

Journal of Agriculture and Ecology Research International

Volume 25, Issue 1, Page 19-31, 2024; Article no.JAERI.111340 ISSN: 2394-1073

Inventory of Herbaceous Species and Bioaccumulation of Heavy Metals in Their Various Parts: Case in the Urban Ecosystem of Ngaoundere, Cameroon

Ngoudzeu Lontsi Hareinda ^a, Hassana Boukar ^{b*}, Nsoe Mengue Jean Jacques Nestor ^b, Talba Dalatou ^b, Mohammadou Bouba Adji ^b and Ibrahima Adamou ^a

^a Department of Biological Sciences, Faculty of Sciences, Ngaoundere (F.S.), P.O. Box 454, Ngaoundere, Cameroon. ^b Department of Chemical Engineering, University Institute of Technology (U.I.T.), P.O. Box 455, Ngaoundere, Cameroon.

Authors' contributions

This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/JAERI/2024/v25i1569

Open Peer Review History:

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc are available here: https://www.sdiarticle5.com/review-history/111340

Original Research Article

Received: 27/10/2023 Accepted: 04/01/2024 Published: 06/01/2024

ABSTRACT

This study was carried out to inventory herbaceous species and to assess the bioaccumulation of heavy metals in these species. The ecosystem chosen was an area of the city of Ngaoundere (Cameroon) divided into three sites, namely a control site and two sites subject to heavy metal pollution. In order to compare the potential for bioaccumulation, two species were assessed. It shows that out of 19 herbaceous species present in the study area, five are very abundant in all three sites regardless of the degree of pollution. Concerning the bioaccumulation, the two

J. Agric. Ecol. Res. Int., vol. 25, no. 1, pp. 19-31, 2024

^{*}Corresponding author: E-mail: hassanaboukar65@gmail.com,

herbaceous plants chosen do not absorb the same amounts of heavy metals. Indeed, the concentrations show that the concentration of cadmium, copper, iron, nickel and lead at all three sites is higher in *Commellina benghalensis* than in *Ageratum conyzoides*. The concentration of zinc at the control site and the hospital site is higher in *C. benghalensis* while at the prison site this concentration is higher in Ageratum *A. conyzoides*. The concentration of cadmium is higher in the leaves than in the other parts in both species. Copper is stored at the roots in both species. *A. conyzoides*, mainly accumulates iron in the roots and *C. benghalensis*, accumulates a significant concentration of Iron throughout the plant. *A. conyzoides* and *C. benghalensis* store nickel more in the roots than in the other parts. Regarding lead, the species studied store it more in the roots followed by the leaves and finally the stems. As for Zinc, *A. conyzoides* and *C. benghalensis* store it more in the roots than in the other parts. The bioaccumulation of these heavy metals in edible herbaceous plants could be a threat if these pollutants enter the human food chain.

Keywords: Inventory; herbaceous plants; heavy metals; bioaccumulation; Ngaoundere; Cameroon.

1. INTRODUCTION

One of the ecosystems that is under strong pressure in terms of pollution is the urban ecosystem [1]. Urban ecosystems in developing countries suffer more and the causes are not lacking. These include the lack of planning or anarchic development of cities; promiscuity; poverty, presence or proximity to industrial areas, intense road traffic with its corollary air pollution; discharge of wastewater with its corollary soil pollution etc. Ngaoundere, a medium-sized town located in the Adamawa region of Cameron is no exception to this observation. Recent studies have revealed the pollution of water [2] and soil [3] in this city. One consequence is the transfer of these pollutants into plants via soil, water or air. Thus, pollution can influence the presence or absence of certain plant species. Pollution can also influence the distribution of these pollutants in the differences of these plants once absorbed [4,5]. Heavy metals contamination of soils, following local atmospheric fallout (industrial and urban) and various inputs (sludae from wastewater treatment plants, composts. fertilizers. etc.) can explain the hiah concentrations of heavy metals such as cadmium (Cd), copper (Cu), zinc (Zn) and lead (Pb) in certain plant species [4]. Their transfer to plants may pose a risk to human health through contamination of the human food chain [6].

Plants are exposed to heavy metals in two ways: through the air parts and through the roots. Heavy metals can be deposited on the surface of leaves and roots or penetrate into the plant. Heavy metals can enter through aerial parts (leaves, stems and fruits), from airborne particles, gaseous compounds or compounds dissolved in rainwater or irrigation water. They can penetrate through the roots from the ground. Once removed by the plant, heavy metals may be trapped and not circulating in the plant, or transported from the place of absorption to another plant organ [4].

The main objective of this study is on the one hand to inventory herbaceous species and on the other hand to evaluate the bioaccumulation of heavy metals in herbaceous plants of an urban ecosystem that constitutes the area around the flow channel of a river called *Soumsoum* in the city of Ngaoundere in Cameroon.

2. MATERIALS AND METHODS

2.1 Study Area

Fig. 1. shows the geographical location of the study area and the three main sites where the plant samples were collected. There are three sites S1; S2 and S3. S1 is the control area with the points P13 to P17, S2 is the prison's site with the locations P1 to P6 and S3 is the hospital's site with the points P7 to 12. Plants from the site of central prison and the Ngaoundere regional hospital were compared with the plants of control site. The control site is located upstream of the two above-mentioned sites and does not suffer from any pollution. Three replicates were performed and averages were obtained.

2.2 Experimental Set-up and Herbaceous Inventory

Floristic surveys of herbaceous species along the river were carried out at 03 sites on both sides of the river (Control, Prison and Hospital). The herbaceous inventory was carried out using the minimum area method. It is the smallest area that contains all the herbaceous species. By a plotted representation, it is the area at which the curve becomes horizontal [7–9]. This made it

possible to quantify the floristic composition of the plant cover on the basis of the centesimal frequency or relative abundance of the herbaceous species recorded.

2.3 Collection of Plant Samples

Sampling was carried out in such a way as to preserve information, using sharp

ceramic tools (scissors) for the stems and ordinary steel-based materials for the roots. Leaves were removed by hand or with scissors. After harvesting, the samples were placed in a polyethylene bag. Between collection and transfer to the laboratory, the samples were placed in a cool, dark container, a cool box.

Fig. 1. Localisation of the study area

Quantity relative to the number of individuals of a given species per unit area or volume relative to the total number of individuals of all species combined.

The plant samples were dissolved and then assayed for heavy metals using a flame atomic spectrophotometer. All analyses were carried out three times by flame atomic spectrophotometer (Aurora Instruments Ltd-AI 1200).

2.4 Statistical Analysis

The data were analyzed using STATGRAPHICS plus 5.0. Significance tests were performed using ANOVA and Duncan's test at the 5% level.

3. RESULTS AND DISCUSSION

3.1 Abundance of Herbaceous Species

A total of 19 herbaceous species divided into 19 genera and 12 families were recorded in the three study areas. Table 1 shows that five (05) herbaceous species. namely Ageratum Amaranthus spinosus. Bidens conozoides. pilosa, Commellina benghalensis and Galinsoga parviflora are the most abundant in the three study zones. The very high abundance at all three sites can be explained by the fact that these are invasive species. [10-12]. These species can grow in both healthy and polluted soils. While the control site has 12 species, the

prison and hospital sites have 16 and 14 species respectively. The low number of species on the control site compared with the other two sites can be explained by the pollution of the water. [2] and soils [3] from the latter two sites.

3.2 Description of the Most Abundant Species

Ageratum conyzoïdes: A. conyzoides belong to the Asteraceae family (Fig. 2) is an annual herb that grows on ferruginous soils or on rubbish tips. It is an annual tropical herbaceous species [13,14]. It is well established in tropical rainforests in India [15]. In Cameroon, it is found in most regions in fallow fields and around dwellings [16]. Its stem is cylindrical, often reddish and hairy, and twiggy from the base. The lower leaves are opposite, hairy and oval-oblong, while the others are almost rhombic [17].

Amaranthus spinosus: A. spinosus (Fig. 3) a plant in the *Amarantaceae* family known as spiny brenna. Amaranths are classified as one of the most troublesome weeds in agricultural production systems [18]; thanks to their aggressive growth, amaranths have the ability to compete with crops for water, nutrients and light, causing severe reductions in crop yield and quality [19].

Table 1. Abundance of herbaceous blants species	Table 1	e 1. Abundance	of h	erbaceous	plants	species
---	---------	----------------	------	-----------	--------	---------

Herbaceous species	Plant families	Sites		
		Control	Prison	Hospital
Aundo donax	Poaceae	+	+	0
Pergularia tomentosa	Apocynaceae	0	+	0
Zea mays	Poaceae	+	+	+
Tithonia diversifolia	Asteraceae	0	++	+
Musa paradisiaca	Musaceae	++	0	+
Euphorbia hirta	Euphorbiaceae	0	+	+
Ricinus communis	Euphorbiaceae	+	+	+
Ageratum conyzoïdes	Asteraceae	+++	+++	+++
Amaranthus spinosus	Amaranthaceae	+++	+++	+++
Bidens pilosa	Asteraceae	+++	+++	+++
Hemerocallis fulva	Xanthorrhoeaceae	0	+	0
Galeopsis tetrahit	Lamiaceae	+	+	0
Sparmannia africana	Malvaceae	0	+	+
Panicum capildare	Poaceae	+	+	+
Vaccinium myrtillus	Ericaceae	0	0	+
Centella asiatica	Apiaceae	0	0	+
Commellina benghalensis	Commélinaceae	+++	+++	+++
Galinsoga parviflora	Asteraceae	+++	+++	+++
Eurybia divaricata	Asteraceae	+	+	0

Absence of the specie: 0; abundance; +; Medium abundance: ++; High abundance:+++

Ngoudzeu et al.; J. Agric. Ecol. Res. Int., vol. 25, no. 1, pp. 19-31, 2024; Article no.JAERI.111340

Fig. 2. Ageratum conyzoïdes

Fig. 3. Amaranthus spinosus

Fig. 4. Bidens Pilosa

Bidens Pilosa: B. pilosa (Fig. 4) is a weed of crops in a wide variety of latitudes and on various continents [20]. It is native to the tropical forests of South America, Africa, the Caribbean and the

Philippines [14]. *B. pilosa* is an annual herb in the Asteraceae family that is widespread throughout the world, particularly in tropical and subtropical regions [21].

Commelina benghalensis: Also known as big waterweed. C. benghalensis (Fig. 5) is a plant in the Commelinaceae family that grows in wet soils during the rainy season [22]. It is a perennial herb in tropical regions [23], but grows as an annual grass in temperate regions such as Georgia in the United States of America, where it is classified as one of the worst weeds affecting crop production in many African and countries [24]. С. benghalensis Asian has been found to be an indicator of pollution [25].

Galinsoga parviflora: *G. parviflora* (Fig. 6) is a medium-sized (20-60 cm) annual herbaceous plant belonging to the Asteraceae family [26, 27]. It has an erect, rigid stem that is strongly branched and covered with stiff, shaggy hairs. Its leaves are green to apple-green, heavily pubescent, triangular, with embedded veins and clearly toothed margins [28].

3.3 Bioaccumulation of Heavy Metals

Table 2 shows the total concentrations of each pollutant studied in both plant species. The highest concentrations are obtained at the hospital site, followed by the prison site and finally the control site. The quantitative distribution of heavy metal contents is as follows regardless of the site and plant species: Fe>Cu>Ni>Zn>Pb>Cd. Compared to the maximum allowable values for plants by FAO/WHO, the concentrations are in decaf, except for cadmium and lead. Authors [29] reported comparable concentrations of cadmium in species such as Populus tremula, Salix aurita and Thlaspi caerulescens.

Bioaccumulation of Cadmium: Fig. 7 shows the results of the determination of cadmium in the leaves, stems and roots of *A. conyzoides* and *C. benghalensis*; sampled at the sites of the control area, Hospital and Prison.

Fig. 5. Commelina benghalensis

Fig. 6. Galinsoga parviflora

Ngoudzeu et al.; J. Agric. Ecol. Res. Int., vol. 25, no. 1, pp. 19-31, 2024; Article no.JAERI.111340

Plant specie	Sites/Norm	Total heavy metal concentration (mg/kg)					
-		Cd	Cu	Fe	Ni	Pb	Zn
A. conyzoïdes	Control	0.28±0.1	10.3±2.4	330±25	7.23±1.3	5.3±0.4	30.3±1.2
-	Prison	2.15±0.3	20.2±3.2	175±14	15.32±2.4	15±1.8	125.7±1.5
	Hospital	2.72±0.2	30.2±5.3	222±30	21.76±3.2	13.1±2.2	157.6±1.7
C. benghalensis	Control	0.31±0.1	14.5±4.2	380±35	8.3±0.8	3.5±0.6	33.5±1.3
-	Prison	2.17±0.3	28.8±2.5	165±15	16.35±3.5	16.2±3.4	190.2±1.7
	Hospital	2.75±0.2	37.1±3.1	242±21	22.9±5.1	13.3±3.1	110.12±1.8
	FAO/ŴHO	0.2	73.3	425.5	67.9	0.3	99.4

Table 2. Total concentrations (mg.kg⁻¹) in plant

Fig. 7. Cadmium content (mg.kg⁻¹ dry matter) in the parts of *A. conyzoides* and *C. benghalensis* in the three sites

In A. conyzoides, they evolve from 0.07±0.01 to $1.62\pm0.01 \text{ mg.kg}^{-1}$ in leaves, from 0.05 ± 0.00 to $0.81\pm0.01 \text{ mg.kg}^{-1}$, in stems and from 0.02 ± 0.01 to 0.24±0.02 mg.kg⁻¹ in roots. In C. benghalensis, the concentration of Cd varies from 0.09±0.02 to 2.23 \pm 0.03 mg.kg⁻¹ in leaves, from 0.07 \pm 0.01 to 1.44 \pm 0.02 mg.kg⁻¹ in stems and finally in roots from 0.04 \pm 0.01 to 0.81 \pm 0.02 mg.kg⁻¹. The highest concentration of Cd is observed in the leaves of C. benghalensis at the hospital site $(2.23\pm0.03 \text{ mg.kg}^{-1}).$ Cadmium has high assimilability and mobility, it enters plants via the roots and is translocated in the leaves [30,31]. A. convzoides and С. benghalensis mainly accumulates cadmium in leaves [32]. Both species studied have a strong accumulation power rather in leaves such as tobacco (Nicotiana tabacum L.). Other factors such as plant species, intense root activity, and soil characteristics suggest that accumulation in

leaves may favour accumulation in leaves [33]; [34]. The plants from the Hospital site accumulate more, followed by those from the Prison and finally from the control area. This is due to the higher amounts of cadmium in the hospital site, followed by the prison site and in the control site [3]. In *A. conyzoides*, and *C. benghalensis*, the analysis of variances shows that there are significant variations (P<0.05) between cadmium concentration in different parts of plants at different sites.

Bioaccumulation of Copper: Fig. 8 shows the results of the determination of copper in leaves, stems and roots of *A. conyzoides* and *C. benghalensis*; sampled at the sites of the control area, Hospital and Prison.

In *A. conyzoides*, they range from 1.17 ± 0.03 to 8.03 ± 0.05 mg.kg⁻¹ in leaves, from 1.12 ± 0.03 to

3.90±0.01 mg.kg⁻¹ in stems and from 8.15±0.01 to 18.83±0.02 mg.kg⁻¹ in roots. In C. benghalensis, the Cu concentration varies from 1.26 ± 0.04 to 9.09 ± 0.09 mg.kg⁻¹ in leaves, from 1.90 ± 0.09 to 5.90 ± 0.03 mg.kg⁻¹ in stems and in roots from 12.05±0.06 to 23.90±0.40 mg.kg⁻¹. The highest concentrations in roots, stems, and leaves are observed in C. benghalensis at the hospital site. A. conyzoides and C. benghalensis mainly accumulate Cu in roots where more than 50% of the total copper is retained in it compared to other parts of the plant. Similar observations have been reported for endemic species such as Phleum pratense; Thymus kotschyanus; Achillea millefollium and Trifolium pratense [35]. Both species can be used as phytoextractors in the remediation of copper-contaminated soils. Cultivated species such as maize exhibit an ability to store copper more in the roots than in other parts [36]. The plants from the Hospital site accumulate more, followed by those from the Prison and finally from the control area. As for cadmium, the analysis of variances shows that there are significant variations (P<0.05) between the copper concentration in the different parts at the different sites. Overall, these plants store more in the roots than in other parts of the plant.

Bioaccumulation of Iron: The concentration of Iron in the different parts of two plants at the sites is shown in Fig. 9. In A. conyzoides, they range 53.53±0.96 to 93.21±9.31 mg.kg⁻¹ in leaves, from 37.21±0.66 to 76.08±0.90 mg.kg⁻¹ in stems and finally in roots and 96.55±0.48 to 183.01±0.48 mg.kg⁻¹. A. conyzoides, mainly accumulate iron in the roots. In C. benghalensis, the concentration of Iron varies from 63.23±0.67 to 128.23±0.86 mg.kg⁻¹ in the leaf, from 52.23±0.07 to 115.55 ± 0.17 mg.kg⁻¹ in the stem and from 86.16 ± 0.74 to 196.15 ± 2.53 mg.kg⁻¹ in the roots. Like A. conyzoides, C. benghalesis accumulates a large amount of iron in the roots. The iron levels in the above-ground parts, i.e. in the leaves and stems, are substantially similar. Similar observations for C. benghalensis have been reported by other authors [37]. This can make these two species potential plants in the phytostabilization of iron in soils polluted with this heavy metal. However, this ability is low compared to species such as Alyssum bertoloni, which can accumulate more than three the iron content in the roots compared to the leaves [38].

The highest concentration in roots, stems, and leaves is observed in *A. conyzoides* at the control site. The plants in the control zone accumulate more iron, followed by the Hospital and the end of the Prison site. As for cadmium, copper, analysis of variances shows that there are significant variations (P<0.05) between the iron concentration in different parts at different sites.

Bioaccumulation of Nickel: Fig. 10. shows the results of the determination of Nickel in the leaves, stems and roots of *A. conyzoïdes* and *C. benghalensis*; sampled at the sites of the control area, Hospital and Prison.

In A. conyzoides, they evolve from 1.31±0.00 to 2.98 ± 0.10 mg.kg⁻¹ in the leaf, from 1.23 ± 0.01 to 1.53 ± 0.12 mg.kg⁻¹ in the stem and from 4.02±0.10 to 18.31±0.00 mg.kg⁻¹ in the root. In C. benghalensis, the concentration of Ni varies from 1.83 ± 0.01 to 4.28 ± 0.19 mg.kg⁻¹ in the leaves, from 1.05±0.17 to 1.87±0.00 mg.kg⁻¹ in stems and finally in roots and 6.06±0.08 to 20.23±0.21 mg.kg⁻¹. The highest concentration of Ni in leaves and stems is observed in C. benghalensis at the hospital site. A. conyzoides and C. benghalensis mainly accumulate nickel in the roots as reported for plants C. benghalensis [37]. Both species accumulate nickel concentrations in the roots more than 80% greater than in the above-ground parts. Both plant species are potential nickel hyperaccumulators in nickelpolluted soils. This observation has also been reported by some authors [39,40]. The plants from the Hospital site accumulate more, followed by those from the Prison and finally from the control area. As for cadmium, copper and iron, the analysis of variances shows that there are significant variations (P<0.05) between the copper concentration in the different parts at the different sites.

Bioaccumulation of Lead: The distribution of lead in the different parts of two plant species is shown in Fig. 11. In *A. conyzoides*, they varie from 1.87 ± 0.16 to 5.28 ± 0.18 mg.kg⁻¹ in the leaves, from 1.22 ± 0.02 to 3.87 ± 0.13 mg.kg⁻¹ in the stems and finally in the roots and 2.08 ± 0.05 to 8.08 ± 0.00 mg.kg⁻¹. In *C. benghalensis*, the concentration of Pb varies from 1.15 ± 0.01 to 4.86 ± 0.15 mg.kg⁻¹ at the leaf level, from 1.06 ± 0.01 to 2.86 ± 0.01 mg.kg⁻¹ at the stem level and from 2.52 ± 0.1 to 9.95 ± 0.04 mg.kg⁻¹.

Fig. 8. Copper content (mg.kg⁻¹ dry matter) in the parts of *A. conyzoides* and *C. benghalensis* in the three sites

Fig. 9. Iron content (mg.kg⁻¹ dry matter) in the parts of *A. conyzoides* and *C. benghalensis* in the three sites

Fig. 10. Nickel content (mg.kg⁻¹ dry matter) in the parts of *A. conyzoides* and *C. benghalensis* in the three sites

Fig. 11. Lead content (mg.kg⁻¹ matter) in the parts of *A. conyzoides* and *C. benghalensis* in the three sites

Fig. 12. Zinc content (mg.kg⁻¹ dry matter) in the parts of *A. conyzoides* and *C. benghalensis* in the three sites

A. conyzoides and C. benghalensis accumulate lead more in the roots, followed by the leaves and finally in the stems. Plants generally follow this sequence [41,42]. This sequence has been observed for A. convzoides in polluted soils in Nigeria [43] and for C. benghalensis [37]. The highest concentration of lead is observed in roots of C. benghalensis at the Prison site. The lowest concentration was measured in C. benghalensis leaves at the control site. The plants of the Prison site accumulate more, followed by those of the Hospital and finally that of the control area. Analysis of variance shows that site, species and plant part have a significant effect (P<0.05) on the variation in Pb levels. The small difference in the concentration of lead in the leaves and roots

allows both spaces to be used as both phytoextractors and phytostabilizers.

Bioaccumulation of Zinc: Fig. 12. shows the results of the determination of Zinc in the leaves, stems and roots of *A. conyzoides* and *C. benghalensis*; sampled at the sites of the control area, Hospital and Prison.

In *A. conyzoides*, they evolve from 10.87 \pm 0.19 to 113.86 \pm 0.01 mg.kg⁻¹ at the leaf level, from 8.47 \pm 0.52 to 93.83 \pm 0.23 mg.kg⁻¹ at the stem level and from 17.27 \pm 0.12 to 161.83 \pm 0.27 mg.kg⁻¹. In *C. benghalensis*, the Zn concentration varies from 12.15 \pm 0.02 to 99.07 \pm 0.09 mg.kg⁻¹ in the leaves, from 8.01 \pm 0.0 to 85.42 \pm 0.03 mg.kg⁻¹ in

stems and finally in roots and 21.83 ± 0.03 to 147.56 ± 0.02 mg.kg⁻¹. The highest concentration of zinc is observed in roots of *C. benghalensis* at the hospital site. The plants from the Hospital site accumulate more, followed by those from the Prison and finally from the control area. The distribution of zinc in the different parts of two plants shows only a slight difference in terms of proportions. Both plants accumulate almost equal amounts of zinc in their leaves and roots. This was observed for *A. conyzoides* [44].

4. CONCLUSION

The concentration of heavy metals (Fe, Cu, Ni, Zn, Cd and Pb) in the sites of the Prison and Hospital is higher than in control site due to human activities. In all sites and in both species, Cd is the most concentrated element in the aerial part while Fe, Cu, Zn, Ni and Pb in the roots. The highest concentrations are obtained in C. *benghalensis.* The plants species of the Prison and Hospital sites are characterized by extremely high concentrations compared to FAO/WHO standards.

These results show the ability of these two species to serve as accumulators of heavy metals.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

- 1. Breuste J, Pauleit S, Haase D, Sauerwein M. Urban Ecosystems. Function, Management and Development ; 2021. ISBN 9783662632789.
- Boukar H, Hareinda NL, Dalatou T, Adamou I, Nestor NMJJ. Physico-chemical characterization and assessment of the risk of pollution: A case of wastewater generated by the regional hospital and the central prison of the city of Ngaoundere, Cameroon. Int. J. Environ. Clim. Chang. 2023;13:921–932. DOI: 10.9734/ijecc/2023/v13i92314.
- Hareinda NL, Boukar H, Robert A, Dalatou T, Adamou I. Pollution assessment of two urban soils in the city of Ngaoundere, Cameroon. J. Geogr. Environ. Earth Sci. Int. 2023;2783–92. DOI: 10.9734/jgeesi/2023/v27i9707.

- Singh P, Effect of soil polluted by heavy metals: Effect on plants, bioremediation and adoptive evolution in plants. In Plant Responses to Soil Pollution.2020;89–102. ISBN 978-981-15-4963-2.
- 5. Tremel-Schaub A, Feix I. Contamination des sols Transferts des sols vers les plantes. 2005; ISBN 286883793X.
- Singh SP, Singh MK, Soil pollution and human health Bt - Plant responses to soil pollution. In Plant Responses to Soil Pollution; Singh P, Singh SK, Prasad SM, Eds. Springer Singapore: Singapore. 2020;205–220.

ISBN 978-981-15-4964-9.

- Pradesh A, Phukan MM, Boruah T. Determination of minimum quadrat size for the herbaceous vegetation : A case study of durpang reserve forest. Nat. Volatiles Essent. Oils. 2021;8:8355–8359.
- Ramalakshmana J, Padal SB, Pradesh A, Pradesh A. Determination of minimum quadrat size for herbaceous species in Andhra. 2022;9515:281–284.
 POl:10.26212(spib.2022):10111.002

DOI:10.36347/sajb.2022.v10i11.003.

- Tchobsala Influence Des Coupes de Bois Sur La Dynamique de La Végétation Naturelle de La Zone Peri-Urbaine de Ngaoundéré (Adamaoua). Université de Yaoundé; 2011.
- Noba K, Bassene C, Ngom A, Gueye M, Camara A, Kane M, Ndoye F, Dieng B, Rmballo R, Ba N. et al. Invasive plants of west africa : Concepts, Overviews and Sustainable Management.2017;2.
- Holou RAY, Achigan-Dako EG, Sinsin B. Ecology and management of invasive plants in Africa. In Invasive Plant Ecology. Jose S, Singh HP, Batish DR, Ravinder KK, Eds. Taylor & Francis Group, LLC. 2013;161–174 ISBN 9781439881279.
- Djotan AKG, Aoudji AKN, Gbaguidi GCR, Akouehou GS, Ganglo JC. Vulnérabilité des aires protegees du benin a l'invasion de ageratum conyzoides l. (Asteraceae) en rapport avec les changements climatiques. Eur. Sci. Journal, ESJ. 2018;14. DOI: 10.19044/esj.2018.v14n33p313.
- 13. Okunade AL, Ageratum Conyzoides L. (Asteraceae). Fitoterapia. 2002;73:1–16.
- 14. Carriere M, impact des systemes d'elevage pastoraux sur l'environnement en afrique et en asie tropicale et subtropicale aride et sub-aride. Cirad-Emvt. 1996;70.

 Swamy PS, Sundarapandian SM, Chandrasekar P, Chandrasekaran S. plant species diversity and tree population structure of a humid tropical forest in Tamil Nadu, India. Biodivers. Conserv. 2000;9:1643–1669. DOI: 10.1023/A:1026511812878.

 Menut C, Lamaty G, Zollo PHA, Kuiate JR, Bessière JM. aromatic plants of tropical central africa. part x chemical composition of the essential oils of ageratum houstonianum mill. and ageratum conyzoides L. from Cameroon. Flavour Fragr. J. 1993;8:1–4,

DOI:https://doi.org/10.1002/ffj.2730080102

 Santos RF, Nunes BM, Sá RD, Soares LAL, Randau KP. morpho-anatomical study of ageratum conyzoides. Rev. Bras. Farmacogn. 2016;26:679–687. DOI:

https://doi.org/10.1016/j.bjp.2016.07.002.

 Sellers BA, Smeda RJ, Johnson WG, Kendig JA, Ellersieck MR. comparative growth of six amaranthus species in missouri. Weed Sci. 2003;51:329–333, DOI:10.1614/0043-1715(5020)25112220 and 10 0 and 10

1745(2003)051[0329:cgosas]2.0.co;2.

- Pigweed R, Echinochloa B. Weed science society of America retroflexus and barnyardgrass (Echinochloa Crus-Galli) Redroot Pigweed (Amaranthus Interference in Potatoes (Solanum Tuberosum) 1. 2015;38:338–343.
- 20. Bartolome AP, Villaseñor IM, Yang W, Bidens Pilosa L. (Asteraceae): botanical properties, traditional uses, phytochemistry, and pharmacology. Evidence-Based Complement. Altern. Med; 2013.

DOI: 10.1155/2013/340215.

- Nezomba H, Mtambanengwe F, Tittonell P, Mapfumo P. practical assessment of soil degradation on smallholder farmers' fields in zimbabwe: integrating local knowledge and scientific diagnostic indicators. CATENA. 2017;156:216–227. DOI:https://doi.org/10.1016/j.catena.2017.0 4.014.
- Bàrberi P. Chapter four ecological weed management in Sub-saharan Africa: prospects and implications on other agroecosystem services. In; Sparks, D.L.B.T.-A. in A., Ed.; Academic Press, 2019;156:219–264. ISBN 0065-2113.

- Fibrich B, Lall N. Chapter 11 Commelina Benghalensis. In; Lall, N.B.T.-U.M.P. from S.-S.A., Ed.; Academic Press. 2020;77–85. ISBN 978-0-12-816814-1.
- 24. Holm LG, Plucknett, Pancho JV, Herberger JV. the world's worst weeds : distribution and biology.; University press of hawaii: Honolulu; 1977.
- Noukeu NA, Priso RJ, Dibong SD, Ndongo D, Kono L, Essono D. floristic diversity of receiving environments polluted by effluent from agri-food industries. Heliyon. 2019;5:e02747. DOI:https://doi.org/10.1016/j.heliyon.2019. e02747.
- 26. Riemens MM, Van den weide RY. biology and control of galinsoga parviflora, overview of a literature survey. Plant Res. Int. B.V., wageningen. 2008;32.
- 27. Warwick SI, Sweet RD. the biology of canadian weeds 58. gatinsoga parviftora and c. quadriradiata (= G. Ciliatu). Can. J. Plant Sci. 1983;709:695–709.
- Ivany JA, Sweet RD. germination, growth, development, and control of galinsoga. Weed Sci. 1973;21:41–45, DOI: DOI: 10.1017/S0043174500031647.
- Alloway BJ, Steinnes E. anthropogenic additions of cadmium to soils bt cadmium in soils and plants. in; Mclaughlin MJ, Singh BR, Eds.; Springer Netherlands: Dordrecht. 1999;97–123. ISBN 978-94-011-4473-5.
- Dong J, Mao WH, Zhang GP, WU FB, Cai Y. root excretion and plant tolerance to cadmium toxicity - a review. Plant, Soil Environ. 2007;53:193–200. DOI: 10.17221/2205-PSE.
- Singh P, Siddiqui H, Sami F, Arif Y, Bajguz A, Hayat S. Cadmium: A threatening agent for plants BT - plant responses to soil pollution. In Plant Responses to Soil Pollution; Singh P, Singh SK, Prasad SM, Eds.; Springer Singapore: Singapore. 2020;59–88

ISBN 978-981-15-4964-9.

- Haider FU, Liqun C, Coulter JA, Cheema SA, Wu J, Zhang R, Wenjun M, Farooq M. Cadmium toxicity in plants: Impacts and remediation strategies. Ecotoxicol. Environ. Saf. 2021;211: 111887. DOI:https://doi.org/10.1016/j.ecoenv.2020. 111887.
- 33. Kabata-Pendias A, Szteke B. Trace Elements in Abiotic and Biotic Environments; Taylor & Francis; 2015.

 Li Y, Wang C, Yang L, Liu Q, Xiao R, Zhang Q, Li B. Adsorption of Cd(II) from aqueous solutions by rape straw biochar derived from different modification processes. Chemosphere. 2017;175:332– 340.

DOI: 10.1016/j.chemosphere.2017.02.061.

- Ghazaryan K, Movsesyan H, Ghazaryan N, Amanda B. Copper phytoremediation potential of wild plant species growing in the mine polluted areas of Armenia . Environ. Pollut. 2019;249 :491–501. DOI: 10.1016/j.envpol.2019.03.070.
- Brun LA, Maillet J, Hinsinger P, Pépin M. Evaluation of copper availability to plants in copper-contaminated vineyard soils. Environ. Pollut. 2001;111:293–302. DOI: https://doi.org/10.1016/S0269-7491(00)00067-1.
- Sekabira K, Oryem-Origa H, Mutumba G, Kakudidi E, Basamba TA. Heavy metal phytoremediation by commelina benghalensis (L) and cynodon dactylon (L) growing in urban stream sediments. Int. J. Plant Physiol. Biochem. 2011;3:133–142.
- Brooks R. Plants that hyperaccumulate heavy metals. In plants and the chemical elements. biochemistry, uptake, tolerance and toerance. 2008;87–105 ISBN 9783527615919.
- Hassa M.U, Chattha MU, Khan I, Chattha MB, Aamer M, Nawaz M, Ali A, Khan MAU, Khan TA. Nickel toxicity in plants: reasons, toxic effects, tolerance mechanisms, and remediation possibilities—A Review. Environ. Sci.

Pollut. Res. 2019;26:12673– 12688.

DOI: 10.1007/s11356-019-04892-x.

 Shahzad B, Tanveer M, Rehman A, Cheema SA, Fahad S, Rehman S, Sharma A. Nickel; whether toxic or essential for plants and environment - A review. Plant Physiol. Biochem. 2018;132:641– 651.

> DOI:https://doi.org/10.1016/j.plaphy.2018.1 0.014.

 Kumar B, Smita K, Cumbal Flores L. Plant mediated detoxification of mercury and lead. Arab. J. Chem. 2017; 10:S2335– S2342.

DOI:https://doi.org/10.1016/j.arabjc.2013.0 8.010.

- 42. Kiran, Bharti R, Sharma R. Effect of heavy metals: An overview. Mater. Today Proc. 2022;51: 880–885. doi:https://doi.org/10.1016/j.matpr.2021.06. 278.
- Ogbonna C, Okezie I, Okezie E, Uzoma U, Ugbogu EA. Impacts of quarry mining activities on herbaceous plant ageratum conyzoides L. in ugwuele-uturu, Abia State, Nigeria; 2020.
- 44. Mkumbo S, Mwegoha W, Renman G. assessment of the phytoremediation potential for Pb, Zn and Cu of indigenous plants growing in a gold mining area in Tanzania. Int. J. Environ. Sci. 2012; 2:2425–2434.

DOI: 10.6088/ijes.00202030123.

© 2024 Ngoudzeu et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

> Peer-review history: The peer review history for this paper can be accessed here: https://www.sdiarticle5.com/review-history/111340