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Abstract: Mn-based magnets are known to be a candidate for use as rare-earth-free magnets. In this
study, Mn-Ga bulk magnets were successfully produced by hot pressing using the spark plasma
sintering method on Mn-Ga powder prepared from rapidly solidified Mn-Ga melt-spun ribbons.
When consolidated at 773 K and 873 K, the Mn-Ga bulk magnets had fine grains and exhibited high
coercivity values. The origin of the high coercivity of the Mn-Ga bulk magnets was the existence of
the D022 phase. The Mn-Ga bulk magnet consolidated at 873 K exhibited the highest coercivity of
6.40 kOe.

Keywords: Mn-Ga alloys; melt spinning; spark plasma sintering; coercivity

1. Introduction

Nowadays, high-performance rare-earth magnets (Nd-Fe-B magnets) are applied
to various advanced devices, including hard disk drives, electric vehicles, and medical
equipment [1–3]. Because regulations on internal combustion engines have been enacted
or proposed in many countries, the production of electric vehicles with high-performance
rare-earth magnet motors has significantly increased [4]. Under such circumstances, the
continuously growing demand for rare-earth elements, which constitute an integral part
of high-performance rare-earth magnets, has raised severe concerns due to their prices
and availability, together with the hazardous nature of the mining and smelting of such
elements [5–10]. These concerns have led to the study of new magnetic materials composed
of rare-earth-free elements.

The performance of rare-earth-free magnets is expected to be worse than that of
rare-earth magnets, but the less-hazardous nature of rare-earth-free magnets could make
them good substitutes for rare-earth magnets in some applications not demanding a
good performance [11]. The prospective candidates for rare-earth-free magnets with high
earth abundance are iron-based and manganese-based magnets. There have been many
efforts to develop new iron-based magnets, and the L10-FeNi intermetallic compound and
α′′-Fe16N2 nitrides have been identified as candidates for such magnets [12,13]. The current
problem with the new iron-based magnets is the difficulty of their synthesis [14,15]. Until a
new technique for their easy production is developed, these iron-based magnets are not
considered highly promising.

On the other hand, manganese-based magnets have already been produced as com-
mercial magnets [16]. More recently, manganese-based magnets, such as Mn-Ga magnets
with a D022 phase and Mn-Bi magnets with a low-temperature phase (LTP), have been the
focus of attention as prospective replacements for rare-earth magnets [17–26]. It has been
reported that the Mn-Ga alloys produced by melt spinning consist of a D022 phase and
exhibited high coercivity [27–33]. The advantage of Mn-Ga alloys is their high magneto-
crystalline energy. Among the permanent magnets without rare-earth elements, Mn-Ga
alloys possess the highest magneto-crystalline energy value, 2.6 MJ/m3. Thus, Mn-Ga
alloys are expected to show high coercivity.
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In this study, we seek the possibility of producing Mn-Ga bulk magnets. Nd-Fe-
B melt-spun ribbons are known to be consolidated into bulk Nd-Fe-B magnets by hot
pressing [34–36]. Mn-Ga magnets can be expected to be obtained from melt-spun ribbons
similarly. The structures and magnetic properties of the Mn-Ga magnets produced by
hot pressing using the spark plasma sintering (SPS) method from melt-spun ribbons are
described here.

2. Materials and Methods

Rapidly quenched melt-spun ribbons of Mn65Ga35 alloy were prepared in a quartz cru-
cible using single-roller melt spinning apparatus (NEV-A01, Nissin Giken, Saitama, Japan).
Rapid quenching was carried out with argon gas using a copper wheel (vs = 50 ms−1).
Mn-Ga magnets were prepared from the rapidly quenched melt-spun ribbons. First, the
rapidly quenched samples were mechanically comminuted into powders in an argon-filled
glove box. The powders were then filled into carbon dies and consolidated in a vacuum at
temperatures between 673 K and 973 K for 300 s using spark plasma sintering apparatus
(Plasman, S. S. Alloy). A pressure of 100 MPa was applied during sintering.

The specimens were cooled to room temperature without applied pressure in the SPS
chamber, and then pulled out from the carbon dies. After the surfaces of the specimens
were cleaned using sandpaper, the properties of the specimens were examined. The
density of the specimens was measured with Archimedes’ method using an electronic
balance (GR-120, AND). The phases of the specimens were determined by X-ray diffraction
(XRD) with Cu Kα radiation using an X-ray diffractometer (MiniFlex600, Rigaku, Tokyo,
Japan). The microstructures of the specimens were examined using a transmission electron
microscope (TEM) (JEM-2100, JEOL, Tokyo, Japan) after ion beam thinning using an Ion
Slicer (EM-09100IS, JEOL). The hysteresis loops of the specimens were examined using a
vibrating sample magnetometer (VSM) (BHV-525RSCM, Riken Denshi, Tokyo, Japan).

3. Results and Discussion

Mn-Ga bulk magnets were successfully obtained from rapidly quenched Mn-Ga melt-
spun ribbons by the SPS method. Figure 1 shows the dependence of the density and relative
density of the Mn-Ga magnets on the consolidation temperature. The specimens had a
density of about 6.4 g/cm3 when consolidated at 673 and 723 K. In contrast, the specimens
had a high density of 7.1–7.2 g/cm3 when consolidated at 773 K or higher. These values
represent approximately 97% of the ingot density. Since the typical density of Nd-Fe-B
magnets produced by spark plasma sintering is 90–96% [29,30], the specimens consolidated
at 773 K or higher had a sufficiently high density as magnets.
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Thus, the magnetic properties of the Mn-Ga magnets produced by consolidation at
773 K or higher were investigated. The consolidation temperature is a critical factor for
not only the density of the magnets, but also the magnetic phase in the resultant Mn-Ga
magnets. The dependence of the coercivity of the Mn-Ga magnets on the consolidation
temperature is shown in Figure 2. The specimens showed high coercivity when consoli-
dated at temperatures between 773 K and 873 K. In contrast, the specimens did not show
high coercivity when consolidated at 923 K and higher. The Mn-Ga magnets consolidated
at 873 K exhibited the maximum coercivity of 6.40 kOe in this experiment.
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Among the Mn-Ga alloys, intermetallic compounds, such as the hexagonal D019 phase,
tetragonal L10 phase, and tetragonal D022 phase, have been investigated as magnetic
materials [37]. Recently, it was found that the cubic P4132 phase and cubic P4232 phase
exhibited high coercivity [38,39]. Figure 3 shows the XRD patterns of the Mn-Ga powder
and the Mn-Ga magnets consolidated at 773 K, 873 K, and 973 K. The Mn8Ga5 and D019
phases’ diffraction peaks were found in the Mn-Ga powder’s XRD pattern, suggesting that
the Mn-Ga powder consisted of the Mn8Ga5 and D019 phases. However, the D022 and D019
phases’ diffraction peaks were seen in the Mn-Ga magnets’ XRD patterns regardless of the
consolidation temperature. This suggests that the Mn-Ga magnets consisted of the D022
and D019 phases. Although the Mn-Ga powder with the Mn8Ga5 and D019 phases did not
show high coercivity, the Mn-Ga magnets with the D022 and D019 phases exhibited high
coercivity. Thus, the origin of high coercivity in the Mn-Ga magnets is considered to be the
D022 phase. The D022 phase in the Mn-Ga magnets was formed due to heat exposure, while
consolidating the Mn-Ga powder. Although the Mn-Ga magnets were mainly composed of
the D022 phase, they still contained some of the D019 phase. Since the prolonged annealing
of Mn-Ga melt-spun ribbons—for seven days, for example—could increase the amount of
the D022 phase [27], further optimization of the consolidation process can be expected to
increase the amount of D022 phase in the Mn-Ga magnets.

Figure 4 shows TEM images of the Mn-Ga magnets consolidated at 773 K, 873 K, and
973 K. The specimens consolidated at 773 K had fine grains of around 0.5–1 µm in diameter,
and the specimen consolidated at 873 K still consisted of fine grains of around 1–2 µm in
diameter. On the other hand, the specimen consolidated at 973 K consisted of relatively
large grains of around 5 µm in diameter. This indicates that grain growth was limited
in the Mn-Ga magnet consolidated at 873 K, but significant grain growth occurred in the
Mn-Ga magnet consolidated at 973 K. The Mn-Ga magnet consolidated between 773 K and
873 K consisted of fine grains of the D022 phase, and thus, exhibited high coercivities. This
confirms that the optimal consolidation temperature to produce high-coercivity Mn-Ga
magnets is between 773 K and 873 K.



Materials 2024, 17, 882 4 of 7Materials 2024, 17, x FOR PEER REVIEW 4 of 7 
 

 

 

Figure 3. XRD patterns of (a) the Mn-Ga powder prepared from the Mn-Ga melt-spun ribbons and 

the Mn-Ga magnets consolidated at (b) 773 K, (c) 873 K, and (d) 973 K. 

Figure 4 shows TEM images of the Mn-Ga magnets consolidated at 773 K, 873 K, and 

973 K. The specimens consolidated at 773 K had fine grains of around 0.5–1 μm in diame-

ter, and the specimen consolidated at 873 K still consisted of fine grains of around 1–2 μm 

in diameter. On the other hand, the specimen consolidated at 973 K consisted of relatively 

large grains of around 5 μm in diameter. This indicates that grain growth was limited in 

the Mn-Ga magnet consolidated at 873 K, but significant grain growth occurred in the Mn-

Ga magnet consolidated at 973 K. The Mn-Ga magnet consolidated between 773 K and 

873 K consisted of fine grains of the D022 phase, and thus, exhibited high coercivities. This 

confirms that the optimal consolidation temperature to produce high-coercivity Mn-Ga 

magnets is between 773 K and 873 K.  

 

Figure 4. TEM images of the Mn-Ga magnets consolidated at (a) 773 K, (b) 873 K, and (c) 973 K. 

Figure 5 shows the hysteresis loops of the Mn-Ga magnets consolidated at 773 K, 873 

K, and 973 K, together with those of the Mn-Ga powder prepared from the rapidly 

quenched Mn-Ga melt-spun ribbons. The Mn-Ga powder did not show clear hysteresis, 

but the Mn-Ga magnets produced from the Mn-Ga powder exhibited hysteresis loops. 

The Mn-Ga magnet consolidated at 773 K showed a large hysteresis loop, with a coercivity 

of 6.20 kOe and a remanence of 17.9 emu/g, and the Mn-Ga magnet consolidated at 873 K 

also exhibited a large hysteresis loop, with a coercivity of 6.40 kOe and a remanence of 

14.6 emu/g. The coercivity of 6.40 kOe achieved by the Mn-Ga magnet consolidated at 873 

K was slightly smaller than that of the annealed Mn-Ga melt-spun ribbons (8 kOe) [27]. 

The Mn-Ga magnet consolidated at 973 K showed a relatively small hysteresis loop, with 

a coercivity of 1.05 kOe and a remanence of 2.55 emu/g. This suggests that the optimal 

Figure 3. XRD patterns of (a) the Mn-Ga powder prepared from the Mn-Ga melt-spun ribbons and
the Mn-Ga magnets consolidated at (b) 773 K, (c) 873 K, and (d) 973 K.

Materials 2024, 17, x FOR PEER REVIEW 4 of 7 
 

 

 

Figure 3. XRD patterns of (a) the Mn-Ga powder prepared from the Mn-Ga melt-spun ribbons and 

the Mn-Ga magnets consolidated at (b) 773 K, (c) 873 K, and (d) 973 K. 

Figure 4 shows TEM images of the Mn-Ga magnets consolidated at 773 K, 873 K, and 

973 K. The specimens consolidated at 773 K had fine grains of around 0.5–1 μm in diame-

ter, and the specimen consolidated at 873 K still consisted of fine grains of around 1–2 μm 

in diameter. On the other hand, the specimen consolidated at 973 K consisted of relatively 

large grains of around 5 μm in diameter. This indicates that grain growth was limited in 

the Mn-Ga magnet consolidated at 873 K, but significant grain growth occurred in the Mn-

Ga magnet consolidated at 973 K. The Mn-Ga magnet consolidated between 773 K and 

873 K consisted of fine grains of the D022 phase, and thus, exhibited high coercivities. This 

confirms that the optimal consolidation temperature to produce high-coercivity Mn-Ga 

magnets is between 773 K and 873 K.  

 

Figure 4. TEM images of the Mn-Ga magnets consolidated at (a) 773 K, (b) 873 K, and (c) 973 K. 

Figure 5 shows the hysteresis loops of the Mn-Ga magnets consolidated at 773 K, 873 

K, and 973 K, together with those of the Mn-Ga powder prepared from the rapidly 

quenched Mn-Ga melt-spun ribbons. The Mn-Ga powder did not show clear hysteresis, 

but the Mn-Ga magnets produced from the Mn-Ga powder exhibited hysteresis loops. 

The Mn-Ga magnet consolidated at 773 K showed a large hysteresis loop, with a coercivity 

of 6.20 kOe and a remanence of 17.9 emu/g, and the Mn-Ga magnet consolidated at 873 K 

also exhibited a large hysteresis loop, with a coercivity of 6.40 kOe and a remanence of 

14.6 emu/g. The coercivity of 6.40 kOe achieved by the Mn-Ga magnet consolidated at 873 

K was slightly smaller than that of the annealed Mn-Ga melt-spun ribbons (8 kOe) [27]. 

The Mn-Ga magnet consolidated at 973 K showed a relatively small hysteresis loop, with 

a coercivity of 1.05 kOe and a remanence of 2.55 emu/g. This suggests that the optimal 
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Figure 5 shows the hysteresis loops of the Mn-Ga magnets consolidated at 773 K,
873 K, and 973 K, together with those of the Mn-Ga powder prepared from the rapidly
quenched Mn-Ga melt-spun ribbons. The Mn-Ga powder did not show clear hysteresis,
but the Mn-Ga magnets produced from the Mn-Ga powder exhibited hysteresis loops. The
Mn-Ga magnet consolidated at 773 K showed a large hysteresis loop, with a coercivity of
6.20 kOe and a remanence of 17.9 emu/g, and the Mn-Ga magnet consolidated at 873 K
also exhibited a large hysteresis loop, with a coercivity of 6.40 kOe and a remanence of
14.6 emu/g. The coercivity of 6.40 kOe achieved by the Mn-Ga magnet consolidated at
873 K was slightly smaller than that of the annealed Mn-Ga melt-spun ribbons (8 kOe) [27].
The Mn-Ga magnet consolidated at 973 K showed a relatively small hysteresis loop, with
a coercivity of 1.05 kOe and a remanence of 2.55 emu/g. This suggests that the optimal
consolidation temperatures to produce high-coercivity Mn-Ga magnets were between 773 K
and 873 K.

There are several reports on the magnetic properties of Mn-Ga magnets. In the hot-
compacted Mn-Ga magnets, a coercivity of 2.7 kOe was reported by T. Mix et al. [40]. In the
cold-rolled Mn-Ga alloys, a high coercivity of 12.4 kOe was reported by S. Ener et al. [41]
The high coercivity of the cold-rolled Mn-Ga alloy was achieved after magnetic annealing.
The highest coercivity of 18.1 kOe was reported by J. Z. Wei et al. [42]. The Mn-Ga magnets
with the highest coercivity have been produced by the long-term annealing of the Mn-Ga
green compact, consolidated under a high pressure of 1.14 GPa. Therefore, magnetic or
prolonged annealing can further improve the coercivity of the Mn-Ga magnets produced
by the spark plasma sintering method.
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Figure 5. Hysteresis loops of (a) the Mn-Ga powder prepared from the Mn-Ga melt-spun ribbons and
the Mn-Ga magnets consolidated at temperatures of (b) 773 K, (c) 873 K, and (d) 973 K.

4. Conclusions

Mn-Ga powder was prepared from rapidly quenched Mn-Ga melt-spun ribbons
and consolidated into bulk magnets by the SPS method. It was found that the Mn-Ga
bulk magnets had high densities of 7.1–7.2 g/cm3 when consolidated at 773 K or higher.
Although the Mn-Ga powder did not show clear hysteresis, the Mn-Ga magnets exhibited
hysteresis loops. It was found that the Mn-Ga magnets comprised the D022 and D019 phases.
The Mn-Ga bulk magnets consolidated at 773 K and 873 K had fine grains and exhibited
high coercivity values, whereas those consolidated at 973 K had coarse grains and did not
show high coercivity. The Mn-Ga bulk magnet consolidated at 873 K exhibited a maximum
coercivity value of 6.40 kOe. However, the remanence of the Mn-Ga bulk magnets is not
yet comparable to that of the typical permanent magnets. Further studies are therefore
necessary to increase the remanence value.
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