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Abstract

In this paper, we resarch the solution of the standard telegraph equation by the Laplace-Adomian method.
The Laplace-Adomian method is based on the combination of Laplace transform and the Adomian
decompositionnal method.
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1 Introduction

In this article, we study the general solution of the standard telegraph equations by the method of Laplace-
Adomian. The standard telegraph equation is an important equation arises in the propagation of electrical
signals along a telegraph line, taking into consideration the inductance, capacitance and conductance of the
cable [1, 2, 3, 4]. However the method of Laplace-Adomian is a numerical method based on the combination of
the Laplace Transform and Adomian decompositionnal method [5, 6, 2].

2 The numerical Laplace-Adomian method

The standard telegraph equation is a partial differential equation given by [2] :

∂2u

∂x2
= α

∂2u

∂t2
+ β

∂u

∂t
+ γu

where u = u(t, x) is the resistance, and α,β and γ are constants related to the inductance, capacitance and
conductance of the cable respectively.

Let us consider the following functional equation:

∂2u

∂x2
= α

∂2u

∂t2
+ β

∂u

∂t
+ γu

u (t, 0) = f (t)
∂u

∂x
(t, 0) = g (t)

u (0, x) = h (x)
∂u

∂t
(0, x) = v (x)

(1)

Taking Lu =
∂2u

∂x2
and Ru = α

∂2u

∂t2
+ β

∂u

∂t
+ γu

We have :
Lu = Ru (2)

Where L is an invertible operator in the Adomian sense and R the linear remainder.

Applying the laplace transform to the equation (1), we obtain :

Lx (Lu) = Lx (Ru)⇔ p2Lx (u)− pu (t, 0)− ∂u

∂x
(t, 0) = Lx (Ru) (3)

p2Lx (u) = pf (t) + g (t) + Lx (Ru) (4)

Using the decomposition series for the linear term u(t, x) gives

p2
∑
n≥0

Lx (un) = pf (t) + g (t) +
∑
n≥0

Lx (Run) (5)

This yields the following Adomian algorithm:

{
p2Lx (u0) = pf (t) + g (t)
p2Lx (un+1) = Lx (Run) ;n ≥ 0

(6)

Applying the laplace transform to the equation (2), we obtain :
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u0 (t, x) = L−1

x

[
1

p2
(pf (t) + g (t))

]
...

un+1 (t, x) = L−1
x

[
1

p2
Lx (Run)

]
;n ≥ 0

(7)

3 Algorithm of Laplace - ADM Convergence’s

Considering the equation (1)



∂2u

∂x2
= α

∂2u

∂t2
+ β

∂u

∂t
+ γu

u (t, 0) = f (t)
∂u

∂x
(t, 0) = g (t)

u (0, x) = h (x)
∂u

∂t
(0, x) = v (x)

With (t, x) ∈ Ω where Ω = [0; +∞[× [a, b]

The application of the Laplace-ADM method gives


u0 (t, x) = L−1

x

[
1

p2
(pf (t) + g (t))

]
un+1 (t, x) = L−1

x

[
1

p2
Lx (Run)

]
;n ≥ 0

Let us suppose :

· (H1)

f is continuous then there is a real M so that

|f (t)| ≤M for all t ∈ [0, T ]

· (H2)

g is continuous then there is a real M so that

|g (t)| ≤M ′ for all t ∈ [0, T ]

However

R the linear remainder is continuous then there is a real λ > 0 so that

||Ru|| ≤ λ ||u||

Indeed, we have :
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|u0| =

∣∣∣∣L−1
x

[
f (t)

p

]
+ L−1

x

[
g (t)

p2

]∣∣∣∣
... ... ...

|un| =

∣∣∣∣L−1
x

[
Lt (Run−1)

p

]∣∣∣∣ ; n ≥ 1

There is a real x0 ∈ R+
∗ so that <e (p) > x0, we deduce the following system :


|u0| ≤

∣∣∣∣L−1
x

[
f (t)

p

]∣∣∣∣+

∣∣∣∣L−1
x

[
g (t)

p2

]∣∣∣∣
... ... ...

|un| ≤ L−1
x

[
|Run−1|
|p2|

]
; n ≥ 1

⇒


|u0| ≤ M +M ′b
... ... ...

|un| ≤ L−1
x

[
Lx (|Run−1|)

x20

]
; n ≥ 1

⇒


|u0| ≤ M +M ′b
... ... ...

|un| ≤ 1

x20
L−1

x

[
Lx

(∣∣Ru1
n−1

∣∣)] ; n ≥ 1

⇒


|u0| ≤ M +M ′b
... ... ...

|un| ≤ λ

x20

∣∣∣∣u1
n−1

∣∣∣∣ ; n ≥ 1

Step by step, we deduce :

⇒


|u0| ≤ M +M ′b
... ... ...

|un| ≤
(
λ

x20

)n

(M +M ′b) ; n ≥ 1

With
λ

x20
< 1 and x0 6=

√
λ, we obtain

⇒


|u0| ≤ M +M ′b
... ... ...∑
n≥0

|un| ≤ (M +M ′b)x20
x20 − λ

Then the series
∑
n≥0

un is convergent, therefore this algorithm is convergent.
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4 Applications

4.1 Example : wave equation of microstrip antenna

In this example, we study the standard linear telegraph equation presented in wave equation of microstrip
antenna equation is given as [7]


∂2u

∂x2
+
∂2u

∂t2
+ 2

∂u

∂t
− u = 0

∂u

∂x
(t, 0) = e−2t

u (t, 0) = e−2t

Taking Lu =
∂2u

∂x2
, Ru = −∂

2u

∂t2
− 2

∂u

∂t
+ u.

Where L is an invertible operator in the Adomian sense and R the linear remainder.

Applying the laplace transform to the equation (2), we obtain :

Lx (Lu) = Lx (Ru) (8)

⇐⇒
p2Lx (u)− pu (t, 0)− ∂u

∂x
(t, 0) = Lx

(
−∂

2u

∂t2
− 2

∂u

∂t
+ u

)
(9)

(
p2 − 1

)
Lx (u) = pe−2t + e−2t + Lx

(
−∂

2u

∂t2
− 2

∂u

∂t

)
(10)

Using the decomposition series for the linear term u(t, x) gives

(
p2 − 1

)∑
n≥0

Lx (un) = pe−2t + e−2t +
∑
n≥0

Lx

(
−∂

2un

∂t2
− 2

∂un

∂t

)
(11)

We deduce the following Laplace-Adomian algorithm

{ (
p2 − 1

)
Lx (u0) = pe−2t + e−2t(

p2 − 1
)
Lx (un+1) = Lx (Run) ;n ≥ 0

(12)

We obtain


u0 (t, x) = L−1

x

[
1

(p2 − 1)

(
pe−2t + e−2t

)]
un+1 (t, x) = L−1

x

[
1

(p2 − 1)
Lx (Run)

]
;n ≥ 0

Determinate un(t, x), for n ≥ 0

u0(t, x) = L−1
x

[
1

(p2 − 1)
(p+ 1) e−2t

]
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⇒ u0(t, x) = L−1
x

[
1

(p− 1)
e−2t

]
⇒ u0(t, x) = ex−2t

u1(t, x) = L−1
t

[
1

(p2 − 1)
Lt (R(u0))

]

⇒ u1(t, x) = L−1
t

[
1

(p2 − 1)

(
−4ex−2t + 4ex−2t

)]

⇒ u1(t, x) = 0

u2(t, x) = L−1
t

[
1

(p2 − 1)
Lt (R(u1))

]
⇒ u2(t, x) = 0

In recursive way, we deduce

un (t, x) = 0 for all n ≥ 1

Then

u(t, x) =
∑
n≥0

un(t, x) = ex−2t

The exact solution of model is

u(t, x) = ex−2t

4.2 Example : wave equation of microstrip antenna

In this example, we study the standard linear telegraph equation is given as [7, 8, 9, 10, 4]


∂2u

∂x2
=

∂2u

∂t2
+ 4

∂u

∂t
+ 4u

∂u

∂t
(0, x) = −2

u (0, x) = 1 + e2x

Taking Lu =
∂2u

∂t2
, Ru =

∂2u

∂x2
− 4

∂u

∂t
− 4u.

Where L is an invertible operator in the Adomian sense and R the linear remainder.

Applying the laplace transform to the equation (2), we obtain :

Lt (Lu) = Lt (Ru)⇔ p2Lt (u)− pu (0, x)− ∂u

∂x
(0, x) = Lt

(
∂2u

∂x2
− 4

∂u

∂t
− 4u

)
(13)
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p2Lx (u) = p
(
1 + e2x

)
− 2 + Lx

(
∂2u

∂x2
− 4

∂u

∂t
− 4u

)
(14)

Using the decomposition series for the linear term u(t, x) gives

p2
∑
n≥0

Lx (un) = p− 2 + pe2x +
∑
n≥0

Lx

(
∂2un

∂x2
− 4

∂un

∂t
− 4u

)
(15)

p2
∑
n≥0

Lx (un) = p− 2 + pe2x +
∑
n≥0

Lx

(
∂2un

∂x2
− 4

∂un

∂t
− 4u

)
(16)

We deduce the following Laplace-Adomian algorithm

{
p2Lx (u0) = p− 2 + pe2x

p2Lx (un+1) = Lx (Run) ;n ≥ 0
(17)

We obtain


u0 (t, x) = L−1

x

[
1

p2
(
p− 2 + pe2x

)]
un+1 (t, x) = L−1

x

[
1

p2
Lx (Run)

]
;n ≥ 0

Determinate un(t, x), for n ≥ 0

u0(t, x) = L−1
t

[
1

p2
(
p− 2 + pe2x

)]

⇒ u0(t, x) = L−1
t

[
1

p

(
1 + e2x

)
− 2

p2

]
⇒ u0(t, x) = e2x − 2t+ 1

u1(t, x) = L−1
t

[
1

p2
Lt (R(u0))

]

⇒ u1(t, x) = L−1
t

[
1

p2
[Lt (−8t+ 4)]

]

⇒ u1(t, x) = L−1
t

(
− 8

p4
+

4

p3

)
= −8t3

3!
+

4t

2!

⇒ u1(t, x) = − (2t)3

3!
+

(2t)2

2!
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u2(t, x) = L−1
t

[
1

p2
Lt (R(u1))

]

⇒ u2(t, x) = L−1
t

[
1

p2

[
Lt

(
−16t− 24t2 − 32

t3

3!

)]]

⇒ u2(t, x) = L−1
t

(
−16

1

p4
− 48

1

p5
− 32

1

p6

)

⇒ u2(t, x) = −2
(2t)3

3!
− 3

(2t)4

4!
− (2t)5

5!

u3(t, x) = L−1
t

[
1

p2
Lt (R(u2))

]

⇒ u3(t, x) = L−1
t

[
1

p2

[
Lt

(
26 t

2

2!
+ 28 t

3

3!
+ 10× 25 t

4

4!
+ 27 t

5

5!

)]]

⇒ u3(t, x) = L−1
t

(
26 1

p5
+ 28 1

p6
+ 5× 26 1

p7
+ 27 1

p8

)

⇒ u3(t, x) = 4
(2t)4

4!
+ 8

(2t)5

5!
+ 5

(2t)6

6!
+

(2t)7

7!

u4(t, x) = L−1
t

[
1

p2
Lt (R(u3))

]

⇒ u4(t, x) = L−1
t

[
1

p2
[
Lt

(
− 32

315
t7 − 112

45
t6 − 96

5
t5 − 160

3
t4 − 128

3
t3
)]]

⇒ u4(t, x) = L−1
t

[
1

p2

[
Lt

(
−28 t

3

3!
− 5× 28 t

4

4!
− 9× 28 t

5

5!
− 7× 28 t

6

6!
− 29 t

7

7!

)]]

⇒ u4(t, x) = L−1
t

(
−28 1

p6
− 5× 28 1

p7
− 9× 28 1

p8
− 7× 28 1

p9
− 29 1

p10

)

⇒ u4(t, x) = −8
(2t)5

5!
− 20

(2t)6

6!
− 18

(2t)7

7!
− 7

(2t)8

8!
− (2t)9

9!

Step by step, we deduce

∑
n≥0

un (t, x) = e2x +
∑
n≥0

(−2t)k

n!

Then
u(t, x) =

∑
n≥0

un(t, x) = e2x + e−2t

The exact solution of model is

u(t, x) = e2x + e−2t
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5 Conclusion

Laplace’s Adomian numerical method allowed us to solve some linear partial differential equations by modelling
the standard telegraph equation. It is therefore a very powerful numerical analysis tool to solve this type of
problem, this method accelerates convergence to the solution . Our study was limited to the linear models of
telegraph non-homogeneous reaction, a study of these models in non-homogeneous cases would be an important
contribution to the understanding of these models.
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