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E�ects of gut microbiota on
prostatic cancer: a two-sample
Mendelian randomization study

Qingpeng Xie and Bin Hu*

Department of Urology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and

Institute, Shenyang, Liaoning, China

Aim: Recent observational and small-sample case-control studies have shown

a relationship between gut microbiota composition and prostatic cancer (PCa).

Nevertheless, the causal association between gut microbiota and PCa is still

unclear. Herein, we used the Mendelian randomization (MR) method to explore

the potential causal relationship between gut microbiota and PCa.

Methods: In this two-sample MR study, data were extracted from the summary

statistics of gut microbiota from the largest available genome-wide association

study meta-analysis conducted by the MiBioGen consortium (n = 14,306) and the

Dutch Microbiome Project (n = 8,208). Summary statistics for PCa were obtained

from the FinnGen consortium release data (n= 95,213). Inverse variance weighted

(IVW), MR-Egger, strength test (F), and MR-PRESSO were used to examine the

potential causal association between gut microbiota and PCa. Cochran’s Q

statistics were used to quantify the heterogeneity of instrumental variables.

Results: IVW estimates suggested that the relative abundance of Akkermansia

muciniphila (odds ratio [OR] = 0.7926, 95% confidence interval [CI]: 0.6655–

0.9440) and Bacteroides salyersiae (OR = 0.9023, 95% CI: 0.8262–0.9853) were

negatively associated with the odds of PCa, while that of Eubacterium biforme

(OR = 1.1629, 95% CI: 1.0110–1.3376) was positively associated with the odds

of PCa. In addition, we explored these relationships among patients without

other cancers and similarly found that the relative abundance of Akkermansia

muciniphila, Bacteroides salyersiae, and Eubacterium biforme were linked to PCa

(all P < 0.05).

Conclusion: Gut microbiota potentially influenced the occurrence of PCa.

Our findings may provide some new ideas for researching the methods of

PCa prevention. In addition, further studies are needed to explore the causal

association and specific underlyingmechanisms between gutmicrobiota and PCa.

KEYWORDS
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Introduction

The role of gut microbiota in prostate cancer (PCa) has received a lot of attention in

recent years (Rizzo et al., 2022), and the concept of “gut-prostate axis” has been proposed

(Fujita et al., 2023; Matsushita et al., 2023). Previous basic studies suggested that the

underlying mechanisms of gut microbiota’s effects on the incidence and progression of

PCa may involve modulating inflammation, oxidative stress, and immune function and

interfering with lipid metabolism (Porter et al., 2018; Wheeler and Liss, 2019). Nevertheless,

evidence from population-based studies on the relationship between gutmicrobiota and PCa

remains limited, and most of the existing studies are small-sample case-control studies.
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Studies have suggested that patients with PCa exhibit an

increased relative abundance of the bacterial genera Veillonella,

Bacteroides (Alanee et al., 2019), Streptococcus (Liss et al.,

2018), Rikenellaceae, Alistipes, and Lachnospira (Matsushita et al.,

2021). While in control groups, the relative abundance of

Faecalibacterium prausnitzii and Eubacterium rectalie was higher

than that in cases (Golombos et al., 2018). However, the firm

conclusions for the causal relationship and its direction between

gut microbiota and PCa are not yet enough to draw according

to the existing observational studies’ evidence. Inherent defects

limited traditional observational studies, and thus the causal role

of gut microbiota in the risk of PCa remained to be clarified

(Tong et al., 2020). In spite of the fact that randomized controlled

trial is recognized as a gold standard for determining causality,

its application in clinical settings is impractical due to the long

incubation period from certainmicrobiota exposure to oncogenesis

(Spieth et al., 2016). Under the circumstances, a novel method for

investigating the causal association between gut microbiota and

PCa is warranted.

Mendelian randomization (MR) analysis has become a widely

used approach that exploits single nucleotide polymorphisms

(SNPs) as unconfounded instrumental variants (IVs) to explore

the potential causal relationships between environmental exposures

and diseases (Davey Smith and Hemani, 2014; Sekula et al., 2016).

MR can avoid reverse causality inferences and reflect the long-

term effects of exposures on outcomes. A recent two-sample MR

analysis assessed the causal effect of gut microbiota on cancer risk

and showed that the relative abundance of Alphaproteobacteria,

Rhodospirillales, Adlercreutzia, and Coprobacter was associated

with PCa (Wei et al., 2023). However, the findings of Wei’s study

were not in accordance with those of other epidemiological studies,

and they also did not explore the causal associations between gut

microbiota and cancer risk at the species level.

Herein, in this two-sample MR study, we aimed to investigate

the potential causal relationship between gutmicrobiota at different

levels, especially at the species level, and PCa in order to provide

some new ideas for exploring the methods for PCa prevention

and treatment.

Methods

Data sources

This study is a two-sample MR analysis. Data from the

genome-wide association studies (GWASs) were extracted for

gut microbiota and PCa. Figure 1 is the flowchart of this

research procedure. Genetic variants of the gut microbiota were

obtained from MiBioGen (Kurilshikov et al., 2021) and the Dutch

Microbiome Project (DMP) (Lopera-Maya et al., 2022), and the

sample size was 14,306 and 8,208, respectively. PCa cases (n =

6,311) and controls (n = 88,902) were obtained from the FinnGen

consortium initially (Kurki et al., 2023). The detailed descriptions

of exposure and outcome, including the data source, microbial taxa,

race of population, sample size, the total number of SNPs, and

website information, are presented in Table 1.

The study data from the databases are de-identified and

publicly available. The informed consent of all participants (legal

guardians for participants under 18 years old) has been obtained

in each GWAS involved in this study and was ethically approved

by the respective institutions. Therefore, no ethical approval of our

agency’s institutional review board was required.

Single nucleotide polymorphism selection

We extracted six levels of gut microbiota taxa, including

phylum, class, order, family, genus, and species. SNPs significantly

associated with gut microbiota were selected as potential

instrument variables (IVs). We used two threshold standards to

select the IVs, including a loose threshold (P < 1.0 × 10−5) and

a strict threshold (P < 5.0 × 10−6). SNPs with a minor allele

frequency of ≤0.01 were removed. The linkage disequilibrium

threshold was set to be r2 = 0.01, clumping distance = 10,000 kb

(for loose threshold), and r2 = 0.001 clumping distance =

10,000 kb (for strict threshold), respectively. We applied the

MR-Egger regression test to monitor the potential horizontal

pleiotropic effect (Burgess and Thompson, 2017), namely the

confounding effect resulting from other diseases, which may

violate the second assumption in MR analysis (only affect the

outcome via the exposure). The intercept item of MR-Egger that

was significant represents the existence of pleiotropy. In addition,

palindromic SNPs were deleted due to the principle of MR to

ensure that the same allele corresponds to the effects between SNPs

and exposure and on the outcome.

The assumptions of MR analysis

For the purpose of minimizing the impact of bias on the results,

MR must conform to three important assumptions. First, IVs must

be independent of confounders related to exposure and outcome.

Second, the IVs should be significantly linked to the exposure. The

association strength between gut microbiota and IVs was estimated

using the formula: F = β2/SE2 (Xie et al., 2023), where β was the

regression coefficient for gut microbiota and IVs and SE was the

standard error. A weak association between IVs and exposure is

recognized when F < 10. Third, IVs influence outcomes through

exposure only; that is, there is no horizontal pleiotropic effect of

IVs on outcomes.

Statistical analysis

The statistical analyses were performed by R version 4.2.0

(Institute for Statistics and Mathematics, Vienna, Austria). The

R package “TwoSampleMR” was used for MR analysis of the

causal association between gut microbiota and PCs. P < 0.05

indicates the statistical significance of evidence for a potential

causal relationship. The Wald ratio method was utilized to assess

the role of individual IVs in the causal estimates. Calculation for the

causal effect values was done using the inverse variance weighted

(IVW) test, which is the primary method to obtain unbiased

estimates when horizontal pleiotropy is absent. We used both fixed

and random effects models for the IVW test. The effect size was
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FIGURE 1

Flowchart of the study design.

expressed by odds ratios (ORs) with 95% confidence intervals (CIs).

In addition, Bonferroni thresholds were also utilized to adjust for

the P-value to control for multiple tests.

The test for heterogeneity was Cochrane’s Q test, and IVs

P < 0.05 were recognized as heterogeneous. The intercept of

MR-Egger regression examined the potential pleiotropy in IVs,

and P > 0.05 was deemed to be no horizontal pleiotropy. The

examination of possible outliers was done using the MR-Pleiotropy

RESidual Sum and Outlier (MR-PRESSO) test (R package “MR-

PRESSO”) (Verbanck et al., 2018). Moreover, we performed the

reverse causality analysis between gut microbiota and PCa.

Results

Instrumental variables selection

After quality control, we identified 2,616 (P < 1.0 × 10−5) and

1,371 (P < 5.0 × 10−6) SNPs as IVs for 302 bacterial taxa, which

comprised 9 phyla, 16 classes, 20 orders, 33 families, 119 genera,

and 105 species. Then, we evaluated the horizontal pleiotropic

effect at each taxa level. For both PCa and the five levels of gut

microbiota, none of the IVs were outliers through the MR-PRESSO

test. IVs in this analysis had no horizontal pleiotropy after removing
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TABLE 1 Information of the data source for gut microbiota and PCa.

Variables Consortium Traits Year Population Sample size nSNPs nTaxa Websites

Exposure MiBioGen Phylum 2021 European 14,306 9 https://mibiogen.gcc.rug.nl/menu/

main/home

Class 2021 European 14,306 16

Order 2021 European 14,306 20

Family 2021 European 14,306 33

Genus 2021 European 14,306 119

DMP Species 2021 European 8,208 105 https://dutchmicrobiomeproject.

molgeniscloud.org/menu/main/

home

Outcome FinnGen PCa 2021 European 95,213 16,378,835 - https://www.finngen.fi/en

PCa, prostatic cancer; SNP, single nucleotide polymorphism; DMP, Dutch Microbiome Project.

pleiotropic SNPs identified using the MR-PRESSO outlier test and

MR-Egger regression (both MR-PRESSO global test P > 0.05 and

MR-Egger regression P > 0.05).

Two-sample MR analysis

Figure 2 shows the relationship between 53 bacterial taxa and

PCa. Whether the IVW estimates used a loose threshold (P < 1.0×

10−5) or a strict threshold (P < 5.0× 10−6), the relative abundance

of seven bacterial taxa was all significantly associated with the

odds of PCa. To be specific, the increased relative abundance of

Melainabacteria (at class level),Gastranaerophilales (at order level),

and Prevotellaceae (at family level) was negatively associated with

the odds of PCa, while that of Acidaminococcaceae (at family level),

Ruminococcus torques group, Lachnospiraceae UCG-008 (at genus

level), and Eubacterium biforme (at species level) had positive

relationships.

When focused on the role of bacterial taxa at the species

level in PCa (fixed effect), the relative abundance of Akkermansia

muciniphila (OR= 0.7926, 95% CI: 0.6655–0.9440) and Bacteroides

salyersiae (OR = 0.9023, 95% CI: 0.8262–0.9853) was both

negatively associated with the odds of PCa, while that of

Eubacterium biformewas positively associated with the odds of PCa

(OR= 1.1629, 95% CI: 1.0110–1.3376) (Table 2).

We further explored these associations among patients without

any other cancers and similarly found the negative relationship

between the relative abundance of Akkermansia muciniphila (OR

= 0.7857, 95% CI: 0.6548–0.9428) and Bacteroides salyersiae (OR

= 0.9019, 95% CI: 0.8228–0.9887) and PCa, and the positive

relationship between the relative abundance of Eubacterium

biforme (OR= 1.1876, 95% CI: 1.0268–1.3735) and PCa.

Table 2 also shows the pleiotropy and heterogeneity test

results. We indicated the impact of comparatively accurate MR

results in three species of gut microbiota on PCa by sensitivity

analysis. No horizontal pleiotropy was observed in Akkermansia

muciniphila (P = 0.5702), Bacteroides salyersiae (P = 0.6262), and

Eubacterium biforme (P= 0.5646) for PCa. Furthermore, there was

no heterogeneity in Akkermansia muciniphila (IVW: P = 0.5933;

MR-Egger: P = 0.4960), Bacteroides salyersiae (IVW: P = 0.6203;

MR-Egger: P = 0.5181), and Eubacterium biforme (IVW: P =

0.6905; MR-Egger: P = 0.6075) for PCa. Results of IVW were

comparatively reliable when heterogeneity and pleiotropy were

absent, indicating the potential causal relationships between these

three species of gut microbiota and PCa were comparatively steady.

In addition, we used the Bonferroni threshold to assess these

relationships and found that only high a relative abundance of

Akkermansia muciniphila (P= 0.010) was associated with low odds

of PCa among all participants or those without any other cancers.

The results of reverse causality analysis also showed that there was

no reverse causality relationship between gut microbiota and PCa

(fixed effect) (Table 3).

Discussion

We conducted an MR analysis to explore the potential causal

relationship between gut microbiota and PCa. The results showed

that Melainabacteria (class level), Gastranaerophilales (order

level), Prevotellaceae (family level), Acidaminococcaceae (family

level), Ruminococcus torques group (genus level), Lachnospiraceae

UCG-008 (genus level), Akkermansia muciniphila (species level),

Bacteroides salyersiae (species level), and Eubacterium biforme

(species level) were associated with PCa. To be specific, the relative

abundance of Akkermansia muciniphila and Bacteroides salyersiae

was both negatively associated with the odds of PCa, while that

of Eubacterium biforme was positively associated with the odds of

PCa. Besides, no reverse causality has been found between them.

The firm conclusions for the causal relationship between gut

microbiota and PCa are not yet enough to draw according to

the evidence from existing observational studies. In recent years,

only a few studies have explored the association between gut

microbiota and the risk of cancer using MR analyses, which is a

widely used approach to explore the potential causal relationships

between environmental exposures and diseases. For example, a

univariable and multivariable MR study by Wei et al. (2023)

assessed the causal effect of gutmicrobiota on five common cancers,

including breast, endometrial, lung, ovarian, and PCa. Their results

showed that a higher abundance of class Alphaproteobacteria was

associated with a lower risk of PCa. Differently, in our study,

we focused on the relationship between gut microbiota and PCa

only and observed gut microbiota at phylum, class, order, family,
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FIGURE 2

Histograms for the potential causal association between gut microbiota and PCa. The blue color represents OR < 1 while orange color represents

OR > 1.

genus, and species levels. We found that the relative abundance of

Akkermansia muciniphila, Bacteroides salyersiae, and Eubacterium

biforme was all associated with PCa. Our study detailed the

group of gut microbiotas and found three specific species, which

may provide some references for further basic and prospective

research on the causal relationship between gut microbiota and

PCa. In Wei’s study, the associations between SNPs and PCa

were obtained from the GWAS study from the Prostate Cancer

Association Group to Investigate Cancer-Associated Alterations in

the Genome (PRACTICAL) Consortium, which consists of cases

diagnosed with PCa and controls of European descent. Another

two-sample MR study by Long et al. (2023), also based on the

population from the PRACTICAL Consortium, examined the

causal relationship between gut microbiota and cancer. Although

we used the GWAS study from the Finngen Consortium, the

race of the study population was similar. Long’s results showed

that the genus Ruminococcustorquesgroup, class Verrucomicrobiae,

family Verrucomicrobiaceae, order Verrucomicrobiales, genus

Terrisporobacter, genus Roseburia, and class Alphaproteobacteria

were causally associated with PCa. The different gut microbiota we

explored may complement previous studies.

In fact, the underlying mechanisms of these gut microbiota

and PCa are complex and unclear. The class Melainabacteria has

been identified as an accurate biomarker of zinc (Zn) status in the

human body (Chen et al., 2021). As Zn plays a growth-modulatory

role in PCa, Melainabacteria may influence the occurrence and

development of PCa bymodulating Zn levels (To et al., 2020; Zhang

et al., 2022). Melainabacteria exist in groundwater, wastewater
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TABLE 2 Association between gut microbiota and PCa at the species level.

Microbiota taxa
(species)

Pleiotropy
test

F-
statistic

Heterogeneity
(IVW)

Heterogeneity
(MR-Egger)

nSNP IVW
(randome�ect)

IVW
(fixed e�ect)

Bonferroni
threshold
(0.05/nSNPs)

Power
(%)

MR-Egger
intercept

P Q P Q P OR (95% CI) P OR (95% CI) P

Malignant neoplasm of prostate

Akkermansia

muciniphila

−0.0345 0.5702 167.5746 2.7913 0.5933 2.3873 0.496 5 0.7926 (0.6850–0.9172) 0.002 0.7926 (0.6655–0.9440) 0.009 0.010 0.10

Alistipes shahii −0.0099 0.9119 88.61356 0.6255 0.8906 0.6098 0.7372 4 1.1745 (1.0431–1.3225) 0.008 1.1745 (0.9058–1.5230) 0.225 0.0125 0.08

Bacteroides salyersiae −0.0238 0.6262 132.4007 3.5203 0.6203 3.2427 0.5181 6 0.9023 (0.8380–0.9715) 0.006 0.9023 (0.8262–0.9853) 0.022 0.008 0.06

Eubacterium biforme −0.0309 0.5646 88.15534 1.4646 0.6905 0.9969 0.6075 4 1.1629 (1.0545–1.2824) 0.002 1.1629 (1.0110–1.3376) 0.035 0.0125 0.08

Prevotella copri −0.0091 0.917 109.985 0.1711 0.918 0.1539 0.6948 3 0.8161 (0.7565–0.8803) <0.001 0.8161 (0.6299–1.0573) 0.124 0.017 0.09

Roseburia intestinalis −0.0113 0.817 131.1277 0.7852 0.9404 0.7214 0.8681 5 0.8988 (0.8251–0.9792) 0.015 0.8988 (0.7409–1.0905) 0.279 0.010 0.06

Ruminococcaceae

bacterium_D16

−0.0033 0.9555 157.0054 2.4726 0.6495 2.4689 0.4809 5 0.9143 (0.8411–0.9938) 0.035 0.9143 (0.8222–1.0166) 0.098 0.010 0.06

Ruminococcus lactaris −0.005 0.9676 89.21098 0.1166 0.9434 0.114 0.7356 3 1.1357 (1.0818–1.1924) <0.001 1.1357 (0.9283–1.3895) 0.216 0.017 0.07

Veillonella unclassified 0.0328 0.4214 170.6334 1.631 0.9503 0.8646 0.9727 7 1.0663 (1.0081–1.1279) 0.025 1.0663 (0.9575–1.1875) 0.242 0.007 0.05

Malignant neoplasm of prostate (all cancers excluded)

Akkermansia

muciniphila

−0.0306 0.6265 167.5746 2.4719 0.6497 2.1799 0.5359 5 0.7857 (0.6808–0.9067) 0.001 0.7857 (0.6548–0.9428) 0.009 0.010 0.1

Alistipes shahii −0.0509 0.5989 88.61356 0.9831 0.8053 0.5997 0.7409 4 1.1949 (1.0234–1.3952) 0.024 1.1949 (0.9115–1.5664) 0.197 0.0125 0.09

Bacteroides salyersiae −0.0206 0.6849 132.4007 2.9379 0.7096 2.7472 0.601 6 0.9019 (0.8406–0.9677) 0.004 0.9019 (0.8228–0.9887) 0.028 0.008 0.06

Eubacterium biforme −0.0404 0.4808 88.15534 1.1133 0.7739 0.3752 0.829 4 1.1876 (1.0869–1.2976) <0.001 1.1876 (1.0268–1.3735) 0.021 0.0125 0.09

Prevotella copri −0.0493 0.6217 109.985 0.6156 0.7351 0.1588 0.6902 3 0.8608 (0.7410–0.9999) 0.049 0.8608 (0.6571–1.1277) 0.277 0.017 0.07

Roseburia intestinalis −0.0088 0.8619 131.1277 0.9282 0.9205 0.8923 0.8273 5 0.9068 (0.8229–0.9993) 0.048 0.9068 (0.7412–1.1095) 0.342 0.010 0.06

Ruminococcaceae

bacterium_D16

0.0001 0.9984 157.0054 1.0069 0.9087 1.0069 0.7996 5 0.9005 (0.8519–0.9518) <0.001 0.9005 (0.8063–1.0057) 0.063 0.010 0.06

Ruminococcus lactaris −0.0052 0.9681 89.21098 0.2558 0.8799 0.2533 0.6148 3 1.0556 (0.9790–1.1382) 0.159 1.0556 (0.8551–1.3032) 0.614 0.017 0.05

Veillonella unclassified 0.0431 0.3186 170.6334 3.3993 0.7573 2.1731 0.8247 7 1.0798 (0.9926–1.1746) 0.074 1.0798 (0.9655–1.2076) 0.179 0.007 0.05

PCa, prostatic cancer; IVW, inverse variance weighted test; SNP, single nucleotide polymorphism; OR, odds ratio; CI, confidence interval. nSNP is the number of SNPs being used as IVs; F-statistic is the value of F statistics to examine the weak instrument bias; Q is

the estimated effect coefficient; Malignant neoplasm of prostate marked in bold represents that participants in control group do not have PCa.

Malignant neoplasm of prostate (all cancers excluded) marked in bold represents that participants in control group do not have any cancers.
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treatment plants, and herbivorous mammal and human guts and

have the function of synthesizing vitamins B and K, suggesting

they are beneficial bacteria to their hosts (Di Rienzi et al., 2013).

Similarly to the previous studies, our findings showed that an

increased abundance of Melainabacteria was associated with low

odds of PCa. Gastranaerophilales is one of the probiotics with

impaired abundance in colitis (Wang et al., 2021; Wu et al.,

2021). Inflammation is a risk factor for prostate carcinogenesis,

with diet, chemical injury, and an altered microbiome being

causally implicated (de Bono et al., 2020). However, no study

has been conducted to describe the potential mechanisms by

which Gastranaerophilales play a protective role in prostate

carcinogenesis, which needs further basic research for clarification.

Prevotellaceae is also a probiotic that plays an important role in

colitis and some cancers (Zhang L. et al., 2019; Qu et al., 2021). Li

et al. (2022) performed an analysis on alterations of gut microbiota

diversity, composition, and metabonomics in benign prostatic

hyperplasia rats and showed that there was a strong correlation

between Prevotellaceae and differential metabolites. However, the

specific mechanism of the potential protective role of Prevotellaceae

in PCa has not been clear. According to previous studies, we

speculated that Prevotellaceae may moderate inflammation (Qu

et al., 2021), oxidative stress (Cui et al., 2018), and metabolic

disorders (Li et al., 2022) and further influence PCa development.

The high relative abundance of the family Acidaminococcaceae,

genus Ruminococcus torques group, and genus Lachnospiraceae

UCG-008 was found to be associated with a high risk of PCa

in this study. Acidaminococcaceae clustered into one group with

the Veillonellaceae, which has been reported as a marker of

dysbacteriosis and plays a possible role in carcinogenesis (Yan

et al., 2015; Kasai et al., 2016). A bidirectional, two-sample MR

study on the association between Graves’ disease and the gut

microbiome showed that the Ruminococcus torques group was

identified as a risk factor (Cao et al., 2023). Ruminococcus torques

group is a genera derived from the genus Mediterraneibacter

from the family Lachnospiraceae and is identified as a butyrate-

producing bacterium (Salyers et al., 1977). Butyrate-producing

bacteria were found to promote fat deposition because they are

able to convert dietary fiber to butyrate by fermentation (Yang

et al., 2010; Blaut, 2015). The abundance of Ruminococcus torques

group is thus supposed to be positively related to fat accumulation.

Excess fat can accelerate the growth of prostate tumors by inducing

inflammation (Hayashi et al., 2018). In addition, altered lipid

metabolism, especially the excessive accumulation of cholesterol

and fatty acids, promotes the malignant transformation of PCa

via the formation of cholesteryl esters (Wang et al., 2022).

Lachnospiraceae UCG-008 is considered a potential harmful

genus in human colonic microbiota (Huang et al., 2019).

Some medicines improve gut microbial dysbiosis by increasing

beneficial bacteria and decreasing harmful bacteria, including

Lachnospiraceae UCG-008 in order to relieve diseases (Huang

et al., 2019; Yin et al., 2021). In conclusion, how gut microbiota

influence the development of PCa by disturbing the metabolism

is still unclear; further studies are needed to clarify the specific

biological mechanisms.

We additionally explored the relationships between gut

microbiota and the risk of PCa at the species level. Our findings

indicated that the high relative abundance of Akkermansia

muciniphila and Bacteroides salyersiae was both associated

with a low risk of PCa, while that of Eubacterium biforme

was positively associated with the risk of PCa. Akkermansia

muciniphila is a Gram-negative anaerobic bacterium that

contributes to homeostasis maintenance and barrier integrity

in the gastrointestinal tract (Zhai et al., 2019; Zhang T. et al.,

2019). Recently, it has been reported that intravenous injection

of Akkermansia muciniphila-derived extracellular vesicles in

immune-competent mice reduced the tumor burden of PCa

without inducing obvious toxicity in normal tissues, indicating

a potential association between the abundance of Akkermansia

muciniphila and PCa (Luo et al., 2021). Similarly, our MR study

supplemented and suggested a potential causal relationship

between the high relative abundance of Akkermansia muciniphila

and the low risk of PCa. Wang et al. (2020) found the membrane

protein from Akkermansia muciniphila, namely Amuc_1100,

was associated with tumourigenesis of colorectal cancer through

modulation of CD8T cells in mice. Gu et al. (2021) also suggested

that Akkermansia muciniphila and its outer protein Amuc_1100

regulated the tryptophan metabolism in colitis. Another animal

study also showed the effect of improved Amuc_1100 from

Akkermansia muciniphila on metabolism in obese and diabetic

mice (Plovier et al., 2017). As the mechanism of PCa development

mentioned previously, Akkermansia muciniphila and Amuc_1100

may also influence PCa by improving inflammation and regulating

glucose metabolism and lipid metabolism, but further mechanistic

exploration is needed. Bacteroides salyersiae is a beneficial

commensal with Akkermansia muciniphila and plays a similar

role in the host (Derosa et al., 2020). Our study considered that

the application of probiotics in the prevention and treatment of

PCa was very promising. Gut microflora evolves with a complex

polysaccharide-rich diet and dietary fermentation, resulting in

the production of short-chain fatty acids such as butyrate, which

represent a primary energy source for colonic epithelial cells and

preserve them from inflammation (Ahmad et al., 2000; Atarashi

et al., 2013). Eubacterium biforme is one of them. Aside from

this, a lack of fiber in diets is associated with a low concentration

of short-chain fatty acids (Pituch-Zdanowska et al., 2015).

Daily attention to dietary fiber consumption may be the key to

preventing inflammatory diseases by regulating intestinal flora.

Daily consumption of bifidobacteria-rich foods such as yogurt may

be a viable way to regulate probiotics; however, whether a high

relative abundance of Eubacterium biforme is associated with a

high risk of PCa is not determinate.

As mentioned before, MR is a relatively good study design

to clarify the causal effect of potential risk factors on diseases of

interest. By exploring the gut microbiota that modulate PCa risk,

MR studies facilitate the recommendation of public health policies

and clinical interventions that effectively reduce the incidence

and social burden of PCa. With the rapid development of omics

technologies in recent years, including genomics, proteomics,

transcriptomics, metabolomics, and epigenomics, researchers can

use a large number of novel exposures/intermediate phenotypes

generated in observational studies to assess associations with

clinical endpoints. The MR approaches summarize the results from

published GWAS studies facilitately and do not need a separate
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TABLE 3 Reverse causality between gut microbiota and PCa at the species level.

Microbiota taxa (species) IVW (random e�ect) IVW (fixed e�ect)

OR (95% CI) P OR (95% CI) P

Akkermansia muciniphila 0.9737 (0.8817–1.0754) 0.5995 0.9737 (0.9171–1.0339) 0.3840

Alistipes shahii 0.9976 (0.9518–1.0456) 0.9201 0.9976 (0.9445–1.0537) 0.9314

Bacteroides salyersiae 1.0747 (0.9442–1.2232) 0.2754 1.0747 (0.9494–1.2165) 0.2549

Eubacterium biforme 0.9954 (0.9155–1.0823) 0.9134 0.9954 (0.8982–1.1030) 0.9293

Prevotella copri 0.9457 (0.8978–0.9960) 0.0348 0.9457 (0.8897–1.0051) 0.0725

Roseburia intestinalis 0.9748 (0.9347–1.0166) 0.2327 0.9748 (0.9142–1.0393) 0.4345

Ruminococcaceae bacterium_D16 1.0063 (0.9027–1.1219) 0.9093 1.0063 (0.8939–1.1329) 0.9168

Ruminococcus lactaris 1.0157 (0.9442–1.0926) 0.6757 1.0157 (0.9444–1.0924) 0.6748

Veillonella unclassified 0.9995 (0.8959–1.1150) 0.9926 0.9995 (0.9073–1.1010) 0.9916

PCa, prostatic cancer; IVW, inverse variance weighted test; OR, odds ratio; CI, confidence interval.

study to carry out MR analyses (Sekula et al., 2016). Compared

with observational studies, which commonly suffer from biased

results due to confounding, MR can deal with any confounding by

design as long as a valid genetic instrumental variable is available.

However, two major limitations also influence the judgment of

causation through MR approaches. First, no valid instrument for

every research question is available because of a lack of knowledge

about MR, and the publicly available sources of data to provide

information on the associations of interest are not always available.

Second, MR studies have potential limitations in the statistical

power of the study design, which depends on several aspects, such

as the proportion of variance in the exposure explained by the

genetic instrumental variable and the magnitude of the causal

association between exposure and outcome (Brion et al., 2013;

Burgessm, 2014). Besides, in recent years, artificial intelligence

has been explored to improve the diagnosis of PCa, including

radiological and histological diagnoses (Ström et al., 2020; Mata

et al., 2021). Ramírez-Mena et al. (2023) combined gene expression

and AI for the detection and screening of PCa and found it

can decrease the misclassification rates of anatomopathological

analysis, thus reducing the need for repeated biopsies. Their

algorithm may be applied to urine or blood samples rather than

traditional living tissue, which could be a part of the liquid biopsy

strategy in PCa in the future. To the best of our knowledge,

AI has not been applied in the calculation of causal association

between the gut microbiota and the risk of PCa, and we believe

the potential causal relationship indicated by MR approaches can

provide some references for further studies that focus on the

underlying mechanisms.

There are some strengths and limitations in this study. The

current study refined the taxonomic units of gut microbiota to

the species level and explored their relationship with the risk

of PCa, which may be more comprehensive compared to the

previous studies. Nevertheless, there were two major limitations

in this study. Our study data were extracted from the MiBioGen

consortium, DMP, and FinnGen consortium, which may cause

the selection bias. Furthermore, these databases only contain

the European population, so the potential causal relationship

between gut microbiota and the risk of PCa is limited, and

whether the results are generalizable to other populations requires

further studies to clarify. Another limitation was that the

locations of the SNPs we used (whether they are present in

the enhancer/promoter/coding region of the genome) are not

available, which limited the explanation for the mechanisms

of the potential causal association between gut microbiota

and PCa.

Conclusion

Our study suggested a potential causal relationship between

gut microbiota and the risk of PCa. Further studies are

warranted to elucidate the causal association and specific

underlying mechanisms of gut microbiota and the development

of PCa.
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