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Abstract

Observational data from astronomical imaging surveys contain information about a variety of source populations
and environments, and their complexity will increase substantially as telescopes become more sensitive. Even for
existing observations, measuring the correlations between pointlike and diffuse emission can be crucial to correctly
inferring the properties of any individual component. For this task, information is typically lost, because of
conservative data cuts, aggressive filtering, or incomplete treatment of contaminated data. We present the code
PCAT-DE, an extension of probabilistic cataloging, designed to simultaneously model pointlike and diffuse
signals. This work incorporates both explicit spatial templates and a set of nonparametric Fourier component
templates into a forward model of astronomical images, reducing the number of processing steps applied to the
observed data. Using synthetic Herschel-SPIRE multiband observations, we demonstrate that point-source and
diffuse emission can be reliably separated and measured. We present two applications of this model. For the first,
we perform point-source detection/photometry in the presence of galactic cirrus and demonstrate that cosmic
infrared background galaxy counts can be recovered in cases of significant contamination. In the second, we show
that the spatially extended thermal Sunyaev–Zel’dovich effect signal can be reliably measured even when it is
subdominant to the pointlike emission from individual galaxies.

Unified Astronomy Thesaurus concepts: Catalogs (205); Diffuse radiation (383); Markov chain Monte Carlo
(1889); Bayesian statistics (1900); Astrostatistics tools (1887)

1. Introduction

The signal of interest in astronomical images is often
contaminated by one or more other signals. These additional
components can bias estimates of the desired signal when left
unmodeled and lower the precision with which we can infer
correlated spatiospectral structure. Estimating the effect of such
components is a challenge, and mitigation strategies are
situation-dependent.

Oftentimes, the goal is to measure the emission from
spatially unresolved sources (hereafter referred to as point
sources) in the presence of diffuse signals; for example, radio
sources in front of the cosmic microwave background (CMB)
or behind galactic synchrotron (Hale et al. 2019), or stars
embedded in regions of high nebulosity (de Bruijne et al.
2015). The effects of diffuse structured signals can sometimes
be mitigated using the fact that many diffuse astrophysical
signals have angular power spectra that decrease with
wavenumber. This motivates spatial (or angular) high-pass
filtering, either in real or Fourier space. However, filtering
approaches necessarily attenuate and distort the signal of
interest and often add uncertainties to signal estimates that can

be difficult to assess. In the other limit, there are cases where
the signal of interest is some type of diffuse structured emission
and point sources are the contaminants. A common approach is
to mask out known or suspected point-source contaminants
(e.g., Barreiro 2009), but such approaches can be problematic
when the spatial density of point sources and/or beam size
necessitates removing a significant fraction of the image (e.g.,
Zemcov et al. 2014). Crucially, such removal is always to a
finite detection limit, and the remaining point sources
contaminate the estimate for the diffuse emission. This effect
can be characterized, again at the cost of larger uncertainties on
the signal of interest (e.g., Traficante et al. 2011).
Many methods for separating pointlike and diffuse signals

exist. A review of source detection strategies is presented in
Masias et al. (2012); work in this field since this review
includes Masias et al. (2015), Zheng et al. (2015), Portillo et al.
(2017), Ofek & Zackay (2018), Robotham et al. (2018), Lukic
et al. (2019), Collin et al. (2022), Liu et al. (2021), and Du et al.
(2022). When spatial and/or spectral source properties are well
understood, matched filtering is an effective method of source
extraction (Ofek & Zackay 2018; Lang & Hogg 2020), though
optimal results only hold under strict assumptions, e.g., sources
are isolated in background-dominated images, with perfect
knowledge of the point-spread function (PSF), noise model,
etc. Multiscale methods decompose images into components
with fluctuation power on different spatial scales, enabling
more reliable source detection and deblending in the presence
of noise and structured backgrounds (Molinari et al. 2011;
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Men’shchikov et al. 2012). These approaches can involve
several transformations of the data, meaning the quality of
extraction of one component (typically, the point source) is
emphasized at the cost of poor fidelity of the other components,
although work has been done to improve signal reconstructions
through more informed transformations and data representa-
tions (Dabbech et al. 2015; Ellien et al. 2021). It has been
shown that point-source photometry in the presence of
nebulosity can be improved considerably by learning a
pixelwise, nonstationary covariance matrix for the structured
signal surrounding each source (see Saydjari & Finkbeiner 2022
and the application to the DECaPS2 survey in Saydjari et al.
2023). However, the use of a fixed input catalog in the post-
processing step means that errors related to biases in source
detection in the presence of diffuse signals are left uncorrected.

The performance of any photometry tool is tied to
fundamental constraints on the information that can be
extracted from astronomical images. The underlying para-
meters θ that describe the sky signal, the raw image data  , and
the processed data or downstream summary statistics ( )g
form a Markov chain q   ( ) g . As such, the data
processing inequality requires that the mutual information
between θ and ( )g is always less than or equal to that between
θ and the original data, i.e., q q( ( )) ( ) I g I; ; (Beaudry &
Renner 2011). While in some cases (often under strict
assumptions) it is possible to construct “sufficient statistics,”
which satisfy q q=( ( )) ( ) I g I; ; , methods that can directly
access the mutual information between θ and  will be crucial
for extracting the full information content of increasingly rich
data sets.

The work presented in this paper builds on probabilistic
cataloging (hereafter, PCAT; Brewer et al. 2013; Brewer &
Donovan 2015; Jones et al. 2015; Daylan et al. 2018), a
framework that combines transdimensional inference
(Green 1995) with Bayesian hierarchical modeling to sample
from a metamodel (a union of models with different
dimensionality) consistent with observed astronomical data.
We extend the forward model to handle map data in which the
observed signal can be composed as the sum of point sources, a
diffuse fluctuation component modeled through a set of Fourier
component templates, and surface brightness templates of
unknown amplitude. This extension is implemented in the code
Probabilistic CATaloging in the presence of Diffuse Emission
(PCAT-DE; Feder 2023).

PCAT-DE is tested on a variety of synthetic observations
from the Spectral and Photometric Imaging REceiver (SPIRE),
an instrument on board the 3.5 m Herschel space observatory
(Griffin et al. 2010). The different applications in this work
make assumptions about the spatial and spectral behaviors of
the components, but PCAT-DE is flexible and can handle the
properties of different models as long as they are properly
specified. Possible use cases include but are not limited to:
separation of infrared sources and the CMB at submillimeter
wavelengths; pointlike source cataloging in the presence of
large fixed-pattern detector noise; extraction of point sources
over large-scale gradients caused by Zodiacal Light or
fluctuations in atmospheric transmission/brightness for
ground-based data; and separation of X-ray point sources from
diffuse galaxy cluster emission, among others.

The paper is structured as follows. We begin in Section 2
with an introduction to PCAT and its extension to modeling
diffuse emission. The mock Herschel-SPIRE data sets are

introduced in Section 3, and we test the performance of our
implementation on reconstructing blended emission compo-
nents based on a range of models and data in Section 4. The
first application explores how well point sources and their
properties are detected/measured (Section 5), while the second
models out the impacts of point sources and diffuse emission
on the thermal Sunyaev–Zel’dovich (SZ) effect (Section 6). We
conclude in Section 7 with a discussion of the current PCAT-
DE implementation and propose a number of potential
applications for this formalism.

2. PCAT

As telescopes become more sensitive, source extraction
becomes increasingly limited by the ability to spatially resolve
overlapping sources (Marshall et al. 2017). This is driven by
the gap between flux sensitivity and angular resolution, which
becomes important as one pushes to fainter depths. For current
and near-future surveys, an increasingly large fraction of
sources that would be reliably measured in isolation will be
observed as partial or full blends with adjacent sources,
complicating both the identification and measurement of bright
and faint objects (Breivik et al. 2022). For some data sets, a fast
mapping rate is prioritized over angular resolution, and these
surveys in particular will approach sensitivities where source
blending is relevant, both in the spatial and spectral domains.8

For example, source blending will be a major source of
systematic uncertainty in a variety of Stage-IV cosmology
surveys that rely on accurate galaxy photometry (Melchior
et al. 2021).
These challenges motivate PCAT. By sampling the full

catalog space consistent with a given data set, PCAT can be
used to infer both the properties of the astronomical sources
present and the number of sources itself, above some flux
density threshold. PCAT models sources below conventional
significance thresholds (i.e., <5σ), which enables the detection
of faint sources and less biased constraints of bright sources
with faint neighbors. As a Bayesian hierarchical modeling
framework, PCAT is capable of incorporating complex
information into a self-consistent model of the signal and
data-generating process, assuming knowledge of the causal
chain that leads to observed data. In this approach, margin-
alization over different parameters is performed by collecting
fair draws from the posterior of the forward model, given the
data. Composable models like those used in PCAT are easily
interpretable by directly testing the addition or removal of
components or by modifying model priors.
Applied to single-band optical images of the globular cluster

M2 taken from the Sloan Digital Sky Survey, PCAT recovers
sources with completeness one magnitude deeper than the
crowded-field photometry tool DAOPHOT (Stetson 1987), and it
has a lower false discovery rate for brighter sources (Portillo
et al. 2017). Performance by these metrics is further improved
by extending the hierarchical model to multiband data, in
which case the maps are fit simultaneously (Daylan et al. 2017;
Feder et al. 2020).

8 For certain large-area surveys, the conventional catalog of subthreshold
point sources may not contain more information than the intensity maps
themselves (Cheng et al. 2019; Schaan & White 2021).
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2.1. Modeling Astronomical Images

Let lij
b denote the surface brightness in pixel (i, j) of band b.

The model used to generate images within PCAT-DE can be
written as a sum over point sources and diffuse signals:
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In this equation, b is the beam function kernel that convolves
the signal measured in band b by the PSF. The signal is
decomposed into a sum of point sources with flux densities
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N
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src , Ntemp templates for resolved components with known

position/spatial structure encoded in surface brightness
templates { }Ib

t and amplitudes { }Ab
t (see Section 6), and a

generic term for additional diffuse signal Bij
b. In images with

negligible diffuse structure (or a small enough field of view), a
simpler mean normalization in each band, B0

b, may be
sufficient. We use Bij

b to specify diffuse signals without
a priori spatial structure, for which a more flexible, nonpara-
metric model is used in signal reconstruction (see Section 2.2).

For each band b, let db define the data vector corresponding
to the unraveled image with size Wb×Hb pixels and
corresponding per-pixel errors given by sb

2. In this work, we
assume that errors are known for each pixel and independent of
one another, meaning the likelihood can be written as a product
over all pixels. We further assume these errors are Gaussian
distributed. For the purpose of Markov Chain Monte Carlo
(MCMC) sampling, we compute log-likelihoods, turning the
products over pixels and bands into sums:
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While the likelihood is in a space of fixed dimension set by the
data, the space of the models is transdimensional, i.e., it is the
union of catalogs with varying Nsrc. Because these models
reside in nested subspaces of one another, priors can be placed
on individual mixture components (the point sources) while
defining a posterior over the full model space (Portillo et al.
2017).

Figure 1 shows a representation of the PCAT-DE generative
model as a probabilistic graphical model (PGM). The different
layers of the PGM correspond to levels of the Bayesian
hierarchical model—at the highest level, priors on the point-
source population (a power-law flux prior for sources with
spectral index α and a Gaussian prior on colors with mean μS

and width σS) and diffuse components (e.g., the color of the
diffuse component encoded in β(S)) inform the prior distribu-
tions over mixture components. The point sources and diffuse
components are then convolved by the instrument beam to
produce model images that can be compared directly to the
observed data. For this work, note that Nt is fixed, while Nsrc is
floated as a free parameter.

2.2. Modeling Diffuse Signals with Fourier Component
Templates

Diffuse signals are modeled by PCAT-DE using a linear
combination of Fourier component templates, where each
template represents a separate Fourier mode. An arbitrary
diffuse signal can be approximated by a truncated two-
dimensional Fourier series:
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The vector bn nx y encodes the amplitudes of the Fourier

components. All four components of  ij
n nx y are necessary in the

absence of boundary conditions on the images, which in general
will be arbitrary. Throughout this work, we use the parameter NFC

when comparing models. The minimum angular scale captured by
the Fourier components can be approximated by the half-period of
the highest-frequency Fourier mode along each dimension.9

Figure 1. PGM for PCAT-DE. The top level of the PGM shows
hyperparameters (α, μS, σS, η, β(S)) that characterize priors over the point-
source parameters {x, S, Nsrc} and diffuse component colors {βt}. These
parameters are then used to generate model images MD that are compared with
the data. The diamonds and circles indicate variables that are fixed and floated,
respectively.

9 The smallest angular scale is actually set by the norm of the

wavevector, = +∣ ∣k k kx ymax ,max
2

,max
2 .
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Fourier component templates are well suited for the tasks at
hand. Using a truncated Fourier series has the benefit of
robustness against bias from small-scale, localized signal map
features (e.g., unmodeled point sources). This is because each
template has global extent over the image and the choice of
truncation scale implies certain modes are impossible to
reconstruct with the Fourier series. For astronomical images,
the minimum effective scale is typically bounded by the beam
rather than the chosen map pixel size. In general, the point-
source model provides a good description of the fluctuations on
the scale of the beam, but there is a range of intermediate scales
larger than the beam and smaller than the image size where
power from diffuse signals can reside. Fortunately, the falling
angular power spectrum characteristic of many diffuse signals
implies they may be well described by models for which

<q qk kmax beam, where qk beam corresponds to the angular scale of
the PSF FWHM. Many methods for point-source detection,
such as SExtractor (Bertin & Arnouts 1996) and
Starfinder (Diolaiti et al. 2000), include empirical
estimates of the local sky signal surrounding each source using
a pixelwise mean or median. The Fourier component
representation is flexible enough to accomplish effective sky
subtraction, but the underlying feature of PCAT’s forward
modeling is the capability to incorporate physically motivated
priors for diffuse components within a larger Bayesian
hierarchical model (including point sources and realistic
observational noise).

A set of linear marginalization steps completed at the
beginning of the sampling (see Appendix A) accelerates the
burn-in phase of the sampling, after which the Fourier
coefficients are sampled with the same Metropolis–Hastings
algorithm used for the rest of the model parameters. In practice,
the Fourier components converge in a similar number of
iterations as the rest of the model. The proposal kernel of each
template is chosen by approximating the Fisher information of
a uniform background component in the presence of several
point sources (see Appendix C for a derivation).

3. Mock Data

In this section, we describe the astrophysical components
that are combined to generate mock observations with similar
noise properties as a range of shallow and deep SPIRE
observations. SPIRE included a three-band imager with
bandpasses centered at 250, 350, and 500 μm and beam
FWHMs of 18″, 25″, and 36″, respectively (Griffin et al. 2010).
While PCAT-DE has been applied to real SPIRE data in Butler
et al. (2022), controlled sets of mocks are used here in order to
characterize the performance of the implementation in different
limits. SPIRE maps typically contain a combination of
emission from cosmic infrared background (CIB) galaxies
and diffuse galactic cirrus. Galaxy cluster observations with
SPIRE also contain localized but faint and extended signals
from the thermal SZ effect. These maps are typically dominated
by fluctuations in the total signal from individually undetected
(and spatially unresolved) CIB galaxies, known as “confusion
noise” (Condon 1974; Nguyen et al. 2010), providing a
difficult scenario for point-source extraction in the presence of
diffuse contaminants. At the angular scale of the SPIRE beam,
the underlying CIB luminosity function (LF) is extremely steep
(for differential SPIRE number counts, see Figure 13 of Casey
et al. 2014), resulting in a large number of sources just below
the typical detection limit within a PSF-sized aperture. As a

result, the source confusion in SPIRE observations should be
considered more severe than the “typical” use case, in which
sources are well separated and Poisson fluctuations are larger.

3.1. CIB Galaxies

The majority of sources detected at far-infrared (FIR)
wavelengths are z∼ 2 galaxies with an angular extent of
∼1″. When convolved with the much larger SPIRE beam, most
galaxies in SPIRE observations are well modeled as point
sources. Mock realizations are generated using the CIB model
described in Béthermin et al. (2012; referred to as B12
throughout this work). On the scales of the images considered
(θ� 10 arcmin), the CIB power spectrum is dominated by shot
noise from galaxies. More details about the construction of this
CIB component can be found in Butler et al. (2022).

3.2. Galactic Cirrus Foregrounds

A significant source of diffuse emission, even at high
galactic latitudes, is Galactic cirrus dust, which reprocesses the
interstellar radiation field and emits thermal radiation in the FIR
(Desert et al. 1990). While cirrus has a blue spectrum across the
SPIRE bands, similar to that of many observed CIB sources,
cirrus contains the most fluctuation power over larger angular
scales. To calibrate the level of cirrus emission present in
extragalactic observations for this study, we apply the Planck
SZ union foreground mask10 to Planck observations and
sample positions uniformly across the unmasked sky. The maps
at these positions are queried, regridded to SPIRE resolution,
and extrapolated to 250, 350, and 500 μm using the Planck-
estimated parameters of a modified blackbody spectral energy
distribution (SED),

n
n
n

=
b

n⎜ ⎟
⎛
⎝

⎞
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( ) ( ) ( )S A B T , 5d
0

where ν is the rest-frame frequency, ν0 is the reference frequency
at which the optical depth is measured, β is the spectral index, Td
is the dust temperature, and Bν(Td) is the spectral radiance at
frequency ν, assuming thermal equilibrium for temperature Td.
They have dust temperatures ranging from 19 to 22 K over 15′
patches of the sky, while β∼ 1.5± 0.1 at the same smoothing
scale (Planck Collaboration et al. 2014). We define a nominal
“1×-Planck” case as a diffuse signal whose power spectrum is
parameterized by a single power-law slope:

= g( ) (∣ ∣ ) ( )P k P k k , 60 0

where γ=−2.6 (Bracco et al. 2011) and P0 is determined by
the unmasked sky-averaged power spectrum. Synthetic cirrus
maps are drawn as Gaussian random realizations of the 1×-
Planck power spectrum, and progressively more severe cirrus
realizations are obtained by scaling the amplitude of fluctua-
tions, q( )P k , by factors of 2, 4, and 8. The range of cirrus
realizations considered in this work with increasing fluctuation
power is representative of the worst 50%, 32%, 17%, and 5&
of the Planck unmasked sky.
Last, mock observations are generated for a range of noise

levels ranging from 1 mJy beam−1 (confusion-dominated for

10 Maps can be found here: https://irsa.ipac.caltech.edu/data/Planck/
release_1/ancillary-data/previews/COM_PCCS_SZ-unionMask_2048_R1.
11/index.html.
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SPIRE) to 6 mJy beam−1 (instrument noise roughly equal to
confusion noise). Instrument noise at the fiducial SPIRE map
resolution is well described by a diagonal map space
covariance matrix (Viero et al. 2013) and is dominated by
thermal emission from the primary mirror.

Figure 2 shows a set of ¢ ´ ¢10 10 mock observations at
250 μm with varying levels of synthetic cirrus emission and
instrument noise at the 1 mJy beam−1 level. Uncorrected
diffuse signals have the effect of boosting sources spatially
coincident with positive fluctuations, while suppressing sources
coincident with negative fluctuations. 20 sets of multiband CIB
sky realizations are combined with different levels of synthetic
cirrus throughout the results. In Sections 4 and 5, only the
single-band 250 μm maps are used, but the full three-band
maps are used in Section 6, where color information helps to
distinguish the SZ effect from other astrophysical components.

4. Separating Pointlike and Diffuse Emission in
Astronomical Images

4.1. Model Priors

The priors used in this work are nearly identical to those
from Butler et al. (2022) and we summarize them briefly here.

A single power-law flux distribution is assumed with slope
α=−3.0, and a uniformly distributed prior over the map is
placed for source positions. A minimum flux density is
imposed on the primary 250 μm band, set to =S 3min

250 and
=S 5min

250 mJy for low-/high-instrument-noise configurations
respectively. We find the results in this work are relatively
insensitive to the specific choice of Smin, though for rigorous
characterization of subthreshold number counts, Smin can be
varied as a hyperparameter. The mean additive normalization
of each SPIRE map, denoted as B0, has no physical significance
(i.e., SPIRE is not absolutely calibrated), and so we place a
uniform prior on this component. Likewise, we place
uninformative priors on the amplitudes of the Fourier
component template amplitudes, though a power spectrum
prior is used in the initial set of Fourier component margin-
alization steps taken during burn-in (see Appendix A).
One difference made in this work is the choice of prior on

the number of sources, π(Nsrc), which counteracts the effect of
overfitting due to additional parameters. As explained in
Section 3.1 of Daylan et al. (2017), PCAT uses two pairs of
transdimensional MCMC proposals to explore the full catalog
space. In the first pair, a number of sources are chosen to either
add (“births”) with fluxes drawn from a flux+color prior, or to

Figure 2. Mock realizations of CIB and cirrus at SPIRE resolution with 1 mJy beam−1 instrument noise. In this limit, confused point sources are the dominant agent
reducing our modeling precision. The different panels show levels of cirrus consistent with the median “clean-sky” Planck sample (top left) and progressively more
contaminated fields.
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remove sources at random (“deaths”). The second pair of
proposals either split individual model sources into several
components or merge pairs of sources. As the number of
degrees of freedom (dofs) approaches infinity, the expected
improvement in the log-likelihood approaches one-half for
each additional parameter (Wilks 1938), implying an expo-
nential prior on the number of sources:

p
p

r
+

= - +
( )

( )
( ) ( )N

N
nlog

1 1

2
2 . 7f

As the number of dofs approaches infinity, the average
improvement in the log-likelihood approaches one-half per
dof (Wilks 1938). For heavily confused observations the
number of model parameters becomes non-negligible com-
pared to the dimension of the data, which has the effect of
increasing the amount of overfitting (áD ñ >log 0.5 per dof).
We use the scaling parameter ρ to modify the parsimony prior.
As such, ρ may be derived a priori by computing the ratio of
áD ñlog for some fixed source number density above Smin

(plus any additional model parameters), with the same
expectation in the “sparse” limit. We derive an expression for
áD ñlog in the nonasymptotic limit in Appendix B. For our
runs, we use ρ= 1.5, which is slightly more aggressive
compared to that assuming single-band source number
densities from B12 and =S 3min mJy, which suggests
ρ∼ 1.35 (see Figure 13).

The chains used throughout the paper were run for 4000
thinned samples each, where within PCAT-DE one thinned
sample =103 samples. We confirm that the chains converge
within the first 2000 thinned samples, and we use the last 1000
samples from each chain for our results.

4.2. Number of Fourier Components

The order of the Fourier component model is a hyperpara-
meter that is chosen before running PCAT-DE. Including too
few Fourier components may lead to a residual diffuse
fluctuation signal, while including too many components
becomes computationally inefficient and makes the model
more susceptible to overfitting. In principle, a fully transdi-
mensional approach might infer the effective order of the
Fourier component model. However, constructing efficient
proposals that sample across Fourier component models of
varying order is nontrivial, because the number of parameters
in the Fourier component model scales as kmax

2 , meaning a
penalization based on the number of additional parameters
becomes prohibitive.

The hyperparameter NFC is optimized by fitting several
Fourier component models to mock data and comparing
summary statistics as a function of NFC. In general, we find
that setting NFC such that the highest-angular-frequency Fourier
component has qk max that is twice the cirrus–CIB power
spectrum crossover scale (i.e., = ¢q qk k2max , where

¢ = ¢q q( ) ( )P k P kdiffuse shot) leads to an effective, parsimonious
model, in the sense that the recovered diagnostics do not
improve significantly by going to higher NFC. A range of
Fourier component models are tested, ranging from NFC= 2 to
NFC= 15, which correspond to truncation scales qmin

FC of 5′ and
40″ arcseconds, respectively. For each cirrus amplitude case,
the CIB realization is fixed to isolate trends due to varying NFC.

Figure 3 shows the residual rms averaged over pixels for
both the recovered cirrus and CIB components. This statistic
speaks to the general model reconstruction performance and
how it changes with Fourier order, and by inspecting
componentwise residuals we can assess the point beyond
which additional Fourier components do not improve model
performance. Within statistical errors, the cirrus residual level
converges as the order of the Fourier component model
increases. While the rms is an incomplete measure for how well
the data can constrain diffuse signals with arbitrary Fourier
structure, the relative rms contribution from degeneracies with
point sources can be estimated. In particular, the maximum
a posteriori (MAP) solution from each set of Fourier
component templates is computed with respect to the same
cirrus realizations, including instrument noise but without
injected CIB. The errors from this simplified configuration are
shown with the dashed lines in the top panel of Figure 3. These
results suggest the rms error due to the model fit quality and
instrument noise is subdominant to confusion noise for CIB-
dominated maps, while for maps with more fluctuation power
from cirrus (e.g., 4×-Planck and 8×-Planck), the error from
each component is roughly equal.
Unlike the cirrus reconstruction, which plateaus at larger

NFC, the CIB residual rms levels increase by 60% and 20%
relative to the minima of the 1×-Planck and 2×-Planck cases,
respectively. The goodness of fit does not change significantly
across the same range, suggesting the increased component
residual rms is not due to an overall lack of convergence. A
large portion of the CIB is undetected, due to steeply falling
number counts, so in the presence of a parsimony prior on point
sources and the absence of a power spectrum prior on the
diffuse model, the Fourier components can preferentially
absorb fluctuations from the CIB signal.
In addition to reducing rms fluctuations in recovered signals,

higher-order Fourier component models reduce skewness in the
componentwise residuals. Figure 4 shows the distribution of
componentwise residuals over pixels for the most contaminated
case (8×-Planck). As NFC is increased from 2 to 15, the
skewness in both the CIB and cirrus residuals is reduced
considerably. The anticorrelation between the CIB and cirrus
residual one-point distributions reflects the oversubtraction of
the CIB by spurious point sources, which may compensate for
mismodeled diffuse signal when the order of the Fourier model
is decreased.
For the remaining results, NFC is fixed at each Planck cirrus

level using the prescription described in Section 4.2. This
corresponds to NFC= 5, 7, 11, and 15 for 1×-, 2×-, 4×-, and
8×-Planck, respectively.

4.3. Component Separation

Figure 5 shows the input and recovered component maps for
a mock CIB observation with cirrus at the 8×-Planck level, i.e.,
the top 5% of the most contaminated Planck clean-sky
observations. While the residual of the full model is consistent
with noise, inspection of the individual component residuals
shows errors in the recovered CIB and cirrus components.
Notably, these errors are anticorrelated. The primary failure
mode occurs when spurious sources compensate for spatially
coincident residual diffuse signal, rather than when diffuse
signals conceal true point sources (this is supported by the
results of Section 5). Likewise, we find that the CIB residual is
weakly correlated with the cirrus spatial curvature (Pearson
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correlation coefficient ρ=+ 0.2) and the positions of spurious
point sources. Regions of high curvature imply the presence of
higher-angular-frequency modes that may be difficult to
capture with the truncated Fourier series, so this correlation is
expected.

4.4. Componentwise Power Spectrum Recovery

The PCAT-DE model separates signals effectively in both
map space and Fourier space. Figure 6 shows the recovered
component power spectra of observations using a fixed CIB
realization and four Planck cirrus realizations of increasing
fluctuation power. The power spectra are computed from the
model images, with a Hanning window to mitigate spurious
fluctuations sourced by the map boundaries. In nearly all cases,
the power spectra of both components are reliably recovered,
while for the 4×-Planck and 8×-Planck cases the recovered
CIB has a slight positive bias, which can be attributed to
leakage from the much brighter cirrus signals. While cirrus-

dominated observations have more false detections and faint-
end flux boosting on average (see Section 5), the residual
fluctuation power of the CIB signal remains relatively small.
This is reasonable in the limit where false detections are
unclustered, i.e., they contribute to the mean normalization of
the component model, but not to its fluctuations. Low-level
systematic biases in component separation with PCAT-DE may
be more important to quantify in studies of the large-scale
(q > ¢10 ) CIB clustering power spectrum, where linear
clustering and diffuse emission are spatially degenerate.

4.5. Computational Requirements

Forward modeling approaches like PCAT are computation-
ally demanding but tractable for targeted science fields.
Proposals that perturb the template and mean normalization
components are the dominant computational expense for
PCAT-DE, because they involve evaluating the delta log-
likelihood over the full image or set of images, with an
execution time that scales with the total number of pixels. For a
fixed effective sample size (ESS), the time to obtain an
independent sample from the chain naively scales as the square
of the number of parameters when using Metropolis–Hastings
proposals (Daylan et al. 2017). While this is mitigated for the
point sources by evaluating the likelihood of point-source
proposals in smaller image patches, this is not possible with the
Fourier templates, which are defined over the full region of

Figure 3. Reconstruction accuracy for diffuse cirrus (top) and CIB galaxies
(bottom) in mock SPIRE observations, as a function of Fourier component
truncation scale (ranging from q = ¢5FC

min to 40″). The different colors show
how the results change upon increasing the level of cirrus signal. The top axes
indicate the approximate angular truncation scale corresponding to different
NFC. The dashed lines in the top figure show the residual rms levels obtained
from fitting Fourier components to the same cirrus realizations but without CIB
injected.

Figure 4. Histograms of pixelwise residuals between cirrus (top), CIB galaxies
(bottom), and the posterior mean of each respective model component.
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interest. In the absence of mean background and template-
based proposals, PCAT takes ∼30 minutes in wall-clock time
to fit a 100× 100 pixel SPIRE image on a MacBook Pro with a
2.2 GHz Intel Core i7 processor using the Intel Math Kernel
Library (MKL) and ∼1 CPU hour without the MKL library.
With mean background and template-based proposals included
in the Metropolis–Hastings sampling, the wall-clock time
increases by a factor of ∼2.

Despite the computational challenge, it should be possible to
make the sampling algorithm more efficient. One option to
speed up the performance is by executing marginalization
steps, as are currently used during burn-in within PCAT-DE to
accelerate χ2 minimization, and intermittently during sampling,
making PCAT-DE similar to a collapsed Gibbs sampler
(Liu 1994). The marginalization step integrates out the
coefficients of the Fourier component model, while fixing the
remaining parameters at a given sample, and it may be more
appropriate for analyses where the diffuse component coeffi-
cients are nuisance parameters. More generally, efficient

proposals and sampling schemes can reduce the run time
required for chain convergence and a sufficient ESS.

5. Point-source Detection and Population Inference in the
Presence of Diffuse Emission

By incorporating a Fourier component model into source
detection and deblending, PCAT can recover sources obscured
by negative diffuse signal fluctuations (relative to some mean
normalization of the image) and reduce the number of false
detections and boosted sources. In this section, we test PCAT-
DE on a set of CIB realizations with known positions/flux
densities, from which we can examine the collection of
detected sources and their properties as the level of injected
cirrus is gradually increased.
PCAT requires precise control over systematic effects in the

observed data in order to constrain point-source populations
without incurring substantial errors. This is a consequence of
the general fact that when a finite-mixture model is
misspecified (e.g., when it does not fully describe the data),

Figure 5. Component separation results for a mock CIB realization with injected cirrus dust (at the highest level, 8×-Planck) and SPIRE-like noise (σinst =
1 mJy beam−1). The columns show the data signal (left), the median PCAT model (middle), and the corresponding residuals (right).
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the posterior on the number of components can diverge (Cai
et al. 2020). Within PCAT, a minimum flux density is chosen
for computational convenience, but also represents an instance
of model misspecification, i.e., the true number counts extend
below Smin. Diffuse signals are relevant in this context as well
—while they may not even be visible in an image, neglecting
them when modeling observations can lead to biases on
downstream measurements that rely on catalogs as starting
points. These effects can be seen in Figure 7, where catalog
ensembles from PCAT-DE are compared with ground-truth
catalogs for three different runs. The middle panel shows how
running PCAT on low-level, unmodeled cirrus leads to several
spurious point sources clustered on the scale of the beam. The
spurious sources are correlated with the gradient of the cirrus
emission (along the θx direction), residing in regions where the
mean normalization underestimates the diffuse component. The
positions of spurious sources tend to trace faint underlying
sources with flux densities that are below Smin (the green
points), suggesting that in this case small errors in the diffuse
model primarily flux boost existing sources rather than generate
completely fictitious sources. When the mean normalization
overestimates the diffuse component, the modeled source flux
densities will tend to bias low, which may also lead to a
degradation of the catalog completeness for sources near Smin.
The inclusion of a simple Fourier component model amelio-
rates the effects of foreground contamination significantly, with
the recovered catalog posterior (right panel) nearly identical to
the cirrus-free case (left panel). The stacked samples shown in
blue can be converted into a “condensed catalog” using an
iterative crossmatching procedure (see Portillo et al. 2017 for
an outlined procedure), with posteriors obtained from the
collection of samples near each source. One can see visually in
Figure 7 that brighter sources have more compact stacked
samples, i.e., the posteriors on positions are well constrained.

On the other hand, low-significance sources and/or fictitious
sources sourced by cirrus systematics are “fuzzier,” corresp-
onding to posteriors that are much less constrained and that
deviate from idealized Gaussian uncertainties11

There is an intrinsic labeling degeneracy in PCAT, due to the
fact that the number of sources is not fixed. As such, we
compute metrics related to catalog completeness and reliability
as expectations over the catalog ensemble returned by PCAT.
We calculate the completeness of each catalog sample by
finding the closest model source to each true source within 6″
(one-third of the SPIRE 250 μm beam FWHM) without
replacement (i.e., the same PCAT source cannot be matched
to several true catalog sources). Any PCAT source that has no
true counterpart above Smin after this crossmatching procedure
is classified as spurious. While a more stringent crossmatching
procedure might include a match on flux density or log-fluxes,
we are primarily interested in the trends of these statistics with
varying Fourier order. The level of blending for SPIRE sources
further complicates the interpretation of more detailed cross-
matches (see Section 5.1 for more details).
Figure 8 shows the completeness and false discovery as a

function of flux density, evaluated for our ensemble of CIB
mocks at two noise levels (1 and 6 mJy beam−1). As the level
of cirrus contamination increases, fainter sources become
suppressed or entirely subsumed by diffuse signal fluctuations,
leading to a mild degradation in source recovery. In contrast,
the 90% source reliability thresholds degrade from 8 (25) mJy
for the 1×-Planck low- (high-) noise configurations to 16 (35)
mJy for 8×-Planck. Spurious sources are included when the
improvement in the log-likelihood from modeling the residual
diffuse emission with a spurious point source is greater than the
penalty from adding parameters to the model and any other
priors. The false discovery rate is also sensitive to the minimum
source flux density permitted by the model.

5.1. Predicting Source Blending

Measuring the number density of sources as a function of
flux density is a core task in astronomy. To recover correct
number counts, one makes corrections for all effects that lead to
observed counts, including catalog completeness, survey
selections, astrophysical uncertainties, etc. One consideration
is flux boosting, an Eddington-like bias where symmetric flux
uncertainties added to sources drawn from a steeply falling LF
source an asymmetric scatter in the observed counts. In the
context of submillimeter analyses, flux boosting can also be
sourced by faint blended neighbors. Blending effects in single-
dish submillimeter observations are often so severe that number
counts are estimated from the one-point distributions of the
maps (P(D) analysis; see Glenn et al. 2010; Vernstrom et al.
2014), rather than from catalogs with individual sources. As a
result, the method is limited to fields that are free of
contamination from other components that would otherwise
contribute to the skewness of the one-point function.
The flux boosting induced by source confusion can be well

approximated through Bayesian model comparison. Using
mock catalogs, we predict the blended catalog by identifying
potential blends and evaluating the delta log-likelihood
between two- and one-source models. This is an approximation

Figure 6. Comparison of input and recovered CIB (solid) and cirrus (dashed)
power spectra for four cirrus realizations of increasing power. The recovered
cirrus is represented by the Fourier component model image, while the CIB
comes from the point-source model. The per-pixel instrument noise is 10−3 Jy
beam−1, corresponding to a power spectrum amplitude of 10−8 Jy2 beam−2

arcmin2.

11 The departure from idealized uncertainties (assuming well-isolated point
sources and perfect background subtraction) is quantified with the degradation
factor (see Appendix C of Portillo et al. 2017). That work demonstrated that the
degradation factors for positions and fluxes are highly correlated.
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to the full transdimensional inference performed with PCAT.
For a given blend of two (or more) sources, PCAT estimates
the relative Bayesian evidence between models with different
Nsrc. If the likelihood does not improve significantly for
observations with high underlying source multiplicity, PCAT
will favor a simpler model to describe the observed signal.

We predict the level of flux boosting for a given catalog in a
probabilistic manner, evaluating the delta log-likelihood of
two- and one-source models fit to underlying two-source
configurations that might be blended by PCAT. This approach
assumes prior information about the number counts of the
underlying distribution, but marginalizing over uncertainties of
the faint-end LF is straightforward with this method if synthetic
catalogs are available.

The delta log-likelihood for each candidate blend is
calculated as follows: the best-fit one-source model position
is approximated to be at the position where a PSF has the
maximum overlap integral with the sum of two PSFs with
positions and amplitudes corresponding to the two catalog
sources. This approximation is exact in the infinite signal-to-
noise ratio limit. The maximum overlap integral position is on
the line connecting the two sources, and its distance along this
line depends only on the two sources’ flux ratio and separation.
Then we approximate the best-fit two-source model positions
with the catalog positions and calculate the expected delta log-
likelihood between the one-source model and the two-source
model. Again, the best-fit two-source model positions are equal
to the true (catalog) positions in the infinite signal-to-noise ratio
limit. While the maximum overlap position does not depend on
the noise level, the expected delta log-likelihood does. Our
validation of these two approximations using simulated images
of pairs of point sources will be presented in a future
manuscript.

The delta log-likelihood D log for a given pair of sources
can be combined with the relative parsimony prior,

p p= - =( ( )) ( ( ))N Nlog 2 log 1 (using Equation (7) with

ρ= 1.5), to obtain a delta log-posterior between models,
pD = D + D log log log . For this calculation, we ignore

differences in posterior volume, though these differences are
used in calculating acceptance probabilities within PCAT-DE.
Let us assume that P(N= 2)+ P(N= 1)≈ 1, i.e., P
(N> 2)= 1. Then D log is related to the deblending
probability by the following:

= »
+ -D
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The algorithm iteratively evaluates blends, starting with the
brightest source and finding the brightest neighbor within one
FWHM of the source position. If there is no neighbor in the
vicinity, the recovered flux is assumed to be the true flux, on
average. If there is a neighbor, the delta log-likelihood of the
two-source configuration is used to simulate blending by
making a draw on a Bernoulli distribution with parameter p
(N= 2). If the draw results in a blend, the best-fit flux/position
of the one-source model is added to the catalog and both
original sources are removed. Once the full catalog has been
processed in this way, the number counts are recomputed.
These “recovered” catalogs should more closely resemble the
recovered flux distribution using a Bayesian approach like
PCAT. These recovered catalogs encode an approximation of
the posterior distribution. Through our simulated blending
procedure, we find the predicted number counts are consistent
with those recovered using PCAT-DE for a range of flux
densities. Figure 9 shows the input and recovered flux
distributions for different levels of cirrus contamination. All
of the recovered flux distributions show overproduction of
intermediate/bright sources relative to the input CIB catalog.
Given the LF of submillimeter galaxies and the angular
resolution of SPIRE, this behavior is explainable by source
blending. For a given blend of two (or more) sources, PCAT

Figure 7. Comparison of recovered catalog ensembles for a fixed 250 μm SPIRE CIB observation in the cirrus-free and 1×-Planck cases, with and without the use of
Fourier components. In each panel, the red symbols indicate the true positions of the input catalog down to S250 = 3 mJy, while the blue symbols show 200 stacked
samples that are uniformly distributed across the last 1000 posterior samples. “Fuzzier” regions reflect the posterior uncertainty recovered in sources, typically on the
faint end. The left panel shows PCAT run on CIB and instrument noise realizations, with no Fourier component model. The middle and right panels show results based
on the same CIB realization, but with additional synthetic cirrus dust drawn at the 1×-Planck cirrus level. While PCAT infers several spurious model sources in the
absence of a diffuse signal model (middle), the inclusion of the Fourier component model leads to a recovered catalog ensemble nearly identical to the cirrus-free case
(right).
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estimates the relative Bayesian evidence between models with
different Nsrc. If the likelihood does not improve significantly
for observations with high underlying source multiplicity,
PCAT will favor a simpler model to describe the observed
signal. This means for some range of source separations there is
not enough information in the observed data to properly
deblend sources. This is a well-known limitation for analyses
of Herschel-SPIRE data, and there are methods in the literature
to correct for this mode of flux boosting, both for individual
objects and at the population level (Coppin et al. 2005;
Crawford et al. 2010). The number count predictions including
the effects of blending closely match those obtained with
PCAT-DE. The prediction does not take into account the
covariance of Nsrc> 2 source configurations, nor the prior
volume effects associated with source parameters, and so they
will be less accurate for fainter source flux densities.
Nonetheless, Figure 9 shows that on the bright end

(S250> 20 mJy), the recovered flux distributions are insensitive
to all levels of injected cirrus. For S250� 20 mJy, the recovered
number counts become increasingly correlated with the
injected cirrus level. While the observed flux boosting of an
analysis procedure will depend on the details of its implemen-
tation, these results suggest it should be possible to empirically
deboost the observed number counts as a function of
foreground contamination.

5.2. Sensitivity to NFC

Figure 10 shows the completeness and false discovery rate as
a function of flux density for a subset of Fourier component
models spanning the same range in NFC as tested in Section 4.1.
For the 1×-Planck mocks, there is little to no dependence on
the results from varying NFC, aside from some mild trends at
low flux density. This validates the robustness of the Fourier
component model even when NFC is larger than necessary. The
more severely contaminated 8×-Planck mocks show similar
results for completeness, but a strong dependence of the false
discovery rate on NFC. As more Fourier components are fit to
the data, fewer spurious sources are favored to absorb residual
diffuse signal.

6. Measuring the Extended SZ Effect in Galaxy Clusters

To highlight the ability of PCAT-DE to disentangle
components using spatial and spectral information, we apply
our model to measure the thermal SZ effect toward massive
galaxy clusters. The SZ effect describes the spectral distortion
of CMB photons that are inverse-Compton-scattered by
electrons comprising hot gas in the intracluster medium
(ICM). By measuring the SZ effect signal toward galaxy
clusters and its dependence with frequency, one can probe the
thermodynamics of the cluster ICM through the thermal SZ
effect and its relativistic corrections (Sunyaev & Zeldovich
1972; Wright 1979; Itoh et al. 1998; Chluba et al. 2012) and
cluster peculiar velocities through the kinematic SZ effect (e.g.,
Sheth & Diaferio 2001; Sayers et al. 2016a, 2019). At moderate
redshifts, the SZ effect signal typically has an angular extent of
several arcminutes, meaning it can be spatially correlated with
CIB galaxies, foreground cirrus dust, cluster member galaxies,
and potentially thermal dust emission associated with the
cluster itself (Erler et al. 2018).

Figure 8. Completeness (top) and false discovery rate (bottom) of PCAT-
detected sources for mock CIB data with σinst = 1 mJy beam−1 (solid) and
σinst = 6 mJy beam−1 (dashed). Each line shows the mean and scatter from 20
mock CIB realizations.

Figure 9. Input and recovered flux distributions for 20 mock CIB realizations
with increasing cirrus contamination (∼0.3 deg2 in total area). The recovered
flux distributions are shifted slightly along the x-axis to highlight the
dependence on diffuse contamination for each bin. The error bars indicate
the scatter across the ¢ ´ ¢10 10 CIB realizations. The same set of catalogs is
used as input for each cirrus level in order to reduce additional uncertainties
due to sample variance.
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The SZ effect has a SED that rises with wavelength across
the SPIRE bandpasses. However, at 500 μm, in which SZ has
the largest surface brightness distortion, source blending is also
more pronounced due to diffraction-limited optics. In contrast,
at shorter wavelengths, where the SZ effect signal is smaller in
amplitude, CIB sources are more effectively detected and
deblended. This is because the corresponding SPIRE maps
have higher angular resolution and because the majority of
observed CIB sources have blue spectra. A joint fit across all
bands can incorporate these various properties in a consistent
manner and can help to reliably extract the SZ component.
Color priors can help enhance catalog inferences, with the
caveat that unique sources in color space may become more
difficult to recover (Feder et al. 2020).

Identifying and separating these components can be
challenging, even when instrument noise is low, especially
for single-dish submillimeter measurements for which indivi-
dual point sources are difficult to separate from truly diffuse
emission. While ancillary catalogs provide information about
the potential positions of submillimeter-detected sources (e.g.,
deep optical or mid-infrared catalogs), extrapolations of source

SEDs over a large wavelength range are required to predict
submillimeter flux densities. The number of external counter-
parts per SPIRE beam can be as high as 30 per SPIRE beam
(Roseboom et al. 2010), meaning some reduction of the
external catalog is necessary if the SPIRE data are to be used to
constrain the submillimeter flux densities.
Measuring the SZ effect signal from SPIRE observations is a

transdimensional task, because the field of faint, confused CIB
sources is spatially correlated with the diffuse components.
Within the formalism of PCAT, samples are drawn from the
marginalized posterior on surface brightness template ampli-
tudes,

òµ( ∣ ) ( ) ( ∣ ) ( )  A AP D P P D d, , 9SZ SZ

where  denotes the full catalog space.

6.1. Tests on Mock Galaxy Clusters

PCAT-DE is tested in this section on mock data based on a
set of clusters previously observed by the Chandra and
Herschel observatories. Herschel-SPIRE observed 56 galaxy
clusters as part of the HerMES and Herschel Lensing Survey
programs, with map depths of ;1–2 mJy beam−1 noise rms
(Egami et al. 2010; Oliver et al. 2012), which are subdominant
to the SPIRE confusion noise, which is ∼6 mJy beam−1 at
250 μm (Nguyen et al. 2010). Three clusters from this sample
are chosen, with the properties listed in Table 1. For each
cluster, we compute an effective angular FWHM, θFWHM, as
the geometric mean of the cluster profile principal axes
following image convolution of the cluster gas pressure profile
with the SPIRE PSF. Our three clusters vary between 2.1 and
3.6 arcminutes and have temperatures spanning 8.3 and
17.3 keV, allowing us to probe a range of sizes and SZ effect
amplitudes.
The procedure for generating mock cluster observations is

detailed in Butler et al. (2022). In brief, we use the same B12
CIB model, combined with SPIRE noise realizations unique to
the cluster observation with a mean noise rms of ∼2 mJy
beam−1. The SZ signal component is modeled with a set of
fixed templates Ib

SZ with amplitudes Ab
SZ, convolved with the

beam

l = [ ( )] ( )  A I x y, . 10ij
b SZ b

b b i j
, SZ SZ

The same templates are then included in the forward model,
i.e., lij

b SZ, is added to lij
b in Equation (1). The SZ effect signal is

negligible at 250 μm, so we only fit SZ template amplitudes for
SPIRE’s 350 and 500 μm bands, denoted APMW

SZ and APLW
SZ ,

respectively. The morphology of the SZ profile is assumed to
follow an elliptical generalized Navarro–Frenk–White profile
(Evans & An 2006). This model is fit to ancillary Bolocam
140 GHz data, after which the best-fit profile is extrapolated
and regridded to match the SPIRE observations, following the
method from Sayers et al. (2019). We place no priors on the SZ
template amplitudes nor on their colors, for the purpose of
obtaining more data-driven constraints on the SZ effect signal.
When one has a complete model for the signal considered
(which is not the case for SZ spectral measurements), PCAT-
DE is able to incorporate priors across diffuse components
across bands. Cirrus realizations are not added to this set of
mocks and no Fourier component model is included, though in

Figure 10. Completeness (triangles) and false discovery rates (stars) as a
function of flux density. These are evaluated for a range of Fourier component
models indicated by the different colors. The top panel shows the 1×-Planck
results, while the bottom shows the same for the 8×-Planck case.
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reality a small fraction of clusters are observed through lines of
sight where significant cirrus contamination exists. Fortunately,
cirrus is well constrained by the high-resolution 250 μm data,
for which the Fourier components can be fit simultaneously
across bands assuming some color prior.

Galaxy clusters gravitationally lens background emission,
which has the effect of deflecting and magnifying light from
CIB sources. While surface brightness is conserved by lensing,
the net effect after removing bright detected sources is a surface
brightness deficit near the center of the cluster. This was first
measured in Zemcov et al. (2013) in four clusters, and can bias
measurement of the SZ signal because the two can be highly
spatially degenerate. Bias due to lensing is estimated and
corrected in Sayers et al. (2019) and Butler et al. (2022), but for
simplicity, the results shown in this work use unlensed mock
CIB realizations. In the absence of lensing in the observed data,
our forward model is fully specified.

6.2. SZ Results

We test PCAT-DE on mock observations toward galaxy
cluster RXJ 1347.5-1145, which has been the subject of
numerous SZ studies (Pointecouteau et al. 1999; Komatsu et al.
2001; Kitayama et al. 2004, 2016; Zemcov et al. 2012; Sayers
et al. 2016b), including one that uses PCAT-DE (Butler et al.
2022). To derive constraints on cluster properties like the
temperature of gas comprising the ICM or the cluster peculiar
velocity, multiwavelength data from several instruments (e.g.,
Bolocam, Planck, Chandra, and the Hubble Space Telescope)
are commonly employed, but in this work we focus on surface
brightness measurements from SPIRE data alone.

6.2.1. Convergence of SZ Parameters

To validate that the SZ template amplitude parameters are
converged, we compute the Gelman–Rubin statistic, or the
potential scale reduction factor (also known as R̂), from several
Markov chains run on the same data. 20 MCMC walkers are
independently initialized and run on a single mock cluster
realization of RXJ 1347.5-1145 for 4000 thinned samples, with
the second half of each chain used to compute R̂. We estimate

=R̂ 1.07 and =R̂ 1.08 for ÂPMW
SZ

and ÂPLW
SZ

, respectively,
suggesting the chains are well mixed.

6.2.2. Component Separation

An advantage of PCAT-DE for this application is that, by
modeling all components simultaneously, one mitigates parts
of the SZ signal being apportioned to point sources and
vice versa. This can be understood upon visual inspection in
Figure 11, where the observed cluster field, the best-fit CIB

model, and the residual between the two are plotted. Even
when the input SZ signal has a small signal-to-noise ratio (for
example, at 350 μm) or is heavily confused, as seen at 500 μm,
PCAT-DE is able to reliably separate the underlying signal
from contaminants. Unmodeled point-source emission can be
seen as well in the residual maps, meaning confusion noise
remains a significant systematic in the surface brightness
measurement.

6.2.3. Sensitivity to Cluster Properties

For each of the three clusters listed in Table 1, the same set
of 20 CIB + instrument noise realizations are used to generate
mock cluster observations, after which samples from each set
of 20 chains run on the data are aggregated and plotted in
Figure 12. Computing this full distribution allows us to
quantify the systematic uncertainty associated with the CIB,
identify any consistent biases, and assess the sensitivity of our
results to the details of the cluster itself.
While source confusion can have large effects on the

recovered SZ effect signal, the recovered surface brightness
estimates are fairly unbiased over several CIB realizations. The
estimated MAP values and 68% credible intervals for APMW

SZ

and APLW
SZ are compared with the input surface brightnesses in

Table 1. The mean bias is − 0.3σ for both APMW
SZ and APLW

SZ ,
and this bias is consistent across our three clusters. This implies
it is primarily correlated with the common CIB mocks used to
make each set of cluster observations. In general, the derived
uncertainties do not vary significantly from cluster to cluster,
but a more thorough investigation of the uncertainties from a
larger sample of clusters may reveal trends with respect to gas
temperature, angular extent, etc. We find that MACS J0025, the
cluster with lowest gas temperature (i.e., the smallest SZ
distortion) and smallest angular extent, has larger uncertainties
by ∼40% and 20% for PMW and PLW, respectively.

7. Summary and Outlook

In this work, we have considered a variety of inference tasks
that rely on the effective separation of pointlike and diffuse
signals. This is done by extending the forward modeling
framework of PCAT with a flexible, template-based model for
diffuse signals, which results in the efficient separation of CIB
emission from diffuse Galactic cirrus. Our point-source
completeness limits (Section 5) are robust to additional diffuse
emission, degrading by less than ∼20% at nearly all flux
densities and both noise levels. The purity degrades by a larger
amount in the presence of prominent diffuse signals, and we
find this degradation correlates with the local signal curvature.
At the population level, PCAT-DE enables the robust recovery
of number counts across a range of cirrus foreground levels.

Table 1
Input and Recovered SZ Effect Surface Brightnesses for the Three Test Clusters A1835, RXJ 1347, and MACS J0025

Cluster Name Redshift TPW θFWHM Input APMW
SZ ÂPMW

SZ
Input APLW

SZ ÂPLW
SZ

(keV) (arcmin) (MJy sr−1) (MAP, 68% C.I.)

A1835 0.25 8.9 3.6 0.012 s-
+ ( )0.007 0.50.014

0.016 0.068 s-
+ ( )0.063 2.40.026

0.014

RX J1347.5-1145 0.45 17.3 2.5 0.033 s-
+ ( )0.028 2.20.013

0.016 0.130 s-
+ ( )0.125 6.30.020

0.014

MACS J0025 0.59 8.3 2.1 0.010 s-
+ ( )0.004 0.20.018

0.033 0.055 s-
+ ( )0.050 2.20.018

0.031

Note. These clusters have been observed by Chandra, Bolocam, and SPIRE, with pressure-weighted temperatures derived from Chandra observations. Surface
brightnesses are in units of MJy sr−1 and uncertainties are reported using the highest posterior density intervals. The significance of each SZ detection is also computed
assuming Gaussian uncertainties.
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For our low-noise (σinst= 1 mJy beam−1) case, we obtain
consistent flux density number counts across all levels of
injected cirrus for S250> 25 mJy, and the counts in cases up to
4×-Planck are consistent for S250> 12 mJy.

In our second application of PCAT-DE, we demonstrate that
the faint, spatially extended SZ effect signal can be recovered
in the presence of CIB galaxy contamination along the same
line of sight. Averaged over several mock CIB realizations, the

mean recovered SZ surface brightnesses are unbiased at the
0.3σ level, with uncertainties dominated by confusion noise.
PCAT-DE was recently used to measure the gas temperature of
the galaxy cluster RX J1347.5-1145, to which the SZ spectrum
is sensitive through relativistic effects (Butler et al. 2022). That
work found a temperature of 〈Tsz〉2500= -

+22.4 12.0
10.6 keV, con-

sistent with the X-ray-measured 〈Tx,pw〉2500 = 17.3 keV. The
results from this work further demonstrate that similar

Figure 11. ¢ ´ ¢10 10 cirrus-free mock SPIRE observations toward galaxy cluster RX J1347.5-1145. The columns show (going from left to right) the input SZ effect
signal, observed maps, median CIB model, and difference between the observed maps and CIB model. By fitting both SZ and CIB simultaneously, we can account for
the presence of submillimeter point sources without overfitting the underlying SZ signal. The maps in the rightmost column are shown for visualization purposes only.

Figure 12. Recovered posteriors on Ab
SZ surface brightness parameters for clusters of varying redshift/angular extent. The cluster realizations corresponding to these

results are cirrus-free, and the input SZ surface values for each cluster (marked by the red stars) are determined from a combined analysis of Chandra and Bolocam
data. 1σ and 2σ density contours are plotted for each cluster.
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measurements of the SZ effect should be robust for a collection
of different cluster profiles and gas temperatures. When a
spatial template for the diffuse signal is available, it can be
easily incorporated into the forward model, as shown in
Section 6, but more detailed signal parameterizations may be
used when appropriate.

Surveys with strict requirements on photometric accuracy
may place stringent cuts on sources based on the estimated
signal-to-noise ratio or excise regions with pronounced diffuse
contamination. In addition to a loss of information, the situation
can be especially problematic when uncertainties due to diffuse
signals are underestimated. We anticipate that the tools from
this work can expand the sample size of “usable” sources in
astronomical catalogs when both source confusion and diffuse
foregrounds are prominent.

While the Fourier component model performs well for the
examples considered in this work, there are limitations on the
types of signals it can reconstruct effectively. In particular,
structures comparable to or smaller than the PSF FWHM may
be more difficult to model with Fourier components, as
suggested by results on cirrus-dominated maps (see Figure 3).
More flexible generative models may be able to capture
nonlinear structures such as filaments, as demonstrated on
CMB data to model foregrounds (Régaldo-Saint Blancard et al.
2023; Thorne et al. 2021). Under the assumption that the color
of the diffuse signal component is constant over a given field of
view, it is effective to model the Fourier components in several
bands with simple linear scaling factors, incorporating color
prior information when appropriate. Position-dependent color
variations may be non-negligible for some observations, which
can be addressed either by processing smaller regions with
fixed color or by incorporating a model for color variations.
The formalism of Bayesian hierarchical modeling permits for
more detailed extensions of the forward model, in a way that
reflects an appropriate level of knowledge. By the same token,
one should always be careful in characterizing the effect of
priors, both explicitly specified and those implicit to the
method (Schmidt et al. 2020), on a given inference task.

PCAT-DE is publicly available on GitHub at https://github.
com/RichardFeder/pcat-de, with corresponding documenta-
tion12 and examples demonstrating applications from this work.
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Appendix A
Fourier Component Marginalization

To accelerate the burn-in phase of sampling, we apply a
series of linear marginalization steps for the set of Fourier
component templates, the number of which are fixed a priori.
Let ij be the ith pixel of the jth Fourier component template,
and let βj be the jth Fourier component’s amplitude. Then b
is a column vector with the flux in each pixel from each Fourier
component. Let Σ be a diagonal matrix, where Σii is the
variance in pixel i and K the corresponding data vector. Then
the β that minimizes the chi-squared statistic χ2(β) is given by
the Moore–Penrose inverse:

b S S= - - -ˆ ( ) ( )   K. A1T T1 1 1

While the linear inversion from Equation (A1) minimizes χ2

with respect to the data, in practice the Fourier component
parameters are driven to local minima that are difficult to leave
in the sampling phase. In addition, because the marginalization
procedure is only applied to Fourier component templates, the
MAP estimates obtained at the beginning of burn-in are
conditioned on an unconverged point-source model. When
used at the beginning of the sampler, to obtain an initial guess
of the diffuse model, the MAP estimate is biased due to
unmodeled point sources. To prevent divergence of the Moore–
Penrose inverse, the solution is regularized by imposing a prior
on the Fourier component coefficients. This is done through
ridge regression, which penalizes the loss function with the ℓ2

norm of the component amplitudes:

b sS S= +- - -ˆ ( ) ( )  I K. A2T T
ridge

1 1 1

The vector σ acts as a Gaussian prior on the fluctuation
amplitude of each component. In PCAT-DE, σ is inversely
proportional to the power spectrum of the underlying signal
evaluated at the scale of each Fourier component. An iterative
scheme is implemented in PCAT-DE, in which the Fourier
components are repeatedly fit to the residual of the data and
point-source model. The terms in Equation (A2) only need to
be computed once up front and then stored for fast evaluation
with the residual data vector K. For a 100× 100 pixel image fit
using a 15th-order Fourier component model, computing b̂
takes 8 ms per evaluation (with precomputed quantities),
accelerating the burn-in MCMC phase of the fitting routine.
Extending the marginalization procedure to include source
fluxes should be possible, but is left to future work.

Appendix B
Parsimony Prior in the Weakly Nonasymptotic Limit

In PCAT, goodness of fit is enforced with a delta log-prior
proportional to the number of point-source parameters being
added or removed from the model. This reflects the fact that
adding parameters to a model will, on average, improve the
log-likelihood of a reconstructed signal. When the number of
parameters is much smaller than the dimension of the data, the
expected improvement in the log-likelihood is one-half per12 https://pcat-de.readthedocs.io
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additional dof. However, this asymptotic result may be ill-
suited in the limit of severely confused observations.

We consider the F-statistic (Fisher 1922), which models the
significance of a model’s improved fit to data using Snedecor’s
F-distribution. Let1 be an initial model with p1 parameters
and È d= 2 1 , the union of the initial model, and δ with
p2= p1+ pδ parameters. The F-statistic is expressed in terms of
the chi-squared statistic, the number of parameters associated
with each model, and the length of the data vector:

c c

c
=

- -

d
( )F

p

N p
. B11

2
2
2

pix 2

2
2

Then one can rearrange the terms to relate the delta chi-squared
to the F-distribution with pδ and Npix− p2 dofs:

c
c

D ~
-

-d
d( ) ( )

p

N p
F p N p, . B22 2

2

pix 2
pix 2

The expectation of this F-distribution is
-

- -

N p

N p 2
pix 2

pix 2
, and so the

expected delta log-likelihood is

c
áD ñ =

- -
d ( )

p

N p
log

1

2 2
. B32

2

pix 2

In Figure 13, we plot Equation (B3) for both single- and
three-band cases, assuming good fits to the data (i.e.,
c » N2

2
pix). This is done as a function of source density,

ranging from zero (the “sparse limit”) to four sources per beam.
For both curves, the larger improvement relative to the
asymptotic limit is expected—correlations between model

parameters become non-negligible, meaning the model com-
ponents can conspire to produce a better reconstruction of the
data. These results further suggest that a three-band fit to
Herschel-SPIRE data becomes more susceptible to overfitting
as the source density increases. This is explained by the poorer
angular resolution of the 350 and 500 μm SPIRE maps—while
there are additional pixels to constrain the model, these are
outnumbered by the additional parameters required to model
source fluxes in these bands, leading to more overfitting. This
would not be the case if the resolution were the same across
maps; for example, in a joint fit of several 250 μm observations
of the same field. A simpler point-source parameterization—for
example, colors modeled by a single temperature—would
reduce the number of additional parameters and thus the
amount of overfitting, but care would be needed to manage the
transition between sources whose observed spectra trace the
blackbody peak (i.e., sources with temperature-driven colors)
and sources with more complicated SEDs.
We use the expected number density of SPIRE sources with

S250> 3 mJy based on the B12 model (∼1 beam−1) to predict
the expected delta log-likelihood relative to the sparse limit,
which informs our choice of scaling parameter ρ defined in
Equation (7). Additional parameters for the Fourier component
model modify the parsimony prior as well, as can be seen by
comparing the solid and dashed curves in Figure 13.

Appendix C
Source/Background Covariance

Quantifying the covariance between point sources and a
generic foreground/background helps to inform the proposal

Figure 13. Expected improvement in log-likelihood from adding a point source to the model relative to the sparse limit, áD ñ log n 0, as a function of source density.
Three parameters are added to the model per source in the single-band case, while each additional band included in a joint fit increases the number of parameters per
source by one. The solid and dashed curves are for results with and without Fourier components, respectively.
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kernel widths for model components within PCAT-DE. As
detailed in Portillo et al. (2020), the uncertainty of a uniform
background b in the presence of a single point source with flux
density f can be calculated by computing the 2× 2 Fisher
information matrix and its inverse:

s q
q

q q q

s

=
-¶

¶ ¶ - ¶ ¶

=
-

( )
( )

( ) ( ) ( ( ))

( )



  

A A

ln

ln ln ln
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f

b f b f

2
ML

2
ML

2
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where A= nm and = å -( ( ) )A p x y,i
N

ipsf
2 1pix is the effective

PSF area in pixels. This means that a larger effective PSF
increases the corresponding uncertainty on b.

We can generalize the previous result to include n sources in
the covariance matrix. Let us assume that our source fluxes are
independent of one another, i.e., mixed-derivative terms
¶ ¶ =*ln 0f fi j

, where the maximum log-likelihood is abbre-
viated q=* ( ) ln ln ML . Our Fisher matrix can then be
written as the following:
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Assuming the diagonal elements in the above arrowhead matrix
are nonzero, the inverse is a rank-one modification of a
diagonal matrix:
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Computing the covariance matrix from Equation (C2), and
evaluating the diagonal background element, one obtains

s q
s

=
-

( ) ( )
A nA
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PSF

2
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2

This follows the intuition that as the number of sources in a
given image increases, the effective number of pixels that
contribute to constraining the background normalization
decreases. In more realistic situations, where the correlations
between sources are taken into account, the uncertainties on b

will in general be larger. While we consider uncertainties on the
mean normalization, a discussion of the uncertainties on a
generic sky model is presented in Appendix C of Portillo et al.
(2020).
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