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In this paper, we combine the Elzaki transform method (ETM) with the new homotopy perturbation method (NHPM) for the first
time. This hybrid approach can solve initial value problems numerically and analytically, such as nonlinear fractional differential
equations of various normal orders. The Elzaki transform method (ETM) is used to solve nonlinear fractional differential
equations, and then the homotopy is applied to the transformed equation, which includes the beginning conditions. To obtain
the solution to an equation, we use the inverse transforms of the Elzaki transform method (ETM). The initial conditions have
a big impact on the equation’s result. We give three beginning value issues that were solved as precise or approximation
solutions with high rigor to demonstrate the method’s power and correctness. It is clear that solving nonlinear partial
differential equations with the crossbred approach is the best alternative.

1. Introduction

Many scholars have been investigating and debating the lin-
ear and nonlinear fractional differential equations (FDEs) in
recent years. In view of the many applications of fractional
differential equations in assorted fields, which engender in
the physical sciences as well as in engineering, these kinds
of equations play a worthy turn and also help to evolve
mathematical tools to realize fractional modeling.

The Elzaki transform is a transform similar to integral by
other metamorphoses defined by integrals, which are known
as Laplace transforms and Sumudu transform. In solving lin-
ear and non-linear differential equations. Using these method
help in whereas the conversion was known by Tarig M. Elzaki
[1]. Admit for its performance in solving linear order, nonlin-
ear partial differential equations, and integral equations, the
interesting convert it is evidence in [2–4]. The homotopy anal-

ysis transform method (HARM) is one of the more technical-
ities utilize in the solutions for the nonlinear factor [5]. To
solve it, the homotopy perturbation technique combines the
Laplace transform method and the well-known base flow
equation [6]. By placing the solution in a rapid approximation
series, HPM paired with the Sumudu transform tool improves
the answer in a closed shape [7]. The theoretical formulation
of initial value issues for fractional differential equations may
be done in two methods [8]. The homotopy perturbation
method (HPM) was introduced by Ji-Huan He in 1999 [9]
for solving differential and integral equations. The HPM is
applied to algebraic equations [10], nonlinear reaction-
diffusion-convection problem [11], singular boundary and ini-
tial value problems [12, 13], nonlinear wave equations [14],
and other modifications which can be seen in [15–25].

The major goal of this research is to combine the Elzaki
transform (ET) with the new homotopy perturbation
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method (NHPM) to approximate the solution of specific ini-
tial value problems represented by highly nonlinear frac-
tional partial differential equations with starting conditions.
Our suggested technique, which is a combination of the
Elzaki transform (ET) and the new homotopy perturbation
method (NHPM), discovers precise or approximate solu-
tions to initial value problems with a high rate of conver-
gence of the solution series.

The methodology of this paper includes the following:
item 1 contains definitions of fractional derivatives and dis-
cussion of an advanced method on the solution. Item 2 con-
tains an explanation of the method to a solution. Item 3 uses
the method to resolve some of the FPDEs to illustrate the
approximate accuracy.

Definition 1. LetuðδÞ, for δ > 0,be in the spaceCθ, θ ∈ℝ,if
there exist a real numberν > θ,per seuðδÞ = δνu1ðδÞ,
whereu1ðδÞ ∈ C½0,∞Þ, visiblyCθ ⊂ Cv, if v ≤ θ,[9 , 26 , 27].

Definition 2. Let taking the operator of order υ > 0,
Riemann-Liouville fractional integral to uðδÞ ∈ Cη, η ≥ −1,
is known as [27]

Jυh τð Þ = 1
Γ νð Þ

ðτ
0
τ − ξð Þυ−1h ξð Þdξ υ, τ, ξ > 0,

Jυu δð Þ = 1
Γ νð Þ

ðδ
0
δ − ξð Þυ−1u ξð Þd ξð Þ υ, δ, ξ > 0,

ð1Þ

Definition 3. Caputo fractional derivative, the left party of j
∈ Cw

−1,w ∈N ∪ f0g, is known as [26]

Dυh τð Þ = ∂υh τð Þ
∂τυ

= Jϑ−v
∂ϑh τð Þ
∂τϑ

" #
, ϑ − 1 < υ ≤ ϑ, ϑ ∈N:

ð2Þ

Definition 4. If the set [1]

A = u δð Þj j <N eδ/κi if δ ∈ −1ð Þi × 0,∞½ Þ
n o

: ð3Þ

Then Elzaki integral transform (EIT) of a function uðδÞ
is defined as

E u δð Þ½ � = β
ð∞
0
u δð Þ e−δ/βdδ =U βð Þ κ1 ≤ β ≤ κ2: ð4Þ

Definition 5. If ϑ − 1 < υ ≤ ϑ, ϑ ∈N, then (EIT) of the frac-
tional derivative Dv

∗uðμ, δÞ is

E Dv
∗u μ, δð Þ�½ � = U μ, βð Þ

βν − 〠
r−1

κ=0
β2−ν+κu κð Þ μ, 0ð Þ, ϑ − 1 < υ ≤ ϑ,

ð5Þ

where Uðμ, βÞ be the (EIT) uðμ, δÞ [28].

2. Elzaki Transform Homotopy Perturbation
Method (ETHPM)

This section intends to discuss the utilization of (ETHPM)
algorithm to solve linear and nonlinear fraction partial dif-
ferential equations.

Dν
δu μ, δð Þ + Ru μ, δð Þ +Nu μ, δð Þ =Φ μ, δð Þ, μ, δ ≥ 0, r − 1 < ν ≤ r,

ð6Þ

where Dν
δ = ∂ν/∂δν represents the order ν fractional deriva-

tive, R represents a linear operator, N represents a nonlinear
function, and Φ represents the source function. The begin-
ning and boundary conditions are determined using Equa-
tion (6).

u μ, 0ð Þ = φ μð Þ, 0 < ν ≤ 1,
u μ, 0ð Þ = ϕ μð Þ,

∂u μ, 0ð Þ
∂δ

= φ μð Þ,
ð7Þ

 1 < ν ≤ 2: ð8Þ

Table 1: Solution for the first three approximations with exact solution, with mesh points δ = 0:2, for equation (18).

δ μ ν = 0:75 ν = 0:85 ν = 0:95 ν = 1 Exact

0.2

0 0 0 0 0 0

0.1 -0.1480375 -0.136454922 -0.128120827 -0.1248 -0.125

0.2 -0.296074999 -0.272909844 -0.256241654 -0.2496 -0.25

0.3 -0.444112499 -0.409364766 -0.384362481 -0.3744 -0.375

0.4 -0.592149999 -0.545819688 -0.512483308 -0.4992 -0.5

0.5 -0.740187498 -0.68227461 -0.640604134 -0.624 -0.625

0.6 -0.888224998 -0.818729532 -0.768724961 -0.7488 -0.75

0.7 -1.036262498 -0.955184454 -0.896845788 -0.8736 -0.875

0.8 -1.184299998 -1.091639376 -1.024966615 -0.9984 -1

0.9 -1.332337497 -1.228094299 -1.153087442 -1.1232 -1.125

1 -1.480374997 -1.364549221 -1.281208269 -1.248 -1.25
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Using the linearity of (ET) and applying it to both aspect
equations (6), the conclusion is

E Dν
δu μ, δð Þ½ � + E Ru μ, δð Þ½ � + E Nu μ, δð Þ½ � = E Φ μ, δð Þ½ �, ν > 0:

ð9Þ

Using the property of (ET), to get

u μ, δð Þ
βν − C + E Ru μ, δð Þ½ � + E Nu μ, δð Þ½ � = E Φ μ, δð Þ½ �, ν > 0:

ð10Þ

where C =∑n−1
κ=0β

2−ν+κuðκÞðμ, 0Þ,

u μ, βð Þ = βνE Φ μ, δð Þ½ � + βνC − βνE Ru μ, δð Þ½ � − βνE Nu μ, δð Þ½ �:
ð11Þ

Taking the inverse (ET) to both aspect equations (11),
we get

u μ, δð Þ =G μ, δð Þ − E−1 βνE Ru μ, δð Þ +Nu μ, δð Þ½ �½ �: ð12Þ

This is now applied to the HPM, where Gðμ, δÞ is the
term from the start conditions.

u μ, δð Þ = 〠
∞

κ=0
Pκuκ μ, δð Þ: ð13Þ
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Figure 1: Create 2D and 3D comparison charts of precise data and predicted computational outputs for Example 1, using δ = 0:2:
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The nonlinear operator is decomposition as, accordingly:

Nu μ, δð Þ = 〠
∞

κ=0
PκHn uð Þ, ð14Þ

where HnðuÞ are given by

Hn u0, u1,⋯unð Þ = 1
n!

∂
∂pn

N 〠
∞

i=0
piui

 !" #
p=0

, n = 1, 2,⋯:

ð15Þ

When we make up the equation (14) and equation (13)
into equation (12), we get

〠
∞

n=0
Pnun μ, δð Þ = G μ, δð Þ − PE−1 βνE R〠

∞

n=0
un μ, δð Þ +N 〠

∞

n=0
PnH unð Þ

" #" #
:

ð16Þ

Using He’s polynomials, this is the conjugation of the ET
and the HPM. We find after matching the coefficient

P0 : u0 μ, δð Þ =G μ, δð Þ,
P1 : u1 μ, δð Þ = −E−1 βνE Ru0 μ, δð Þ +H0 uð Þ½ �½ �,
P2 : u2 μ, δð Þ = −E−1 βνE Ru1 μ, δð Þ +H1 uð Þ½ �½ �,
P3 : u3 μ, δð Þ = −E−1 βνE Ru2 μ, δð Þ +H2 uð Þ½ �½ �,

⋮⋮⋮

ð17Þ

Then the solution is uðμ, δÞ = lim
p⟶1

unðμ, δÞ = u0ðμ, δÞ +
u1ðμ, δÞ + u2ðμ, δÞ +⋯:

3. Illustrative Application

Here, we append examples to explain the solve method
described.

Example 1. Let the homogeneous nonlinear fractional partial
differential equations [29].

Dν
δu + uuμ = 0, 0 < ν ≤ 1: ð18Þ

with initial condition:

u μ, 0ð Þ = −μ: ð19Þ

Taking the (ET) to both aspect equations (18) and sub-
ject to equation (19), we get

u μ, βð Þ = −μβ2 − βνE u μ, δð Þuδ μ, δð Þ½ �: ð20Þ

Taking the inverse of (ET), we get:

u μ, δð Þ = −μ − E−1 βαE u μ, δð Þuμ μ, δð Þ� �� �
: ð21Þ

When, we apply the (HPM), we get:

〠
∞

κ=0
Pκuκ μ, δð Þ = −μ − E−1 βνE 〠

∞

κ=0
PκHκ uð Þ

" #" #
: ð22Þ

After matching the coefficient we find:

P0 : u0 μ, δð Þ = −μ,

P1 : u1 μ, δð Þ = −E−1 βνE H0 uð Þ½ �½ � = −μ
δν

ν!
,

P2 : u2 μ, δð Þ = −E−1 βvE H1 uð Þ½ �½ � = −2μ δ2ν

2νð Þ! ,

p3 : u3 μ, δð Þ = −E−1 βαE H2 uð Þ½ �½ �

= −μ
4
2νð Þ! +

1
νð Þ2!

" #
2νð Þ!δ3α
3νð Þ! ,

⋮ ⋮ ⋮ ð23Þ

Table 2: Solution for the first three approximations with exact solution, with mesh points δ = 0:2, for equation (26).

δ μ ν = 0:75 ν = 0:85 ν = 0:95 ν = 1 Exact

0.2

0 1.403184045 1.315919781 1.248964885 1.221333333 1.221402758

0.1 1.550758199 1.454316273 1.380319669 1.349782081 1.349858808

0.2 1.713852863 1.607268051 1.525489155 1.491739902 1.491824698

0.3 1.894100342 1.776305907 1.68592625 1.648627557 1.648721271

0.4 2.093304614 1.96312163 1.863236662 1.822015231 1.8221188

0.5 2.313459382 2.169584934 2.059194972 2.013638245 2.013752707

0.6 2.556768029 2.397762174 2.275762398 2.225414428 2.225540928

0.7 2.82566567 2.649937023 2.515106419 2.459463307 2.459603111

0.8 3.122843523 2.928633332 2.77962247 2.718127321 2.718281828

0.9 3.451275843 3.236640389 3.071957917 3.003995266 3.004166024

1 3.814249692 3.57704083 3.395038551 3.319928206 3.320116923
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The convergent solution of equation (18), is presented by

u μ, δð Þ = −μ 1 + δν

v!
+ 2 δ

2ν

2ν! +
4
2νð Þ! +

1
νð Þ2!

" #
2νð Þ!δ3ν
3νð Þ! +⋯

" #
:

ð24Þ

The convergent solution of equation (18) at ν⟶ 1

u μ, δð Þ = −μ 1 + δ + δ2 + δ3+⋯
� �

= μ

δ − 1 , ð25Þ

we have the exact solution [29], see Table 1 and Figure 1.

Example 2. Let a homogeneous nonlinear diffusion problem
[30].

Dν
δu = uμμ − uμ + uuμμ − u2 + u, 0 < ν ≤ 1 ð26Þ

have initial condition:

u μ, 0ð Þ = eμ: ð27Þ

Taking the (ET) to both aspect equations (26) and sub-
ject to equation (27), we get

u μ, βð Þ = β2eμ + βνE uμμ − uμ + u
� �

+ uuμμ − u2
� �� �

: ð28Þ
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Figure 2: Create 2D and 3D comparison charts of precise data and predicted computational outputs for Example 2, using δ = 0:2.
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Taking the inverse of (ET), we get

u μ, δð Þ = eμ + E−1 βνE uμμ − uμ + u
� �

− uuμμ − u2
� �� �� �

:

ð29Þ

When, we apply the (HPM), we get

〠
∞

κ=0
Pnun μ, δð Þ = eμ + E−1 βνE 〠

∞

κ=0
Pnun μ, δð Þ + 〠

∞

κ=0
PnHn uð Þ

" #" #
:

ð30Þ

The elementary few components of He’s polynomials [5,
6] are offered by

H0 uð Þ = u0 u0ð Þμμ − u20,

H1 uð Þ = u0 u1ð Þμμ + u1 u0ð Þμμ − 2u0u1,

H2 uð Þ = u0 u2ð Þμμ + u1 u1ð Þμμ + u2 u0ð Þμμ − u21 − 2u2u0,
⋮ ⋮

ð31Þ

After matching the coefficient we find

P0 : u0 μ, δð Þ = eμ,

P1 : u1 μ, δð Þ = E−1 βνE u0μμ − u0μ + u0 +H0 uð Þ� �� �
= δν

νð Þ! e
μ,

P2 : u2 μ, δð Þ = E−1 βνE u1μμ − u1μ + u1 +H1 uð Þ� �� �
= δ2ν

2νð Þ! e
μ,

P3 : u3 μ, δð Þ = E−1 βνE u2μμ − u2μ + u2 +H2 uð Þ� �� �
= δ3ν

3νð Þ! e
μ,

⋮ ⋮ ⋮
ð32Þ

The convergent solution of equation (26), is presented by

u μ, δð Þ = eμ 1 + δν

νð Þ! +
δ2ν

2νð Þ! +
δ3ν

3νð Þ!+⋯
" #

, = eμ 〠
∞

n=1

δnν

nνð Þ! :

ð33Þ

If we take ν⟶ 1, we get exact solution of uðμ, δÞ = eμ+δ

[30]; see Table 2 and Figure 2.

Example 3. Let a homogeneous nonlinear fractional partial
differential equations [31].

Dν
δu − 2 μ

2

δ
uuμ = 0, δ ≥ 0, 1 < ν ≤ 2: ð34Þ

with initial condition

u μ, 0ð Þ = 0,
uμ μ, 0ð Þ = μ:

ð35Þ

Taking the (ET) to both aspect equations (34) and sub-
ject to equation (35), we get

u μ, 0ð Þ = 0,
uμ μ, 0ð Þ = μ:

ð36Þ

Taking the inverse of (ET), we get

u μ, δð Þ = μδ + E−1 βνE 2 μ
2

δ
uuμ

� �� �
: ð37Þ

Table 3: Solution for the first three approximations with exact solution, with mesh points δ = 0:2, for equation (34).

δ μ ν = 1:75 ν = 1:85 ν = 1:95 ν = 2 Exact

0.2

0 0 0 0 0 0

0.1 0.020005412 0.020004087 0.020003077 0.020002667 0.020002667

0.2 0.040043345 0.04003272 0.04002463 0.040021347 0.040021347

0.3 0.060146586 0.060110585 0.060083207 0.060072104 0.060072104

0.4 0.080348451 0.080262642 0.080197497 0.080171104 0.080171105

0.5 0.100683062 0.100514271 0.100386409 0.10033467 0.100334672

0.6 0.121185631 0.120891415 0.120669137 0.120579331 0.120579337

0.7 0.141892761 0.141420729 0.141065245 0.140921878 0.140921895

0.8 0.162842761 0.162129738 0.161594737 0.161379417 0.161379461

0.9 0.184075989 0.183047001 0.182278142 0.181969427 0.181969529

1 0.20563521 0.204202283 0.203136596 0.202709821 0.202710036
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After matching the coefficient, we find

P0 : u0 μ, δð Þ = μδ,

P1 : u1 μ, δð Þ = E−1 βνE 2 μ
2

δ
H0 uð Þ

� �� �
= 2μ3 δν+1

ν + 1ð Þ! ,

P2 : u2 μ, δð Þ = E−1 βνE 2 μ
2

δ
H1 uð Þ

� �� �
= 16μ5 δ2ν+1

2ν + 1ð Þ! ,

P3 : u3 μ, δð Þ = E−1 βνE 2 μ
2

δ
H2 uð Þ

� �� �

= 32 × 6
2ν + 1ð Þ! +

24
ν + 1ð Þ2!

" #
μ7

2ν + 1ð Þ!δ3ν+1
3ν + 1ð Þ! ,

⋮ ⋮ ⋮
ð38Þ

The convergent solution of equation (34), is presented by
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Figure 3: Create 2D and 3D comparison charts of precise data and predicted computational outputs for Example 3, using δ = 0:2.
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u μ, δð Þ = μδ + 2μ3
ν + 1ð Þ! δ

ν+1 + 16μ5
2ν + 1ð Þ! δ

2ν+1

+ 32 × 6
2ν + 1ð Þ! +

24
α + 1ð Þ2!

" #
2ν + 1ð Þ!μ7
3ν + 1ð Þ! δ3ν+1+⋯:

ð39Þ

When ν⟶ 2, equation (39) becomes

u μ, δð Þ = μδ + 1
3 μδð Þ3 + 2

15 μδð Þ5 + 17
315 μδð Þ7+⋯: ð40Þ

Therefore, we conclude that uðμ, δÞ = tan ðμδÞ [31]; see
Table 3 and Figure 3.

In all figures, the exact and (NHPM) solutions at nu =
1, 2 are plotted in 2D plots of all examples, and it is observed
that the exact and derived results are in good contact, con-
firming the proposed method’s high accuracy.

4. Conclusion

The Elzaki transform method has been used with the new
homotopy perturbation approach to solve nonlinear prob-
lems quickly, easily, and accurately, resulting in approxima-
tions that swiftly converge to the true answer. The strategy
presented is well-suited to such problems and is quite effec-
tive. As indicated by the approximation solution’s faster
convergence, the relevance of ETHPM has been established.
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