study
the existence of u-(w,c)-pseudo-almost periodic solution
for a perturbed semilinear system. In Section 5, we propose
a more realistic Lasota-Wazewska model than the existing
ones due to (w, ¢)-periodicity, and then we study the exis-
tence and uniqueness of p-(w, ¢)-pseudo-almost periodic
solutions for the model, using the completeness and compo-
sition results.

2. Terminology and Definitions

In this section, we review a few notations, definitions, and
lemmas which will be utilized throughout this paper.

Let (X, []-]|]) and (Y,]|]|) be complex Banach spaces.
Throughout this work, C(RR, X) and BC(R, X) (respectively,
C(RxY,X) and BC(R x Y, X)) denote the Banach spaces
consisting of all continuous functions and all bounded con-
tinuous functions from R to X (respectively, from R x Y to
X) equipped with the supremum norm

1l =22 1] (©

Let us first recall the notion of (w, ¢)-periodicity.

Definition 1. (see [2]). Let w >0 and c € C\ {0}. A function
f € C(RR, X) is said to be (w, c)-periodic if

f(t+w)=cf(t),foreacht € R. (7)

In this case, w is called a c-period of the function f.

We denote by P, (R, X) the vector space of all (w,c)
-periodic functions from R to X. One can note that the
space P, (R, X) contains the spaces of periodic, antiperio-
dic, and Bloch periodic functions among others (respec-
tively, taking c=1, c=~1, and c¢=¢ ') (see [16] for more
details).

Proposition 2. (see [2]). Let f € C(R, X). Then, f € P, (
R, X) if and only if

F(£) = "u(t), u(t) € P (R X). (8)

Using the principal branch of the complex Logarithm, c''®
is defined as

t
" = exp (aLog(c)) =c\(1), 9)
and we will use the notation |c["(t) = |c(t)| = |¢|"*.

Now, we recall some properties of almost periodic and
(w, c)-pseudo-almost periodic functions.
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Definition 3. A function f € C(RR, X) is called (Bohr) almost
periodic if for each & > 0, there exists 1> 0, such that for all
a € R, there exists T € [a, a + 1] with

suplf(t+7) = f(0)] <. (10)

The vector space consisting of all (Bohr) almost periodic
functions is denoted by AP(X).

It is well known that a continuous function f : R — X
is almost periodic if and only if the set

{fTeR) (1)

is relatively compact in BC(RR, X), where the function f
is defined by

f.()=f(t+71),teR. (12)

Such number 7 in (10) is called e-translation number of
f(t), and we denote by T ,(f) the set of all e-translation
numbers of f. This set has the following property:

Given any f € AP(X),

(1) f r € T(f), then —t € T (f).

This concept has been extended by Khalladi et al. [17] as
follows:

Definition 4. (see [17]). A function f € C(RR, X) is called (w
, ¢)-almost periodic if and only if the function

flog®)=c"f(t),teR (13)

belongs to AP(X).
The vector space consisting of all (w, ¢)-almost periodic
functions is denoted by AP, (X).

Unless specified otherwise, in the remainder of the
paper, we will always assume that ce€ C\ {0} and we R*
NT .(f). Furthermore, the principal branches are always
used for taking powers of complex numbers.

In the following, we will keep the notation: f,, ,(t) =

C—t/wf(t)‘
Remark 5. When ¢ =1, AP, (X) = AP(X).

Remark 6. One can note that in our paper, contrary to the
paper [17], w is not only positive but it belongs also to the
set of all e-translation number of f. This condition yields
AP, (X) = AP, (X) = AP(X).

In order to conserve the periodic structure of (w,c)
-periodic type functions, we need to use an (w, ¢)-norm
which can be defined as

1l @)= sup[|<" (=0)F ()| (14)

(w, ¢)-norms were introduced in the literature by Alva-
rez et al. taking the supremum norm not on the whole R
but on the principal c-period interval [0, w)] of the (w,c)
-periodic considered function in order to handle the (w, ¢)
-periodicity properties of f (see in [2, 3, 16] for more
details). We have the following completeness result.

Remark 7. We say that f is c-bounded when ||f[ ) < co.

Proposition 8. (see [14]). (AP, (X),|ll(4,) is @ Banach
space.

Proposition 9. (see [18]). AP, (X) is translation invariant
and closed under the multiplication with complex scalars.

Now, we recall the concept of y-pseudo-almost periodic
functions introduced by Blot et al. [4].

We denote by % the Lebesgue o-field of R and by . the
set of all positive measures y on A satisfying p(R) = +0co
and p([a, b]) < +oo, for all a, b e R(a < b).

Definition 10. (see [4]). Let y € 4. A function f € BC(R, X)
is said to be y-ergodic if

. 1 B
r@;RF;@]HﬂKOMMO—O (15)

We denote the space of all such functions by &(R, X, y).

Definition 11. (see [4]). Let y € #. A function f € C(R, X) is
said to be p-pseudo-almost periodic if f is written in the
form

f=g+¢ (16)

where g € AP(X) and ¢ € (R, X, p).
We denote the space of all such functions by PAP(R,
X, ).

Proposition 12. (see [4]). Let pe M. Then, (E(R,X, ),
|llo) is @ Banach space.

In the last section of this work, the following result will
be required.

Lemma 13. If f, g € PAP(R, C, ), then fg € PAP(R, C, p).
Proof. Since f, g € PAP(R, C, u), then they have following

decompositions f =f, +f, and g=g, +g, where f,, g, €
AP(C) and f,, g, € &(R, C, u). Then, we have

f9=H9,+/19,+9.f,+ 1,9, (17)

First, we show that the product f, g, € AP(C). If we take



fi1 = g,> we have

1A (E+ ) = A OII=N D (E+ )
+(F)OIXNC)E+7) = F) O

It can be easily seen that since f, is bounded, then there
exists M € R, such that

(18)

1f1ll < M. (19)

Thus, it comes the following

[(F)*(E+7) = (F)(1)]| s2Me<e’. (20)

Then, (f,)” € AP(C). Now, one can note that f,g, = 1/

4((fy +921)2 -(fi- 91)2)' Since  (f, +g1)2 €AP(C) and
(fi = 91)” € AP(C), then f, g, € AP(C).
Now, for (f,g, + g.f, + f,9,) one has that

e | AR TARIAESS G
1

u([-r
W) J_r(llfl ool (92) (D] + 1191l 0| (£2) (B)]
+ | fallol(92)(£)]) dpa(t).

IN

(21)

And consequently, since f,, g, € (R, C, i), we have

J_ (1((1)(g:) +(90)(f2) + (£)(9:)) (1)) du(t) = 0.
(22)

Ao W)

The proof is complete. O

We end this section recalling the following lemma due to
Schwartz [19].

Lemma 14. If ¥ € C(X, Y), then for each compact set F in X
and all € > 0, there exists 6 > 0 such that for any x,x, € X,
one has

x; e K and ||x; —x,|| <= ||P(x;) - P(x,)|| e (23)

3. Measure (w, c)-Pseudo-Almost Periodic
Functions

In this section, we introduce the new concepts of p-(w, c)
-ergodic functions and the y-(w, ¢)-pseudo-almost periodic
functions. The notion of p-(w, ¢)-pseudo-almost periodic
functions is a generalization of y-pseudo-almost periodic
functions introduced by Blot et al. [4] which now becomes
the particular case c=1 of our work. It is also a generaliza-
tion of the concept of weighted pseudo-almost periodicity
given by Diagana [6, 13] and consequently, this work gener-
alizes that of Zhang [11, 12, 15] on the classical pseudo-
almost periodicity.
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Here, we introduce the space BC(R,X,¢)
(resp,.BC(R x Y, X, ¢)), where BC(R, X, ¢) (resp., BC(R x
Y, X,¢)) denotes the Banach space consisting of all ¢
-bounded continuous functions from R to X (resp., from
R x Y to X) equipped with the (w, ¢)-norm ||-||,,, defined

in Section 2.

Remark 15. One can note that in the case c=1,

(BO(R, X, €)1 ) ) = (BCR X), [])-

(BERXY,X,0) [ ) = (BERX Y, X), [Fo,)-
(24)

Moreover, we have the following result.

Theorem 16. Let ¢, ¢’ € C\ {0} and f € BC(R, X, c). Then,
f e€BC(R, X, c") is and only if |c| = |c'|.

Remark 17. It can be easily seen that when ¢ # 1, the space
BC(R,X,c) does not contain the space of constant
functions.

We begin this part with the following helpful convolu-
tion theorem for ¢c-bounded functions.

Let Z(X) be the space of bounded linear maps from the
complex Banach space X into itself. We denote L!(R, £(X
)) the Lebesgue space with respect to the Lebesgue measure
on R.

Remark 18. One can note that if h e L'(R, Z(X)), then ¢
(-):=c"()h()eL!(R, Z(X)) but ¢:=(c"(—)¢(")) € L'(R,
Z(X)).

Theorem 19. Let f € BC(R, X, ¢) and ¢ = (" (—)¢(-)) € L'(
R, Z(X)), and then the convolution product of fad defined
by

+00

P(s)f (t—s)ds, fort e R (25)

—00

0)0=

is c-bounded.

Proof. Let f € BC(RR, X, ¢). In order to state that (f*¢) €
BC(R,X,c), we consider the function p,:R-—X
(neN,n>1) defined by

)= | ploste-os (26)
Observing that
A p,0)= | P e 9fE-ds (27)

it is clear that p, is c-bounded on R. We deduce that
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p,(t) is continuous by using the uniform continuity of f on
all compact subsets of R. Consequently, p, (t) € BC(R, X, ¢),
which means that ¢*(-t)p, (t) € BC(RR, X), and from the fol-
lowing inequality:

O8O -0
<o (|00
28

We deduce that lim,_,, c*(-t)p, (t) = (=) (f*¢)(t)
uniformly on R. Therefore, fx¢ € BC(R, X, ¢). O

Jas).

Hds+frOO HCA(—5)</>(5)

3.1. On p-(w, c)-Ergodicity. First, we introduce the new con-
cept of p-(w, c)-ergodic functions.

Definition 20. Let y € 4. A function f € BC(R, X, ¢) is said
to be p-(w, c)-ergodic if

dim e | eo@lao =0 @)

We denote the space of all such functions by &,
(R, X, ).

We establish a completeness result for y-(w, c)-ergodic
functions.

Proposition 21. Let y € M. Then, (
is a Banach space.

& w) (R ), [ 00))

Proof. It is clear that &, (IR, X, p) is a vector subspace of
BC(R, X, c). We show that E oo (R, X, p) is closed in
BC(R,X,¢). Let (f,)c&, (]R X,u) be a Cauchy

sequence converging to f un1formly in R. From p(R)=
+00, it follows that p([-r,7]) >0 for r sufficiently large.
We have that

1
mlj[] o )| <15 = Fll e Y
. MJH (F )t 8t
Then,
lim sup H([—lr, 5 JM e (8) [t a1

< Hf—an(w’C),foralln eN.

Since lim,,__,,o[lf = f,ll(e) = 0> we deduce that

lim

Frag®)|dut)=0.  (32)

Now, we characterize the space of u-(w,c)-ergodic
functions with the following theorem.

Theorem 22. Let y € M and I be an interval such that u(I)
< 00.

Let f €e BC(R,X,c), and then following assertions are
equivalent:

(1) f € <ég(w,c) (R’ X’ M)’

(2) lim, oo 1p([=rs 1IN D) [, 11 () (D)1 de(E) =

(3) For any £> 0, u({t € [-r,r]\ I : [|f (0 (O)[| > })/p(]
-r,r]\I) =

Proof. First, note that since f € BC(R,X,¢), then A= /]|
f (wo ldu(t) < co. Setting .7, = [-r, 7] for any r >0 and tak-
ing r such that I ¢ .7, and u(.#,\I) > 0, it comes that

(JI\IJ waf Hd“

- u(ﬁf@a) (W» [, Wieoo/jaso - u&)) |

Since u(R) = 0o, we deduce that assertions 3.6 and 3.6

are equivalent.
Now, we set the following:

Ie= {te]r\l : Hf(““)(t)H >s} and A®

(34)
={tes\1: Hf(w’c)(t)HSs}. *

If 3 holds, from the following equality

I, o @[+ | |1

o ®]ut = | (0] det)

(35)
we deduce for r large enough that
uIy)
(f \I J Hf w,c) Hd# HfH(w,c) tu(jr\l) te
(36)

Then, from previous inequality, we have that for all ¢ > 0,

i i | Jesooe @)

and consequently, assertion 2 holds.



The last implication is deduced using the following
inequality

1

ML\,\If (e (0)[ )

u(Iy)

u( I NI

e vl ML) LTOEE

Assume that assumption 2 holds, we obtain assumption
3 when making r — +00.
The proof is complete. O

Now, we intend to prove that &, (R,X, y) is transla-
tion invariant.

For y € / and 7 € R, we denote y_ the positive measure
on (R, %) defined by

p(A)y=p({a+71:aecA}) forAeRB. (39)

We need to formulate the following hypothesis for u €
A (see [4] for more details), and we also recall two impor-
tant lemmas.

(H1). For all €R, there exists 3> 0 and a bounded inter-
val I such that

p({a+t:aeA})<Pu(A), when A € BsatistiesANI=¢.
(40)

Lemma 23. (see [4]). Let y € M y. Then, the measures y and
u, are equivalent for all T € R.

Lemma 24. (see [4]). (H1) implies that for all a > 0,

i sup (AT —wr o)y
imsp (M) e )

In the following, we denote by .y the collection of mea-
sures in J satisfying (H1).
We can prove the following result.

Theorem 25. Let yi € My. Then, &, (R, X, p) is translation
invariant.

Proof. Let fe€ & (R, X,u) and T€R. We recall that
according to relation (39)

p(A)=u({a+t:acA}) forAe3B. (42)

We recall that according to Lemma 23 it follows that y
and p_ are equivalent.
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It comes that

([Fr=lzlr+tl)
u([-r.])

Fag (t+7)||du(t)

MJ[W] f g (t+7) | dut) = &

1
. H([—l" - |T|’ r+ |T|]> J[r,r]
_p(r— el r+ 7))
u([=n1])

1
: d
A LEL e

p(l=r =zl r )
u([=r1)

<

. P d
Wb ) J a1 @) |

(43)

where >0 is a constant insuring the equivalence
between y and p,.
Since f € &, (R, X, u), the proof is complete. O

We end this section by giving a convolution theorem for
y-(w, c)-ergodic functions.

Theorem 26. Let pc My Iff € %(,M)(IR, X, u) and 5() = (
NM=)¢(+) € LR, Z(X)), then the convolution product of
fa¢ defined by

+00

(s)f (t —s)ds, fort e R (44)

—00

(r0)0=

is p-(w, c)-ergodic.

Proof. Let f € &, (R, X, p). By Theorem 19, (f*¢) € BC(
R, X, ¢). Now, we set .7, = [-r, r] for any r > 0.

One can note that there exists y > 0 such that y(.#,) >0
for all r > y. In the other hand, one has

577 ) 0599 0t
< #(;r) L, Jj”%@)” ¢ (=t + $)f (¢ - s)]|dsdp(t),
, (45)
where ¢:= ¢, € L'(R, Z(X)).
Applying Fubini’s Theorem, it comes that
o] PIAING] 220
o 469 -
< Jim s JJ, [ o =9 auctyas.
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Invoking Theorem 25, we have that lim,_, _ 1/u(.%,)

7 [1f (e (t = 5)||du(t) = 0, foralls € R.
Since

0<

\““ HJ [Faote=ofldu < |61 7

by the Lebesgue Dominated Convergence Theorem, we
conclude that

Jdim iy | [0 @]ann =0 w9

O

Now, we are ready to define measure (w, c)-pseudo-
almost periodic functions.

3.2. Measure (w, ¢)-Pseudo-Almost Periodic Function. In this
subsection, we 1ntr0duce the new class of measure (w,c)
-pseudo-almost periodic function, and we study some prop-
erties of such functions. Let us define this new notion.

Definition 27. Let p € M. A function f € C(IR, X) is said to be
measure (w, ¢)-pseudo-almost periodic (or p-(w, c)-pseudo-
almost periodic) if f can be written in the form

f=g+¢ (49)

where g € AP, (X) and g € &, (R, X, ).

We denote the space of all such functions by PAP, (
R, X, y).

We will say that g is the (w, ¢)-almost periodic part of f
and ¢ the p-(w, c)-pseudoergodic perturbation of f.

We have the following space inclusions:

P (oo (R, X) C AP, (X) C PAP, (R, X, t) ¢ BC(R, X, c).

(50)

Remark 28. Observe that AP, (X) is a proper subspace of
PAP (R, X, u) since the function

qs(t):(o.z)‘(sin (7t) + sin? (\/_t> gt )ePAP<102)(R X, 1),
(51)
but ¢ ¢ AP 5 (X) since [t sin®(mt) +sin®(v/5¢) +

e t' cos? ] ¢ AP( )

The following theorem gives a characterization of the
measure (w, ¢)-pseudo-almost periodic functions.

Theorem 29. Let f € C(R, X). Then, f € PAP, (R, X, u) if
and only if

f(t) = (Hu(t), with (t) = ¢’ and u € PAP(R, X, p).

(52)

Proof. Obviously, if f(¢) =
then f € PAP(w@(IR, X, ).

Conversely, let f € PAP(, (R, X, ). Then, 3(g,¢) €A
P, (X)X & (R, X, p) such that f = g + ¢. Therefore, tak-
ing u(t) = (-t)f(¢), it comes that u € PAP(R, X, ). O

AM(H)u(t) with u € PAP(R, X, u)

In view of Definition 27, for any f € PAP(w@(]R, X, 1),

we say that ¢ (¢)u(t) is the c-factorization of f.
We give the first basic result.

Proposition 30. Let y € M. Then, PAP (R, X, p) is a vec-
tor space.

Proof. Obvious. |

Now, we intend to show that PAP, (R, X, 4) = AP, (
X) ® &) (R, X, ). In order to prove Proposition 30, we
will need followmg lemma.

Lemma 31. Assume f € AP, (X), write
Bo={TeR: [fuylto+ 1)~ frug(to)| <e}  (53)

where € >0 and t, € R is fixed. Then, there exists s, s,,
-+, 8, € R such that

(s;+B,)=R. (54)

s

Il
—

1
We have following result.

Proposition 32. Let € .My and f € PAP(, (R, X, p) be
such that

f=g+¢ (55)

where g is its (w, ¢)-almost periodic component, and then
we have

IR) cf(R). (56)

Therefore, [|fl () 2 9]l (@) 2 Inf R |G () (1)] 2 inf e |

f(w,c) (t) ‘ :

Proof. Suppose that (56) is not true, then there exists t, € RR,
£> 0 such that

H Tt (fo) fw)(t)H >2¢teR. (57)
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Let s, $,,+++, 5, be as in Lemma 31 and write
T,=8—tyi=1,2,-,mn= 1max|1'l| (58)
<i<m
For r € R with |r| > 5, we let
Bg’z =[-r+n-1r-n-1]N(ty+B,),i=1,2,---,m,
(59)
where B, is as in Lemma 31. It is clear that
U(T +B’) —r+u,r—n). (60)
i=1
Thus, we obtain
m
2r—m)=p(l-r+mr=rn)< Y p(7+BY)
i=1
& 61
= Z ‘u(B‘E’Z) < m - max ‘“(BQ)} (61)
i=1 <i<m
<m-p([=r. 110 (f + B)),
since for each i=1,2, -, m,
B{) < ([=r,7] N (to + By)). (62)
Using inequality (57), we have
10 B = £ 00/® = 90 0| 2 | 900 t0) = F 8
- ’ g(w,c)(t) - g(w,c)(tO)H > &
(63)
any f € t, + B,.
This and inequality (61) together give
! J ¢ (t)de( > asr — co.
_ — > —, —
M([_r’ T’]) [-r7] () mr m
(64)
This is a contradiction since he &, (R, X,u) and
establishes our claim (56). O

We can now establish the uniqueness of the decomposi-
tion in Definition 27.

Theorem 33. Let y € My Then, the decomposition (49) is
unique.

Proof. Let f € PAP(, (R, X, p).
Assume that f admits both decomposition f =g, + ¢,

andf: 9+ 9y then 0= (g, - g,) + (9, = 9,).
Since g, — g, € AP, (X) and ¢, — ¢, € PAP,, (R, X, )

, in view of Proposition 32, we deduce that g, — g, =0 and
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consequently, ¢, = @, which proves the uniqueness of the
decomposition. O

From above, it is clear that

APw,c(X) N %(w,c)(]R’ X, .”) = {0} (65)

Furthermore, we have following results.

Theorem 34. The space PAP, (R, X, ) is a translation
invariant.

Proof. This is a direct consequence of Proposition 9, Theo-
rem 25, and Theorem 33. O

Theorem 35. The space PAP, (R, X, ) is a translation
invariant C*-subalgebra of BC(R, X, c). Furthermore,

PAP (R, X, )
m = AP, (X). (66)
(@e)
Proof. We show that PAP,
of BC(R, X, ¢).
Let (f,) C PAP, (R, X, u) be Cauchy. By proposition
32, the sequence (g,) € AP, (X) is Cauchy too and so is (

(R, X, y) is a closed subspace

?,) € E(u (R, X, ). Since AP, (X) and &, (R, X, p)
are closed in BC(R, X, ¢), there are g€ AP, ( ) and ¢ €
o0 (R X p) such that [|(g,) (e = Giue | —0 and ||

(gon)(w’c) = P ll — 0 as n— 0. Set f=g+¢, then f €

PAP(, (R, X, ) and [ (f,)) ) = (w)
The rest of the proof is clear. O

| —0asn—0.

Now, we show the completeness of PAP,
with the following result.

(R, X, )

Theorem 36. Let y € M. Then, (PAP,
is a Banach space.

(R, X ), ([l (09

Proof. Let (f,) be a Cauchy sequence in PAP, (R, X, u).
Then, given &€ > 03n, € N such that for all p, g > n,,

[7)

Invoking Theorem 29, 3(u,, u,) € (PAP(R, X, u))? such
that f,(t) =c"(t)u,(t) and f, ( )=c"(t)u,(t) for all teR

and since p, g = n;, we have

<e. (67)

(@)

- (f)®

<e. (68)

[IORAOIR VACESAO! i

Consequently, let (u,) be a Cauchy sequence in PAP(R,
X, p). Using the completeness of PAP(IR, X, ), we know that
Ju € PAP(R, X, u) such that ||u, — u|| — 0 as n — oo.
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We take f(¢) = ¢(¢)u(t). We claim that |Ju, —ul| — 0
as n — 0o. And it can be easily seen that

1=l =90l = ] —0 (-—0),  (69)
€
which completes the proof. O

We end this subsection giving a general convolution the-
orem for our new class of functions.

Theorem 37. Let yue My If f € PAP<W)(IR, X, u) and 5::
((=)9(+) € LY(R, L(X)), then the convolution product of
fx¢ defined by

+00

P(s)f (t —s)ds, fort € R (70)

—00

(o)0=|
is y-(w, c)-pseudo-almost periodic.

Proof. Let f € PAP, (R, X, 1) and ¢ = (c\(—)¢(-)) € L'(R
, Z(X)).

First, note that using Theorem 19, (f*¢) € BC(R, X, ¢).
Furthermore, according to Theorem 29, there exists a u €
PAP(R, X, ) such that f(t):=c"(¢t)u(t), for any teR. It
comes that

+00 +00

d(s)f (t—s)ds = c/\(t)J NN=5)p(s)(—t+5)f (¢ —5)ds

—00

)= |

= c/\(t)(l.ioog(s)u(t - s)ds.

—00

(71)

Invoking successively [[4], Theorem 22, pp. 511], and
our Theorem 29, we have that (71) is u-(w, c)-pseudo-
almost periodic. The proof is complete. O

Example 38. The unique solution of the heat equation
u(x,t) =u,(xt),x € R, t >0, (72)

with the initial condition u(x, 0) = f(x) is given by

1 +oo 2
u(x, t) = 2—\/7TtJ e ML (5 ds, x e R, £ 20, (73)

—00

If (=) 0 e LI(R) and f € PAP, (R, R, ), then
by Theorem 26, the solution

[x > u(x, ty), x € R] € PAP, o (R, R, ). (74)

4. Jointly Continuous Case

This section is devoted to the study of a composition result
well suited for the introduced (w, c)-periodicity concept.
The main results of this section are Theorems 45 and 51.
But first, let us define some new notions.

First of all, reader should be aware that the already
known concept of compactness for subsets seems to be irrel-
evant when it comes to deal with (w, c)-periodicity where ¢
#1 since (w,c) periodic type functions are not bounded
on R (i.e.,, 1-bounded on R) but ¢c-bounded on R.

With the following definition, we propose a new concept
of compactness for subset well suited for (w, c)-periodic
calculus.

Definition 39. Let # be a nonempty set. We say that J is an
(w, ¢)-type compact subset of Y if and only if following
assumptions are satisfied:

(1) & is compact

(2) Every k € # admits following decomposition k := c*
(—)y e # whereyeY

One can note that a compact subset of AP(X) is in fact
an (w, c)-type subset of AP, (X) since if # is a compact
subset of AP(X), we have the following equality:

S={u(t):teRueX}
- {(&(t)u(t))(m) LteR, (¢\(f)u(t)) € AP, (X), ue %}
(75)

for any c € C - {0}.

4.1. On (w,c)-Almost Periodic Functions Depending on a
Parameter. Throughout this section, we introduce a new
concept of (w, ¢)-almost periodic function in the jointly con-
tinuous case. Then, we study some properties and establish
some results as the continuity of Nemytskii’s superposition
operator.

Definition 40 (see [20]). A function F € C(R x VY, X) is called
(Yoshizawa) almost periodic in t € R uniformly in yeY if
for each € > 0 and any compact K ¢ Y, and there exists L >

0, such that for all § € R, there exists 7 € [,  + L] with

sup sup||F(t +7,y) - F(t,y)] <&, (76)
teR yeK

forall te R and all y e K.
The collection of such functions will be denoted by AP
(Y, X).

Such number 7 in (76) is called e-translation number of
F(t,y), and we denote by 7, (F, K) the set of all e-transla-
tion numbers of F for y € K. This set has the following
properties:

For a fixed compact set K,

(1) An e-translation number is also an &'-translation

number if &' > ¢, and hence we have the inclusion
J.(F,K)cT (F,K)

(2) If r€ T (F,K), then -t € 7 (F,K)
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3) If (1),7,) €
(F,K)

T (F,K)x T, (F,K), then 7, +1,€

81 +Ez

In what follows, we assume that w € RT N 7 (F, K).

In [17], authors have introduced two concepts of (w, ¢)
-almost periodic functions in the case of jointly continuous
functions, but in this paper, it uses a novel approach.

Definition 41. A function Fe C(Rx Y, X) is called (w,c)
-almost periodic in t € R uniformly in y € Y if for each € >
0 and any (w, ¢)-type compact subset # of Y, there exists
L > 0, such that for all B € R, there exists 7 € [3,  + L] with

sup sup || (=t = T)F(t +7,y) = "(=t)F(t, )| <&
teR yeH
osup supHF t"'T)}’)‘F(w,c)(t’)’)H <§,
teR yeH

(77)

for all t € R and all y € K, where F,, (t,-) = ¢ "F(t,-).
The space of all such functions will be denoted by A
P, (Y, X).

In the following, we use the notation: F,(t,-) = ¢

F(t,).

Remark 42. When c=1, AP, (Y, X) = AP(Y, X).

Proposition 43. (AP, (Y, X), [|{|(4,)) is @ Banach space.

We need to develop some tools in order to propose a
composition theorem for measure (w,c)-pseudo-almost
periodic functions.

We give the following results.

Lemma 44. If # is an (w, c)-type compact subset of AP, (Y)
, then

>i= {u(w,c)(t): teR,ue AP, (Y), Uwy) € %} (78)

is a relatively compact subset of Y.

Proof. Let € > 0.

Since % is compact, it is also precompact; thus, there
exists {(41) 4,0 "> (Un) ()} @ finite (w, c)-type subset of
AP, (Y) (ie., a finite subset of AP(Y)) such that

&
x| {zeAPw,C(Y): Iz = ]y < E}' (79)

1<ism

Since, (14;),) (R) is relatively compact in X for all i =1
»m, then J_,, (1) 4,0 (R) is also relatively compact
and consequently, there exists a finite subset of R
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{t;, ", t;} such that

U #)we® < |J U{yev Hy

1<ism 1<isml<j<k

\(6)] <3}
(80)

If y €Y, there exists z € # and t € R such that y =z(¢),
and there exists i € {1, -+, m} such that ||z - (;),. || <&/2
(o (D[ < €2,

Now, using the previous inclusion, there exists p € {1,
,m} and j€ {1,---, k} such that

and consequently ||y — (u;)

H(ui)(w,c)(t) - (up)(w)c) (t;) H < ; (81)

It comes that

= s (] < -

+ H(ui)(w,c)(t) - (”p)(w)c) (tJ)
O

This proves that ¥ c U1<1<mU1<]<k{y €Y ly = () ()
t;)|| <e/2} or in other words, X is precompact, and since Y
is complete, we obtain that X is relatively compact.

Now, for a given function F € AP, (V,X), we define
Nemytskii’s superposition operator ./ : AP, (Y)— A
P, .(X) such that [t — u(t)] = N p(u) = [t = F(t, u(t))].

The first main result of this section is the following
theorem.

Theorem 45. Let Fe AP, (Y, X).
superposition operator Ny is continuous from AP,
AP, (X).

Then, the Nemytskii
(Y) into

Proof. Let # be an (w, c)-type compact subset of AP, ()
let 1 € # and £ > 0.

We set X:={u,(t): teR,ueAP, (V) u, € F}.
According to Lemma 44, the closure X is compact.

Since F € AP, (Y, X), there exists />0 such that for «
€ R, there exists -7 € [a, a + I] satisfying

HF (t+1,y) - ;,forall(y,t)er]R.

Fluo(ty)| <
(53)

Since X x [0, 1] is compact, then F(, is uniformly con-
tinuous on it and consequently, there exists § > 0 such that,
for all t,,t, €[0,]] and for all y,,y, € 2

(2 = 72ll <8, |ty = ] £8) = || Frag (1 30) = Fray (0272 | < 5
(84)
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And this implies that

&
91 =720l 8= | Faey (8.31) = Fagy(63)| < 5. forall 0,1

(85)

if veX satisfies
[ (E)v(t) = P (£)in(t)]] ) < 6.

We set u(t) = (¢)u(t) and v(¢) = *(¢)¥(¢t) for all t € R.

Then, we have u,v € AP, (Y), and using (83) and (85),
we obtain, for all t € R

v-u|,<d6e

| Fwe (8 u(6)) = Fuy (8. 9(8))|
| Flae (6 (1)) = Fg (£ =7 u(t))|
Qmﬁ—nwm—FWMbwmmw

&€
+ HF(w)C)(t ~T,¥(£)) = Pl (6 (1) H <3 =

<

(86)
|

And so, by taking the supremum on the ¢ € R, we obtain
[ g (1) - '/VF(V)H(w,c) <E

This proves that the restriction of 7, to 7 is continuous
for all (w, ¢)-type compact subset # of AP, (V). And since
(AP (V) [l @) and (AP (X), [|l(we) are Banach
Spaces, this proves the continuity of 7 on AP, (Y). [

The following proposition is a generalization of Cieutat,
Fatajou, and N’Gu’er’ekata’s Theorem in [21] which
becomes the particular case c=1 of our result.

Proposition 46. Let F : R xY — X be a continuous func-
tion. Then, F € AP, (Y, X) if and only if the following condi-
tions hold:

(1) Forally €Y, F,(-y) € AP(X)

(2) Fyy is uniformly continuous on each (w,c)-type
compact set K in Y with respect to the second vari-
able, namely, for each (w, ¢)-type compact set K in
Y, for all € >0, there exists 8 > 0 such that for all y,
, ¥, € K, one has

171 =721l 6= sup [ Fig (6.31) = Frag (632) | <& (87)
€

4.2. Measure (w,c)-Pseudo-Almost Periodic Functions
Depending on a Parameter and Composition Principle. In
this section, we extend our new concept of measure (w, ¢)
-pseudo-almost periodic functions to that of measure (w, ¢)
-pseudo-almost  periodic functions depending on a
parameter.

Here, we propose a concept of u-(w, c)-ergodicity for the
jointly continuous functions case.

11

Definition 47. Let p e M. A function F e BC(Rx Y, X, ¢) is
said to be p-(w, ¢)-ergodic in ¢ uniformly with respect to y
€Y if the two following conditions are true:

(1) Forall y €Y, F, (- y) € (R, X, p)

(2) Fluo
compact set % in Y with respect to the second var-
iable, namely, for each (w, c)-type compact set F#
in'Y, for all € > 0, there exists § > 0 such that for all
1>, € #, one has

is uniformly continuous on each (w, c)-type

<e (88)

11 =218 5| Figy (631) = Fra (672)

We denote the space of all such functions by &, (R
xY, X, u).

Remark 48. When c =1, we write &(R x Y, X, u) instead of
& 15 (RX Y, X, 1),

Now, we are able to introduce the new concept of
measure (w, ¢)-pseudo-almost periodic functions depending
on a parameter.

Definition 49. Let p € A. A function F € C(R x Y, X) is said
to be u-(w, c)-pseudo-almost periodic in t uniformly with
respect to y € Y if F is written in the form

F=G+®, (89)
where Ge AP, (Y, X) and @€ &, ;(RxY,X, u).

PAP, (RxY,X,u) denotes the set of such that
functions.
The following inclusion hold

AP, (Y, X) CPAP, (R X Y,X, ) CBC(R XY, X,c).
(90)

Remark 50. When c = 1, we write PAP(R x Y, X, u) instead
of PAP, | (R x Y, X, u).

As in the previous section, we propose a characterization
result which holds for (w, ¢)-almost periodic, y-(w, c)-ergo-
dic and p-(w, c)-pseudo-almost periodic functions in ¢ uni-
formly with respect to y € Y.

Theorem 51. Let F € C(Rx Y, X).
Then, FePAP, (RxY,X,u) (resp., AP,.(Y,X) or

&o3(RXY, X, ) if and only if

w,6,3

F(t,y) = (t)u(t,y), (91)

with \(t) = c""* and u € PAP(R XY, X, ) (resp., AP(Y
,X) or E(R XY, X, y)).

Proof. The proof is similar to the one of Theorem 29. [
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Using Proposition 46 and Definition 47, one can obtain
following.

Theorem 52. Let pe M and F:RxY— be p-(w,c)
-ergodic in t uniformly with respect to y € Y. Then,

(1) Forally €Y, F,(-y) € PAP(R, X, p)

(2) Fyy is uniformly continuous on each (w,c)-type
compact set K in Y with respect to the second
variable

We are now in a position to give a composition theorem
for measure (w,c)-pseudo-almost periodic functions. We
have the following theorem.

Theorem 53. Let € M, FePAP, (RxY,X,u) and y ¢
PAP, (R, Y, u). Assume that the following hypothesis

holds.

For all bounded subset Q) of Y, F is c-bounded on R x Q
(., F is bounded on R x Q).

Then, [t — F(t, y . (1))] € PAP, (R XY, X, ).

Proof. First note that the function [t — F(t, y,(t))] is con-

tinuous and by Hypothesis (10), it is c-bounded. Since F €
PAP, (R xY,X, u) by Theorem 5, there exists

F e PAP(R x Y, X, y) such that F(¢, y(t))

s (92)
= (1) F(t, y(1)),Vt € R.

Now since y, . € PAP(R, Y, ), and using Theorem
4.10 in [4], we deduce that the function

[t - F(t,yw)(t))] €PAP(RXY,X,p).  (93)

In conclusion, invoking again Theorem 51, we showed
that

[t - F(t, Yiwo (t))] €PAP, (RXY,X,p).  (94)

The proof is complete. O
The following theorem will be very useful in the sequel.

Corollary 54. Let ye M, ¥ € C(X,Y), w>0, and ce C—{
0}.

Assume that for all bounded subset B of X, ¥ is ¢
-bounded on B, then if x € PAP, (R, X, p),

[ (%100 (1) = A OF (e (1)) | € PAP (R X, ).
(95)

Proof. This is direct consequence of Theorem 5 with F(t,
x(w,c)(t)) = lP(x(w,c)(t))’ O
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5. Application: Measure (w, ¢)-Pseudo-Almost
Periodic Solutions to a Lasota-Wazewska
Model

First, Wazewska-Czyzewska and Lasota [22] proposed in
1976 the delay logistic equations with one constant concen-
trated delay

N' (1) = -uN (1) + pe ™0, (96)

in order to describe the survival of red blood cells in an
animal. Here, N(t) denotes the number of red blood cells
at time ¢, p is the probability of death of a red blood cell, p
and r are positive constants related to the production of
red blood cells per unit time, and 7 is the time required to
produce a red blood cell. Few years later, Gopalsamy and
Trofimchuk [23] obtained that the Lasota-Wazewska model
with one discrete delay

x' () = —a(t)x(t) + B(t)e ™) (97)

has a globally attractive almost periodic solution under
some additional assumptions.

Recently, Cherif and Miraoui [24] investigate the exis-
tence, the uniqueness, the global attractivity, and the expo-
nential stability of the measure pseudo-almost periodic
solutions for the following Lasota-Wazewska model with
measure pseudo-almost periodic coefficients and mixed
delays

al(t)e—wj(t)fioon(t—s)y(s)ds

Yy (8)=-a(t)y(t) + ) a;

=1
p (98)
. 80 ) y(t-7)

+ ) b(t)e ! ,teR.

The aim here is to study the existence and uniqueness of
a generalized Lasota-Wazewska model with p-(w,¢)
-pseudo-almost periodic coefficients and with mixed delay
which is in the form:

Y (1) =-a(ty(t) + Y ay(ye < HAOL e

-
—

(99)

+ ) bi(t)e =1

n
i1

where y(t) stands for the number of red blood cells at
time ¢, and «(t) is the average part of red blood cells pop-
ulation being destroyed in time t. For all 1<j<m and 1
<i<n, a;(t) and b;(t) are the connected with demand

for oxygen at time ¢, w;(t) and B,(t) characterize excitabil-
ity of haematopoietic system at time f, K; is the probabil-
ity kernel of the distributed delays, and 7; is the time
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required to produce a red blood cell. One can note that we
consider in our new approach the y-(w, c)-pseudo-almost
periodic for the connected with demand for oxygen at
time ¢ and the p-pseudo-almost periodic for the excitabil-
ity of haematopoietic system at time t since it is more
realistic for the description of the physical and biological
phenomena.

The method consists to reduce the existence of the
unique solution for the Lasota-Wazewska model (99) to
the search for the existence of the unique fixed point of
an appropriate operator on the Banach space PAP(W)(IR,
R, ).

Notice that we restrict ourselves to R, -valued functions
since only nonnegative solutions are biologically meaningful.

5.1. Existence and Uniqueness of p-(w,c)-Pseudo-Almost
Periodic Solution to the Model. In what follows, given a ¢
-bounded continuous function f defined on R, f(;)c) and
J (w,c) are defined by

f(w,c) = St]:ngf(w,c)(t) = supc/\(—t)f(t), andf(w,c) = %Ielﬁt;f(w,c)(t)

teR
=infc"(-1)f (1).
(100)
Remark 55. If ¢ =1, we use the notations
f=Ff oy =supf(t)andf=f ) = inff(t). (101)
teR _—

First, we give sufficient conditions which ensures exis-
tence and uniqueness of y-(w, c)-pseudo-almost periodic
solution of (99).

(Cl)0<c<1

(C2)a e AP(R,)

(C3)B;, w; € PAP(R, Ry, p), for all (i, j) € [[1,n]] x [[1,m

(C4)a;, b; € PAP, o (R, R,, ), for all (i, ) € [[1, n]] x [[1
»m| ) .
Sy (aj)(w,c)wj + PEYI1 (b)) (e Bl < 1

(C6) For all 1<j<m, (K;

J)(w,c) :[0,400) — R, are

continuous, integrable, and

00

J (K)o ()= 1,nd J

K. u)eMdu < +oo,
0 J (w,c)( )

O (102)

where A is a sufficiently non negative small constant.

Lemma 56. Let f € PAP(,, (R, R,, u) and g € PAP(R, R,
). If ¢ > 0, then fg € PAP, (R, R,, ).

13

Proof. According to Theorem 29, there exists a unique u €
PAP(R,R,, u) such that

(103)

for all t€R. Using Lemma 13, it is clear that ux ge
PAP(R,R,, u). Then,

(f9)(t) = &\(1)(u(1)g(1)), where g € PAP(R, R, ).

(104)
Invoking Theorem 29, we complete the proof. O
Now, we can establish following lemma.

Lemma 57. Let yi € M. For all x(-) € PAP(, (R, Ry, ), the
function

(105)
belongs to PAP(, (R, R, p) forall 1 <i<n.
Proof. First, we can say that the function
tx(t-1;) €PAP, (R Ry, p), (106)

for all 1<i<mn and 1<j<p. Then, according to
Proposition 30

P
te Y x(t—7;) €PAP, (R, R, p). (107)
=1
Furthermore, by Lemma 5,
P
£ w,(t) Zx(t—r,.j) €PAP (R, IR, ). (108)

Il
—_

J

for all 1 <i<n. Now, using the fact that the function (
x> e™) is Lipschitzian and bounded, and 4, € PAP(R,
R,, u) is also bounded then invoking the Corollary 54, it is
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clear that

Y, it (t)a<w6)(t)e =1 ePAP(w,C)(]R, R,, @),
(109)
forall1<i<n. O

By using condition (C6) and Theorem 37, we can deduce
the following Lemma.

Lemma 58. Suppose that (HI) and (C6) hold, if x € PA
Pl (R, Ry, p), then the function defined by

t
tHJ K;(t —s)x(s)ds € PAP, o (R, R,, ), (110)

orall 1<j<m.
J j

Theorem 59. Suppose that (HI) and (CI) - (C4) are satis-
fied. Then, the nonlinear operator I' defined for each x € PA

P(w,c) (R’ ]R+’ M) by

(111)

maps PAP, (R, R,, p) into itself.
Proof. Using Lemmas 13, 5, 5, and 5 and Corollary 54, then
the function y defined by

)4
~A)B() ) x(s=Ty
(s)J Kj(s-0)x o)do Zb J:Zl ( ])

A=s)ay(s) K (s=0)x(0)do

;=1 o

||
—
[\/]§

P
. -f“(-S)Ii-(S> Y x(s-y)
+ Z; o (5 = )

(112)

is measure (w, ¢)-pseudo-almost periodic.
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Consequently, we can write y = x, + y, where x, €A
P,(R,)and x, € &, (R, R,, u). It follows that

()0 = j e L@ x(syds= (T (o) + (D) 1),
(113)

Let us show that (I'y,) € AP, (R,).

We recall that by applying condition (C1) to the model
(99), « is almost periodic (i.e., (w, ¢)-almost periodic with
constant ¢ =1). Now, in the view of the almost periodicity
of the function « and the (w, c)-almost periodicity of the
function y,, there exists a number [, such that in any interval
[0,6 + 1] one finds a number #, such that

supla(€ +77) ()| <eand sup|(x,) e (€ +1) = (1) ) &) <.
EeR EeR
(114)

It comes that

(x4 - ()0 ULk s

—0
t+n (! «
- j a(8)dt ds—J e L,W (&")&Xl(s)ds
J- -co

t t t
- ELQ@ X, (s)ds = J e_fsa(£+">dle (s+n)ds
t ot t t
- e’Js“@“xl(s)dFJ e (s s

—00

t t
- j a(8)dt (s+ 11)ds+[ eﬁjs“(s)dfxl (s+#)ds
t t

- e_js“<£)d5)(1 (s)ds.

—00

(115)
So, there exists § € (0, 1) such that

[k _ [ aa

t
‘(FXI)(‘”’C)(t )= (FXI)(w,C)(t)‘ < |X1|(w,c>J e ds+
00
t t
- | a(§)dg
) J e 1 ‘(Xl)m,c)(“’?) () 0 ’ds
t " .
< |X1\<wc)J oSt _ - [ g
’ —00
t t . , t
X J e’.fxoc(f)didsg |X1\<W)J eif}(im}d& _ e—_[sa(f)dz dste
oo 9

t t
<[ etmassi |
| B

y {e U;a(fm)dzﬂs ( ) io{(f)d«f—ﬂa(ﬁr’)df)} y

t t
<[ evmase i),
—00 00

y {eﬁawwe“(f D= [a(en) df)J\a(sm) ()dEds}

t
+EJ e (e g,
—00

[[ate ) - aeyae

ds}+s
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t —6(' &)~ ["a(E dE)
Ss‘Xl‘(w,c)J |:e-(t—s)oce L"‘() La( +1) (t—s):| dste

t t

. J e ds < gy, \(W)J [e*(fﬁ)ﬁ(t - S)] ds+e
t & &

. J e,([,s)ﬂds < ‘Xl Iz(w,c) |Xl |
—o a

t
+£J eagds < Z(w’c>
o — o
_ <|X1|(w,c) N 1> ..
a? a

This proves that (I'y,) € AP, (R,). Now, let us show
that (I'x,) € &, (R, R, u). We have that

(116)

+

IR | ™

t t
J e{ja(é)uizxz (5)ds

dp(t)

(wie)

(9], (5)] ey dpe(t)

YL%MJL
ey
meﬁjjm Dt =) eyt
= tim [t (s [ ot ) &

By the Lebesgue Dominated Convergence Theorem and
(H1), we obtain that

(117)

. 1 r
A ) |
(118)

Then, (Tx,) € &(,(R,R,, ) and consequently, I' €
PAP(w,c) (IR’ ]R+’ M) O

Theorem 60. Assume that (HI) and (C1)-(C6) hold, then
the Lasota-Wazewska model with mixed delays (99) possesses
a unique measure (w, ¢)-pseudo-almost periodic solution y,
and we have y ., ., in the region

- {1// € PAP(, (R, R,, 1), LB < ‘1//

s%gs}, (119)

(@)

where

X (“j)_(w,c) + X (bi)(w,c)

URB = and LB

IR

- . 120
m ~WU% | n e UB (120)
Z' (a]) (w,c)e + Zi:l( i)(w,c)e !

Proof. First, we proves that the operator I is a mapping from
R to R. We set

(121)
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In fact, we have

t t m n
— | a(&)dE
T (1) () < ¢ )o@ [Z yi(s) + Zei(s)] ds
-0 j=1 i=1
(@)
t —jtzx(f)df m n
= e Js Zy](s) + 29,(5) ds
—00 =1 i=1 (w,)

IN
WI
—
p=3
S
QU
Nas}
e
M=
—
D
P
£
kS
+
M=
—
N
=,
B
kS
| S
[
17

IN
8
Q‘
12
&
- 1
M=
—~
_
3
N—
B
&
+
M=
—~
S
P
g
a2
| I
QU
1%}

In the other hand, if we set
§ =max {"(;;) } for (i, j) € [[1, n]] x [[1, p]],

6j(s) = c’\(—s)wj(s)[ Kj(s —0)x(o)do, for j € [[1, m]],

p
¢,(s) = Zx forze [[1, )],

j=1
(123)

then, we have for x € R

t t 13 't
150 g = U e 2oy el
N ]

o

Z a](s)e"gf(") + Z bi(s)e'w")] ds
£ P

o)

[m
u) s)e JI

L= i=1

_ 2 t "
’ﬁszA T x(w) 5T, ):| dsZCA(—t)Ji e_Jf‘(E)dE

j=1

. Z af(s)efwfngﬁw('(/)/w,(><57“)da + z bi(s)e =1 ds

- l oo {Z () 9+ Y () <s>e*’fﬁﬂ’ﬂ ds
J-co j=1 i

rt m
_Ql(t—s - URB B uUB
et )[Z (a])(w,c)e ! + Z(b,)(w)e pfﬁ' }ds
j=1

(124)

which implies that the operator I' is a mapping from R
to itself. To end the proof, it suffices to prove that I is a con-
traction mapping. Let x, y € R. Then,
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j=1 i1
P P
—A (=5)Bi(s) Z X(s=Tj;)  ~A-9B() Z y(s=73) , r
e j=1 —e =1 | ds= J ol a(g)dﬂ
—00
(w)
< —(=s)w;(s (s—0)x(0)d —M=s)w;(s) [* S— d :
3 ( ) e (e (90,9 K (s-a)(@)do_ - (5w,(9) [ K (s-a)(@) a> XCIRE
j=1 i=1
L L 125
=98 ) X (s7Ty) OB )y (s=Ty) P (123)
e =l —e i1 |ds < J e—jsa(f)dﬁ‘
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Obviously, for u, v € [0,+00),

e —e’|<|u—v| (126)

Then it comes that

t t
Fa() =Ty (O] = | 0%
-0

9B X (x(s-75) ~r(5-7,))

1

C @S\
<[ o [Z(a»w

ij (K)) () (s—o)do|x

=

_y|wc +p€|x y|wc)z ‘|dS

= J_ e lz Z (bi)(w,c)ﬁi] ds|x

zj:1 (%);,)C)wj +pEYi, (bi)(w,c)ﬁi

@

_y|(w,c) < ‘x_y|(w,c)’

(127)

which implies (invoking (C5)) that the mapping I' is a
contraction mapping of R. Consequently, I' possesses a
unique fixed point x* € R. Hence, x* is the unique measure
(w, c)-pseudo-almost periodic solution of Equation (99) in
R. O

5.2. Example. In order to illustrate some features of our the-
oretical study, we will apply our main results to a special sys-
tem and demonstrate the efficiencies of our criteria.

We consider the following Lasota-Wazewska model with
mixed delays

(1) |1 K (t=s)y(s)ds

3

Y () ==a(t)y(t) + Y aj()e

3
+ Zbi(t)e_cl\(‘f)ﬁi(t))’(t‘fi),
i=1

-
—

(128)

where a(t) = 8 + cos?(1/5t) + cos?(t), c=0.9, and w =1,

17

(0.9%(1) (1 +0.25 cos® (\/Et) +0.25 cos*(mt) + 1075>

a\(t) o
- 1
o 1= 090 (0.5 +0.25 cos? (ﬁt) +0.25 cos?(t) + Tﬂ)
a;(t)
(0.9)(£) (045 +0.25 cos® (ﬁt) +0.25 cos (\/_t) peteod ’))
025
0.125 cos (\/_t) +0.125 cos?(mt) +
025
0.125 cos’ (\/§t> +0.125 cos?(rit) + =l

0.250 cos® (ﬁt) 40,2567 o' (0)

(0.9)(t) (1 +0.25 cos? (\/Et) +0.25 cos?(mrt) +0.5¢ " C"SZ(”)

bi(t)

by(t) | =] (0.9)(t) (1 +0.25 cos’ (\/gt) +0.25 cos?(mt) +0.5¢ " C"Sz(t))

bs(1) (0.9)"(¢) (1 +0.25 cos® (\/gt) +0.25 cos?(mt) +0.5¢ ™" °°52“)>
0.25

0.125 t 125 t

B,(1) cos <\/— ) +0.125 cos® (t) + e

0.25
)| = 2 2
By(t) 0.125 cos (ﬂt) +0.125 cos”(rtt) + e

A 0.125 cos? (\/Er) +0.125 cos? (t) + 0.25¢ ™ ()
(129)
T, =7,=7,=1, K; = (0.9)"(t)e”". Then,
(@) @+ PEX (B) o B 3
71 (%) o —— <7<t (130)
o

If the Radon-Nikodym derivative p of the measure y is
p(t) =es™ ! with respect to the Lebesgue measure on R (i.e.
du = p(t)dt), then y € My, since

u([-r,7]) = J & () 100,if r — +00, (131)

u(r+a)<efu(A)VreRandacA. (132)

Hence, conditions (C1) - (C6) and (H1) are satisfied
then according to the Theorem 60, the Lasota-Wazewska
model with a mixed delays (14) has a unique p-(w,c)
-pseudo-almost periodic solution in the region R={y € PA
Ploo (R Ry, ), ZRB <y | < URB} where

m

j=1 (ajj(w c) + ?:1 (bi)_(w,c)

YR = : _3 (133)
@ 2
Z}'"il (“/‘) efa)j%% . ZL (E) e—pfﬁi‘lﬂ%’
PR = —/ (ws) (wie)
a
671/23/2 +0.5€71/23/2 +0.5€71/23/2 + 870.91/23/2 + 670.91/23/2 + 670.91/23/2
- 10
e—3/4 36_0‘9/4
=—+ = (.246.
5
(134)
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