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Abstract
This paper develops a New Bivariate-Gamma Distribution (NBGD) and explores its mathematical and
statistical properties such as marginal probability distributions, moments, product moment, covariance and
correlation. The study further investigates the various special cases of the NBGD. The new distribution is
more robust with additional parameters and flexible for modelling real datasets.
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1 Introduction
The Gamma distribution is often used to describe variables bounded on one side. This density function can be
adopted in analyzing the distribution of economic income, describing the sizes of grains produced in comminution,
drop size distributions in sprays and so on.
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Definition 1.1. A random variable X has a generalized-gamma distribution, and is called a generalized-gamma
random variable, if its probability density function is defined by

f(x;α, β, µ, c) =


1

βα cΓ(α)
c(x− µ)α c−1e

−
(
x−µ
β

)c
; x > 0

0 elsewhere
(1.1)

where β (a scale parameter) and α (the shape parameter), µ ∈ R (a location parameter) are positive real
parameters, a fourth parameter c which may in principle take any real value but normally we consider the case
where c > 0 or even c ≥ 1 . Put | c| in the normalization for f(x) if c < 0 , and Γ(.) is the usual Euler
function defined as Γ(α) =

∫∞
0

xα−1e−xdx .

Relationship of (1.1) with other distributions are:

• If c = 1 , it reduces to ordinary three-parameter gamma or shifted gamma distribution.

• If c = 1 and µ = 0 , a more flexible version of this distribution is obtained giving the so called two-
parameters gamma distribution.

• If c = α = 1 and µ = 0 , (1.1) reduces to exponential distribution with parameter β .

• If α = v
2
, β = 2 and c = 1 , generalized gamma becomes chi-square distribution with parameter v . For

large α it (generalized gamma distribution) is more symmetric and closer to a normal distribution.

• If α = 1

α
√

2
, β = 1 and c = 2 , generalized gamma gives Rayleigh distribution with parameter α .

• If c = 1 , µ = 0 and Y =
1

X
where X ∼ Gamma(α, β) then f(y) ∼ IG(α, β) , the distribution of

the reciprocal of a variable distributed according to the gamma distribution emerged which is called the
inverse gamma distribution or inverted gamma distribution or the reciprocal gamma distribution.

Algebraic rth moment of (1.1) is

E(Xr) =

∫
R
xrf(x)dx =

βr

Γ(α)

∫ ∞
0

uα+ r
c
−1e−udu =

βr

Γ(α)
Γ
(
α+

r

c

)
(1.2)

For negative values of c the moments are finite for ranks v satisfying v
c
> −b (or even just avoiding the

singularities 1
β

+ v
c
6= 0,−1,−2 · · · ). As expected, putting c = 1 in (1.2) produces the rth moment of shifted-

gamma distribution.

The use of Generalized Gamma distribution has garnered commendable attention of many researchers in
a wide spectrum of studies due to its flexibility, robustness and small magnitude of entropy. [1] (survival
analysis of ovarian cancer patients), [2] (lifetimes of industrial devices, serological reversal time in children
of HIV-contaminated mothers), [3] (strength of materials: breaking stress of carbon fibers, repair times for
an airborne communication transceiver), [4] and [5] adopted alpha power transformed Xgamma for modelling
strength of materials and environmental data, respectively, while [6] generalized conventional gamma function
to study fatigue of aluminum coupons and tensile strength of carbon fibers. [7]-[8] extended generalised gamma
to Xgamma and transmuted inverse Xgamma distributions with application to zoonatic disease caused by
coronavirus etc.

In some experimental situations where the use of a covariate could increase precision of the experiment, the
distributions of the test variate and the covariate are highly non-normal. Some of these cases can be analysed
using a bivariate Γ -distribution which is discuss, modify and its mathematical characteristics explore in this
work. Applications of the propose bivariate gamma probability function are to be found in wind gust, ascent
flight of the space shuttle, reliability theory, signal noise, meteorology etc whch are left for future studies.
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The bivariate gamma distribution is a powerful probability function that has applications in epidemiology
and medical fields [9], noise theory, modeling of rainfall at two nearby rain gauges, rain-making experiments
of two areas with strong correlation coefficient, the dependence between annual stream-flow of rivers and a
real precipitation [10], wind gust data [11], dependence between rainfall and runoff [12], reliability theory,
strength (fracture, fatigue) of different kind of materials, renewal processes and stochastic routing problems
[13], and in every skewed data [14]. If (Pi, Qi)|i = 1, 2, · · · , n is a random sample from a bivariate normal

distribution with 0 means, then the bivariate random variable (X,Y ) , where X =
1

n

n∑
i=1

P 2
i and Y =

1

n

n∑
i=1

Q2
i ,

has bivariate gamma distribution. This can be advantageously proved using characteristic function, Φ(X,Y ) =∫∫
eit(x+y)f(x, y)dxdy .

Definition 1.2. A continuous bivariate random variable (P,Q) is said to have the bivariate gamma distribution
if its joint probability density function is of the form

f(p, q) =


(pq)

1
2

(α−1)

(1− θ)Γ(α)(θ)

(α− 1)

2

e
−
(p+ q

1− θ

)
Iα−1

(
2
√
θ pq

1− θ

)
, if 0 ≤ p, q <∞

0, otherwise.

(1.3)

where

Ik(t) =

∞∑
r=0

(
1

2
t

)k+2r

r!Γ(k + r + 1)
(1.4)

is the modified Bessel function of the first kind of order k and θ ∈ [0, 1) and α > 0 are parameters. Explicitly,
f(p, q) is given by

f(p, q) =


1

θα−1Γ(α)
e
−
(p+ q

1− θ

)
∞∑
k=0

(θ pq)α+k−1

k!Γ(α+ k)(1− θ)α+2k
; for 0 ≤ p, q <∞

0; otherwise.

(1.5)

The main difficulty in dealing with bivariate gamma is that for many problems, no unique bivariate gamma
density function exists. The definition given above is due to Kibble as cited in [15]. In the same period, Cherian
developed a bivariate gamma distribution whose probability density function is given by

f(p, q)


e−(p+q)

3∏
i=1

Γ(αi)

∫min{p,q}
0

rα3 (p−r)α1 (q−r)α2

z(p−z)(q−z) erdr; if 0 < p, q <∞

0 elsewhere,
(1.6)

where α1 , α2 , α3 ∈ (0,∞) are parameters. Mckay constructed alternative bivariate gamma distribution whose
probability density function is of the form

f(p, q)

{
θα+β

Γ(α)Γ(β)
pα−1(q − p)β−1e−θ q; if 0 < p < q < 0

0; elsewhere
(1.7)

where θ, α, β ∈ (0,∞) are constants. Equations (1.6) and (1.7) are all cited in [15]. [16] have studied a density
function of the form,

f(x;α, β, δ, α, δ) =
βα

m
β

+1

νX(0)
xβ+m−1e−δ x

β

2F1

(
λ, b; c− αxβ

n

)
IR + (x), (1.8)
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where β ≥ 0 , m+ β > 0 , δ and α are positive numbers, and νX(0) is generally defined as

νX(h) = α
m
β

+1
Γ(c)



δ
−m+h−bβ+β

β
Γ(m+h−bβ+β

β )Γ(λ−b)α−b

Γ(c−b)Γ(λ)
×2 F2

(
b, b− c+ 1; b− m+h

β
, b− λ+ 1; δ

α

)
+(

Γ
(
m+h+β

β

)
Γ
(
−m+h−bβ+β

β

)
Γ
(
−m+h+β−βλ

β

)
α
−m+h+β

β

Γ
(
−m+h−cβ+β

β

)
Γ(λ)Γ(b)

×2 F2 (K)

)
+

δ
−m+h+β−βλ

β
Γ(b−λ)Γ(m+h+β−βλ

β )α−λ

Γ(b)Γ(c−λ)
×2 F2(

λ,−c+ λ+ 1;−b+ λ+ 1, λ− m+h
β

; δ
α

)


(1.9)

such that K = m+h
β

+1,−c+ m+h
β

+2;−b+ m+h
β

+2,−λ+ m+h
β

+2; δ
α

for h = 0, 1, · · · , whenever h+m+β > 0 .
The hth moment of this distribution is

µ′X(h) =
νX(h)

νX(0)
, (1.10)

A multivariate case of bivariate gamma distribution was developed by [13], and [10].

From (1.5), results show that the marginal distributions of P and Q , g(p) =
1

Γ(α)
pα−1; p > 0 and g(q) =

1

Γ(α)
qα−1; q > 0 are univariate gamma with parameter α (and θ = 1 ). This study modifies and reparameterizes

Kibble bivariate gamma density function with the aim of making θ ∈ R (other than fixed value θ = 1 ) in the
marginal pdf’s and other accompanies probability properties.

2 Preliminaries
The study states the following lemmas without proof since they have been proved in many elementary Calculus
textbooks.

Lemma 2.1. From Calculus,

et =

∞∑
i=0

ti

i!
. (2.1)

The infinite series on RHS of (2.1) converges ∀ t ∈ R . Differentiating both sides of (2.1) wrt t and then
multiplying the resulting expression by t gives

tet =

∞∑
i=0

i
ti

i!
(2.2)

Differentiating (2.2) again and multiply the resulting expression by t to get

tet + t2et =

∞∑
i=0

i2
ti

i!
(2.3)

3 Results
The study begins by letting p = θ x and q = θ y with the Jacobian coefficient of the transformation as

J =

∣∣∣∣∣∣∣
dp

dx

dp

dy
dq

dx

dq

dy

∣∣∣∣∣∣∣ =

∣∣∣∣θ 0
0 θ

∣∣∣∣ = θ2. (3.1)
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Suppose there exists, a one to one transformation that maps set A = {(p, q) : 0 ≤ p ≤ ∞, 0 ≤ q ≤ ∞}
onto B = {(x, y) : 0 ≤ x ≤ ∞, 0 ≤ y ≤ ∞} . Hence, from (1.5), the joint pdf of X and Y , say f(x, y) =
f (p = θ x, q = θ y) | J | , is

f(x, y) =


1

θα−3Γ(α)
e
−

θ

1− θ (x+y) ∞∑
k=0

(θ3xy)α+k−1

k!Γ(α+ k)(1− θ)α+2k
; for 0 ≤ x, y <∞

0; otherwise.

(3.2)

where θ ∈ (0,∞) and α > 0 are real constants (parameters).

Theorem 3.1. The developed BGD in (3.2) is a proper pdf.

Proof. This is to show that
∫∫

f(x, y)dxdy = 1 . Following from (3.2),∫ ∞
0

∫ ∞
0

f(x, y)dxdy =

∫ ∞
0

∫ ∞
0

1

θα−3Γ(α)
e

−θ
1−θ (x+y)

∞∑
k=0

(θ3xy)α+k−1

k!Γ(α+ k)(1− θ)α+2k
dydx

=

∫ ∞
0

1

θα−3Γ(α)
e−

θ
1−θ x

∞∑
k=0

(θ3x)α+k−1

k!Γ(α+ k)(1− θ)α+2k

∫ ∞
0

yα+k−1e−
θ

1−θ ydydx

=

∫ ∞
0

1

θα−3Γ(α)
e−

θ
1−θ x

∞∑
k=0

(θ3x)α+k−1

k!Γ(α+ k)(1− θ)α+2k
Γ(α+ k)

(
1− θ
θ

)α+k

dx

=

∫ ∞
0

1

Γ(α)
e−

θ
1−θ x

∞∑
k=0

θα+2k

k!(1− θ)k x
α+k−1dx

=

∫ ∞
0

θα

Γ(α)
xα−1e−

θ
1−θ x

∞∑
k=0

1

k!

(
θ2x

1− θ

)k
dx

Using (2.1),
∞∑
k=0

1

k!

(
θ2x

1− θ

)k
= e

θ2x

1− θ ,

∫ ∞
0

∫ ∞
0

f(x, y)dxdy =

∫ ∞
0

θα

Γ(α)
xα−1e−

θ
1−θ xe

θ2

1−θ xdx

=
θα

Γ(α)

∫ ∞
0

xα−1e−θ xdx

=
θα

Γ(α)

(
Γ(α)

θα

)
= 1.

3.1 The Marginal Distributions and Joint Expectation
Theorem 3.2. The marginal distributions of X and Y are each univariate gamma with parameter α and θ .
That is,

f1(x) =

∫
f(x, y)dy =

θα

Γ(α)
xα−1e−θ x ∼ GAM(x;α, θ), and

f2(y) =

∫
f(x, y)dx =

θα

Γ(α)
yα−1e−θ y ∼ GAM(y;α, θ).

(3.3)

20



Adeniran and Faweya; Asian Res. J. Math., vol. 20, no. 1, pp. 16-27, 2024; Article no.ARJOM.111548

Proof. This requires integrating (3.2) wrt y . That is,

f1(x) =

∫
f(x, y)dy =

∫ ∞
0

1

θα−3Γ(α)
e−

θ
1−θ (x+y)

∞∑
k=0

(θ3xy)α+k−1

k!Γ(α+ k)(1− θ)α+2k
dy

=

∞∑
k=0

1

θα−3Γ(α)
e−

θ
1−θ x

(θ3x)α+k−1

k!Γ(α+ k)(1− θ)α+2k

∫ ∞
0

yα+k−1e−
θ

1−θ ydy

=

∞∑
k=0

1

θα−3Γ(α)
e−

θ
1−θ x

(θ3x)α+k−1

k!Γ(α+ k)(1− θ)α+2k

(
1− θ
θ

)α+k

Γ(α+ k)

=

∞∑
k=0

1

Γ(α)
e−

θ
1−θ x

θα+2k

k!(1− θ)k x
α+k−1

=
θα

Γ(α)
xα−1e−

θ
1−θ x

∞∑
k=0

1

k!

(
θ2 x

1− θ

)k
=

θα

Γ(α)
xα−1e−

θ
1−θ xe

θ2

1−θ x

=
θα

Γ(α)
xα−1e−θ x ∼ GAM(x;α, θ)

Similarly, as shown below, the marginal distribution of Y is also univariate gamma.

f2(y) =

∫
f(x, y)dx =

∞∑
k=0

1

θα−3Γ(α)
e−

θ
1−θ y

(θ3y)α+k−1

k!Γ(α+ k)(1− θ)α+2k

∫ ∞
0

xα+k−1e−
θ

1−θ xdx

=

∞∑
k=0

1

θα−3Γ(α)
e−

θ
1−θ y

(θ3y)α+k−1

k!Γ(α+ k)(1− θ)α+2k

(
1− θ
θ

)α+k

Γ(α+ k)

=

∞∑
k=0

1

Γ(α)
e−

θ
1−θ y

θα+2k

k!(1− θ)k y
α+k−1

=
θα

Γ(α)
yα−1e−

θ
1−θ y

∞∑
k=0

1

k!

(
θ2y

1− θ

)k
=

θα

Γ(α)
yα−1e−

θ
1−θ ye

θ2 y
1−θ

=
θα

Γ(α)
yα−1e−θ y ∼ GAM(y;α, θ)

From the two marginals,

E(X) =

∫ ∞
0

xf1(x)dx =

∫ ∞
0

x
θα

Γ(α)
xα−1e−θ xdx =

θα

Γ(α)

Γ(α+ 1)

θα+1
=
α

θ

E(Y ) =

∫ ∞
0

yf2(y)dy =

∫ ∞
0

y
θα

Γ(α)
yα−1e−θ ydy =

θα

Γ(α)

Γ(α+ 1)

θα+1
=
α

θ

(3.4)

and

V ar(X) =

∫ ∞
0

x2 θα

Γ(α)
xα−1e−θ xdx−

[∫ ∞
0

x
θα

Γ(α)
xα−1e−θ xdx

]2

=
θαα(α+ 1)

θα+2
−
[α
θ

]2
=

α

θ2

V ar(Y ) =

∫ ∞
0

y2 θα

Γ(α)
yα−1e−θ ydy −

[∫ ∞
0

y
θα

Γ(α)
yα−1e−θ ydy

]2

=
θαα(α+ 1)

θα+2
−
[α
θ

]2
=

α

θ2

(3.5)
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The joint expectation is

E(XY ) =

∫∫
xyf(x, y)dxdy =

∫ ∞
0

∫ ∞
0

xy
1

θα−3Γ(α)
e−

θ
1−θ (x+y)

∞∑
k=0

(θ3xy)α+k−1

k!Γ(α+ k)(1− θ)α+2k
dxdy

=

∫ ∞
0

y
1

θα−3Γ(α)
e−

θ
1−θ y

∞∑
k=0

(θ3y)α+k−1

k!Γ(α+ k)(1− θ)α+2k

∫ ∞
0

xα+ke−
θ

1−θ xdxdy

=

∫ ∞
0

y
1

θα−3Γ(α)
e−

θ
1−θ y

∞∑
k=0

(θ3y)α+k−1

k!Γ(α+ k)(1− θ)α+2k
Γ(α+ k + 1)

(
1− θ
θ

)α+k+1

dy

=

∫ ∞
0

1

Γ(α)

∞∑
k=0

θα+2k−1

k!(1− θ)k−1
e−

θ
1−θ yyα+k(α+ k)dy

=
α

Γ(α)

∫ ∞
0

∞∑
k=0

θα+2k−1

k!(1− θ)k−1
e−

θ
1−θ yyα+kdy +

1

Γ(α)

∫ ∞
0

∞∑
k=0

kθα+2k−1

k!(1− θ)k−1
e−

θ
1−θ yyα+kdy

=
α(1− θ)θα−1

Γ(α)

∫ ∞
0

yα e−
θ

1−θ y
∞∑
k=0

1

k!

(
θ2y

1− θ

)k
dy +

(1− θ)θα−1

Γ(α)

∫ ∞
0

yαe
−θ
1−θ y

∞∑
k=1

k

k!

(
θ2y

1− θ

)k
dy

Using (2.1) and (2.2),
∞∑
k=0

1

k!

(
θ2y
1−θ

)k
= e

θ2

1−θ y and
∞∑
k=0

k

k!

(
θ2y
1−θ

)k
= θ2y

1−θ e
θ2

1−θ y . So,

E(XY ) =
α(1− θ)θα−1

Γ(α)

∫ ∞
0

yαe−θ ydy +
θα+1

Γ(α)

∫ ∞
0

yα+1e−θ ydy

=
α(1− θ)θα−1

Γ(α)

Γ(α+ 1)

θα+1
+
θα+1

Γ(α)

Γ(α+ 2)

θα+2

=
α2(1− θ)

θ2
+
α(α+ 1)

θ

(3.6)

By definition, Cov(X,Y ) = E(XY )− E(X)E(Y ) . Hence,

Cov(X,Y ) =
α2(1− θ)

θ2
+
α(α+ 1)

θ
−
(α
θ

)(α
θ

)
=
α

θ
(3.7)

The correlation coefficient of X and Y can be easily computed using (3.5) and (3.7) as

ρ(X,Y ) =
Cov(X,Y )

σXσY
=
α

θ
÷
( α
θ2

)
= θ. (3.8)

3.2 The Conditional Mean and Vaariance

Theorem 3.3. Let the random variable (X,Y ) ∼ K(α, θ) , where 0 < α <∞ and 0 ≤ θ < 1 . Then

E(Y/x) =
α(1− θ)

θ
+ θ x (3.9)

E(X/y) =
α(1− θ)

θ
+ θ y (3.10)

V ar(Y/x) =
(1− θ)
θ2

[
2θ2x+ α(1− θ)

]
(3.11)

V ar(X/y) =
(1− θ)
θ2

[
2θ2y + α(1− θ)

]
(3.12)
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Proof. First, the conditional probability density function Y given X = x , is given by

f(y/x) =
f(x, y)

f1(x)
=

1

θα−3Γ(α)
e−

θ
1−θ (x+y)

∞∑
k=0

(θ3xy)α+k−1

k!Γ(α+ k)(1− θ)α+2k
× Γ(α)

θα xα−1e−θ x

= e−
θ

1−θ x+θ x
∞∑
k=0

θ3α+3k−3−α+3−αxα+k−1−α+1

k!Γ(α+ k)(1− θ)α+2k
yα+k−1e−

θ
1−θ y

= e−
θ2

1−θ x
∞∑
k=0

θα+3kxk

k!Γ(α+ k)(1− θ)α+2k
yα+k−1e−

θ
1−θ y

Then, the conditional mean is

E(Y |X = x) =

∫ ∞
0

yf(y/x)dy =

∫ ∞
0

ye−
θ2

1−θ x
∞∑
k=0

θα+3kxk

k!Γ(α+ k)(1− θ)α+2k
yα+k−1e−

θ
1−θ ydy

= e−
θ2

1−θ x
∞∑
k=0

θα+3kxk

k!Γ(α+ k)(1− θ)α+2k

∫ ∞
0

yα+ke−
θ

1−θ ydy

= e−
θ2

1−θ x
∞∑
k=0

θα+3kxk

k!Γ(α+ k)(1− θ)α+2k

Γ(α+ k + 1)(
θ

1−θ

)α+k+1

= e−
θ2

1−θ x
∞∑
k=0

θ2k−1xk

k!(1− θ)k−1
(α+ k)

=
1− θ
θ

e−
θ2

1−θ x
∞∑
k=0

1

k!

(
θ2x

1− θ

)k
(α+ k)

=
1− θ
θ

e−
θ2

1−θ x

[
α

∞∑
k=0

1

k!

(
θ2x

1− θ

)k
+

θ2x

1− θ

∞∑
k−1=0

1

(k − 1)!

(
θ2x

1− θ

)k−1
]

From (2.1),
∞∑
k=0

1

k!

(
θ2x

1− θ

)k
=

∞∑
k−1=0

1

(k − 1)!

(
θ2x

1− θ

)k−1

= e
−

θ2

1− θ x . Therefore, the conditional mean,

E(Y |X = x) , is finally presented as

E(Y |X = x) =
1− θ
θ

e−
θ2

1−θ x
[
α e

θ2

1−θ x +
θ2x

1− θ e
θ2

1−θ x
]

=
α(1− θ)

θ
+ θ x. (3.13)

In the same manner,

E(Y 2|X = x) =

∫ ∞
0

y2f(y/x)dy =

∫ ∞
0

y2e−
θ2

1−θ x
∞∑
k=0

θα+3kxk

k!Γ(α+ k)(1− θ)α+2k
yα+k−1e−

θ
1−θ ydy

= e−
θ2

1−θ x
∞∑
k=0

θα+3kxk

k!Γ(α+ k)(1− θ)α+2k

∫ ∞
0

yα+k+1e−
θ

1−θ ydy

= e−
θ2

1−θ x
∞∑
k=0

θα+3kxk

k!Γ(α+ k)(1− θ)α+2k

Γ(α+ k + 2)(
θ

1−θ

)α+k+2

= e−
θ2

1−θ x
∞∑
k=0

θα+3kxk

k!Γ(α+ k)(1− θ)α+2k

(α+ k)(α+ k + 1)Γ(α+ k)(1− θ)α+k+1

θα+k+2

= e−
θ2

1−θ x
∞∑
k=0

θ2k−2xk

k!(1− θ)k−2
(α+ k)(α+ k + 1)
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which gives

E(Y 2|X = x) =
(1− θ)2

θ2
e−

θ2

1−θ x
∞∑
k=0

1

k!

(
θ2x

1− θ

)k
(α+ k)[(α+ 1) + k]

=
(1− θ)2

θ2
e−

θ2

1−θ x
∞∑
k=0

1

k!

(
θ2x

1− θ

)k
[α(α+ 1) + (2α+ 1)k + k2]

(3.14)

From (2.1), (2.2) and (2.3),
∞∑
k=0

1

k!

(
θ2x

1− θ

)k
,
∞∑
k=0

k

k!

(
θ2x

1− θ

)k
and

∞∑
k=0

k2

k!

(
θ2x

1− θ

)k
are e

θ2x

1− θ ,
θ2x

1− θ e
θ2x

1− θ

and
θ2x

1− θ e
θ2

1− θ x +

(
θ2x

1− θ

)2

e

θ2x

1− θ , respectively. Hence, (3.14) gives

E(Y 2|X = x) =
(1− θ)2

θ2
e−

θ2

1−θ x

[
α(α+ 1)e

θ2

1−θ x + (2α+ 1)
θ2x

1− θ e
θ2

1−θ x +

(
θ2x

1− θ

)
e
θ2

1−θ x +

(
θ2x

1− θ

)2

e
θ2

1−θ x

]

=
(1− θ)2

θ2

[
α(α+ 1) + (2α+ 1)

θ2x

1− θ +
θ2x

1− θ +

(
θ2x

1− θ

)2
]

=
α(α+ 1)(1− θ)2

θ2
+ 2(α+ 1)(1− θ)x+ θ2x2

(3.15)

The conditional variance of Y given X = x is

V ar(Y |x) = E(Y 2|X = x)− [E(Y |X = x)]2

=
α(α+ 1)(1− θ)2

θ2
+ 2(α+ 1)(1− θ)x+ θ2x2 −

[
α(1− θ)

θ
+ θ x

]2

=
α(1− θ)2

θ2
+ 2(1− θ)x

=
(1− θ)
θ2

[
2θ2x+ α(1− θ)

]
.

(3.16)

The developed density function (3.2) is symmetric, that is, f(x, y) = f(y, x) . As a result, E(X| y) and
V ar(X| y) can be obtained by interchanging x with y in (3.13) and (3.16), respectively. So,

E(X/y) =
α(1− θ)

θ
+ θ y (3.17)

V ar(X/y) =
(1− θ)
θ2

[
2θ2y + (1− θ)

]
(3.18)

This completes the proof.

Theory establishes that the univariate exponential distribution is a special case of the univariate gamma
distribution. Similarly, the bivariate exponential distribution is a special case of bivariate gamma distribution
[17]. Taking the index parameter to be unity in the developed bivariate gamma density function presented in
(3.2), we obtain its corresponding bivariate exponential distribution as

f(x, y) =

θ
2e−

θ
1−θ (x+y)

∞∑
k=0

(θ3xy)k

k!Γ(k+1)(1−θ)2k+1 ; for 0 ≤ x, y <∞,

0 otherwise.
(3.19)
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where θ ∈ (0,∞) is a parameter. In addition, each of the properties of bivariate gamma distribution is same
with bivariate exponential distribution with α = 1 . The equivalent bivariate exponential probability density
function corresponding to bivariate gamma distribution of Kibble is

f(p, q) =

e
−( p+q

1−θ )
∞∑
k=0

(θ pq)k

k!Γ(k+1)(1−θ)2k+1 ; if 0 < p, q <∞

0; otherwise
(3.20)

where θ ∈ (0, 1) is a parameter. The bivariate exponential distribution corresponding to the Cherian bivariate
distribution is

f(p, q) =

{[
emin{p,q} − 1

]
e−(p+q); if 0 < p, q <∞

0; elsewhere
(3.21)

Gumble, cited in [15], constructed a bivariate exponential density function of the form

f(p, q) =

{
[(1 + θ p)(1 + θ q)− θ] e−(p+q+θ pq); if 0 < p, q <∞
0; otherwise

(3.22)

and θ > 0 is a parameter. Marshall and Olkin, as cited in [[15]], introduced alternative bivariate exponential
distribution as

f(p, q) =

{
1− e(α+γ)p − e−(β+γ)q + e−(αp+β q+γmax{p,q}); if p, q > 0

0; otherwise
(3.23)

where α, β, γ > 0 are unknown but fixed parameters. (3.23) satisfies the memoryless property.

4 Conclusion
The study developed a new probability function, namely, modified bivariate gamma probability distribution
function. The main properties (the marginal densities, moments, product moment, covariance and correlation
between the two variables X and Y ) of the developed probability function were derived. The re-parameterized
distribution has the advantage of robustness, simple implementation and opportunity of varying values of θ for
mixed outcome data.
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