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Abstract: This article discusses the mechanical redesign of a finger rehabilitation device based on
a slider-crank mechanism. The redesign proposal is to obtain a smaller and more portable device
that can recreate the motion trajectories of a finger. The real finger motion trajectories were recorded
using a motion capture system. The article focused on the optimal synthesis of the rehabilitation
device mechanism formulated as a classic trajectory generation problem. The proposed approach
was combined with the recorded finger movements and solved using the genetic algorithm (GA)
method. Optimization criteria and constraints were successively formulated and solved using a
mono-objective function.

Keywords: redesign; slider-crank mechanism; optimization; synthesis problem; rehabilitation devices

1. Introduction

In traditional physical and occupational therapy, a therapist often assists a patient
with a body movement that the patient cannot complete alone [1]. A rehabilitation program
aims to help a patient recover the lost capabilities, resulting in greater patient indepen-
dence [2]. Rehabilitation programs generally consist of three stages. They begin with
passive movements, where the therapist applies an external force to the patient due to
the lack of muscular activity [3], then the therapist continues with assistive exercises. The
patient does most of the exercises, but needs partial assistance from the therapist to perform
them correctly. Finally, in resistive exercises, the therapist provides little assistance to the
patient who performs muscle contractions against an external resistance [4,5]. The exercises
that contribute to the affected part’s mobility are mandatory, since it is crucial to avoid the
harmful effects of immobilization [2].

This article focused on the rehabilitation of fingers. A finger is composed of a
metacarpal and phalanges, two for the thumb and three for the other fingers. Every
finger chain is articulated through the carpometacarpal joint (CM). At the distal direction,
each metacarpal is articulated with the proximal phalanx through the metacarpophalangeal
joint (MP). The thumb has one joint, the interphalangeal joint (IP), which is between the
proximal and distal phalanges. The other four fingers have two joints: the proximal inter-
phalangeal joint (PIP) and the distal interphalangeal joint (DIP). The first is located between
the proximal and medial phalanges, and the second is located between the medial and
distal phalanges [6], as shown in Figure 1.

Hands are the primary tool of human beings in any work environment, hence, they
are exposed to all types of accidents or injuries due to diseases [7]. The use of robotic
technology offers therapists with a tool to optimize the therapy process and the patient’s
recovery. It has been proven to be safe, feasible, and effective for recovering the nervous
and muscular systems, at least in patients with stroke [8–13].
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Figure 1. The terminology of bones and joints of the hand.

The development of new technology in robotics for rehabilitation therapy can increase
the overall time of therapy, increasing the total patients that are attended to and the quality
of therapy with less supervision. There have been many developments around the world in
which robots assist patients in performing the desired movements. The articles presented
in [14–16] offer a complete classification of assistant robots, separated by the type of limb
they assist.

There are many ways of classifying hand rehabilitation robots. One is based on the
way motion is transmitted. The transmission allows the actuators to follow the desired
hand trajectory. The transmission’s election depends on the trajectory that the hand is
going to follow. Linkages and cables are common choices [17]. It is also possible to
combine different types of transmissions, as in [18]. The screw-nut transmission transforms
rotary motion into linear motion. It has a simple design that reduces cost and increases
reliability. Another advantage is that the load can be raised by applying minimal effort
while providing a precisely controlled linear motion. This main disadvantages of this type
of transmission is its low efficiency and the rapid wear of the screw or the nut [19].

Hand rehabilitation robots are also classified based on the type of actuation (e.g.,
electric motor, pneumatic, hydraulic, and human muscle). The electric motor is the most
widely used due to its reliability, availability, and precision [8]. Although pneumatic
actuators require minor maintenance, the compressed air needs storage, influencing the
device’s size and mobility. Hydraulic actuators have good performance because they can
generate higher torque than other actuators. However, they require more infrastructure
(the oil transmitting pipes and conduits) and space (for the actuation system). The human
muscle, as a type of actuation, implies that the impaired hand needs to be activated by
functional electrical stimulation to complete the motion [17].
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A fundamental aspect of hand rehabilitation robotics is the device hardware design.
The design requirements are different from the design of industrial robots. Hardware
design involves considerations of the safety, portability, and flexibility of the mechanism to
achieve effective rehabilitation for the patient [17].

Finger movement characteristics are essential in device design to specify patient safety.
Large devices need hospitals to be equipped with ample rooms to place them. They are
also expensive, which reduces the number of units purchased, leading to fewer patients
who can use this technology [17].

Exoskeleton-type devices such as those presented in [20,21] require little space because
they are mounted on the patient’s limb. Usually, the exoskeleton-type devices present
more mechanically complex designs because the human joints must coincide with the
exoskeleton’s joints. Furthermore, that can involve more than one degree of freedom
(DOF) in the device. End-effector-type devices such as Amadeo [22], a leading finger
rehabilitation device, features a simple and versatile design that easily adjusts to various
hand dimensions, however, it needs a large work area to operate. The challenge with the
end-effector devices is to make the designs as small as possible to obtain better portability.

From [14], only four devices focus on finger rehabilitation. In [15], seven are end-
effector devices for finger rehabilitation, two of which are mentioned in [14]. In [16],
they mentioned four systems assisting finger movements, two also mentioned in [14] and
one in [15]. The end-effector developments are fewer in comparison with exoskeleton
development, resulting in a potential field of research.

Optimization of mechanical and robotic designs is widely used for various applications
such as serial manipulators and parallel robots [23–25]. However, it has also gained
importance in assistive and rehabilitation devices as well as exoskeleton systems [26–31].
New optimization techniques have been sought to improve the dimensional characteristics
and dynamic characteristics of the systems. One of the methods that has gained more
attention in the optimization of mechanisms is the genetic algorithm. Due to the quality of
the population produced, only the best individuals in each iteration are taken into account.

The authors present the optimization of an end-effector finger rehabilitation device
that reproduces the individual trajectory of the fingers, which contributes to the first stage of
rehabilitation (assistance for passive movements). Compared to other end-effector devices,
the presented rehabilitation mechanism does not imitate the hand’s grasping functions.

Ensuring repetitive monitoring of the natural flexion–extension trajectory contributes
to proper fit and alignment of the finger joints. The patient recovers the joint mobility si-
multaneously (MP, PIP, and DIP). Respecting each joint’s range of movement can contribute
to the gross motor function and fine motor function. From a rehabilitation viewpoint, to
improve the range of movement (ROM) at a joint, each joint must be moved through inside
its ROM (expressed in degrees) at regular intervals. A continuous passive motion device
(like a rehabilitation robot) facilitates the rapid recovery of the neuromuscular system by
improving ROM [8,9,32,33].

The goal of this article is the proposal of an optimal redesign for a finger rehabilitation
device. The work focused on proposing the optimal dimensions of the existing mecha-
nism’s links, allowing for more accurate tracking of a trajectory compared to the existing
prototype that uses a screw-nut transmission. Additionally, the original prototype’s links
are too big concerning the end-effector trajectory’s size, which decreases the portability of
the prototype.

The rest of this paper is structured as follows. Section 2 contains the finger rehabil-
itation device’s description and kinematic model and presents the characterization and
analysis of the real finger trajectories, and finally, the optimization problem. Section 3
presents the optimization results, Section 4 presents the discussion, and, in Section 5, the
conclusions are presented.
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2. Materials and Methods

Figure 2 shows the redesign process for the previously mentioned finger rehabilitation
prototype. The mechanism’s redesign focused on finding the optimal dimensions for a
new mechanism (with the same architecture as the original) to replicate a real finger’s
flexion–extension trajectory better.

Figure 2. The block diagram for the approach.

The real trajectory analysis was carried out using a motion capture system, with the
participation of a group of subjects. The hand’s digital reconstruction allowed for the mea-
surement of the finger’s flexion–extension movement trajectories. The flexion–extension
trajectory of a participant’s index finger was selected for comparison with the mechanism’s
trajectory. This trajectory was chosen due to its large amplitude and equivalence characteris-
tic regarding the other recorded finger motions. The genetic algorithm (GA) method found
the dimensions that produced the minimum error between the mentioned trajectories.

2.1. Finger Rehabilitation Device
2.1.1. Existing Prototype

A prototype for assisting flexion–extension movements from the index to small fingers
was proposed in 2016 [34]. The prototype consisted of four parallel mounted slider-crank
mechanisms (one for each finger), driven by a direct current (DC) motor and a screw-nut
transmission, as shown in Figure 3. The end-effector, located in the coupler link, was the
contact point between the prototype and the fingertip. The fingertip was attached to the end-
effector using an articulated thimble placed at the extremity and was fixed with adhesive
fabric. Figure 4 shows how the arm and fingertip are positioned on the mechanism.

Figure 3. Finger rehabilitation prototype (back view).
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Figure 4. Finger rehabilitation prototype: (a) isometric view; (b) front view.

The patient’s forearm was placed in a support that could be adjusted in the x and z
plane. The upper part of the support had an integrated universal wrist–forearm splint. The
patient inserted their arm into the splint and adjusted with Velcro straps, which allowed
the forearm, wrist, and palm to be entirely fixed on the surface of the support.

The end-effector produces an arc segment, as shown in Figure 5, close to an elliptical
trajectory. The end-effector’s trajectory aims to closely follow the finger’s flexion–extension
movement’s natural trajectory, which has been studied by several authors [35–37]. This end-
effector’s trajectory is the defining characteristic of this prototype; other well-known finger
rehabilitation devices like Amadeo [22] use linear trajectories [38–40]. This remarkable
difference is because the presented rehabilitation mechanism does not imitate the hand’s
grasping functions.

The elliptical trajectory was compared with the end-effector mechanism’s trajectory
to propose an optimized size for the prototype. However, this research did not involve
mechanical changes or performance improvements to the transmission.

The prototype’s original dimensions were obtained using three points of the elliptical
trajectory described in the previous section; the full prototype design can be consulted
in detail in [34]. The original prototype’s elliptical trajectory tried to emulate the natural
flexion–extension movement. However, its design did not involve real flexion–extension
trajectories. In addition, given its size, it cannot be easily transported. It is essential to
ensure that the prototype’s end-effector can reproduce real trajectories with minimum
error to achieve better rehabilitation results and reducing its dimensions will improve
its portability.
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Figure 5. The trajectory of the end-effector prototype.

2.1.2. Architecture and Kinematic Model

Since the four mechanisms are similar, it is sufficient to only analyze one of them.
Figure 6 shows the computer-aided design (CAD) of one of the mechanisms and its vector
representation. Vector position 1 and 3 correspond to the distance between the points
A to B and B to C, respectively. The DC motor provides the angular movement that
is converted into a linear movement through the screw-nut transmission. This linear
movement is limited by the minimum and maximum position of the flexion and extension
points. The kinematics analysis is presented in detail in [41]; for the analytical purposes of
the mechanism’s redesign, a tag was assigned to every vector, as shown in Table 1.

Figure 6. CAD (computer-aided design) and vector representation of the existing prototype.
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Vector 4 represents the physical distance between points C and F. Point F represents
the minimum position of flexion movement. Point D is the contact point between the
patient and the device and describes the elliptical trajectory that was mentioned before.
Point D could be considered as a rigid body attached to the AB link and has an angle ρ with
respect to AB. Angle ϕ represents the inclination angle of the mechanism. In the original
prototype, ρ = 90 degrees and ϕ = 10 degrees.

Table 1. Tags for vectors.

Vector 1
From A to B

2
From B’ to B

3
From B to C

4
From C to F

5
From C to A

6
From B’ to D

Tag a d b f c e

Considering Figure 6, Equation (1) defines point D’s position coordinates, which is
the end-effector’s point that describes the elliptical trajectory. Vector 5 (Equation (5)) is
defined by a function that includes the length of vector 4 and the distance Ci between
the minimum and maximum position values, corresponding to the flexion and extension
points. The distance Ci is defined by Equation (6) and can be used for the optimization
process. Vector 4 of the original prototype was fixed to 344 mm, while the distance Ci went
from 0 to 125 mm. Vectors 2 and 6 are the distances between B to B’ and B to D, respectively.

From Equation (6), C0 represents the minimum value of Ci and Cm represents the
maximal value. Cm is defined by Equation (7), where dm is the distance the slider needs
to generate the desired trajectory. dm is defined by the sum of the minimal value and the
distance between the initial and final points of the trajectory.

D =

[
Dx
Dz

]
=

[
b cos α + d cos ϑ + e cos β
b sin α + d sin ϑ + e sin β

]
, (1)

where

α = 2 π −
(

arc cos
(

a2 − c2 − b2

−2bc

)
+ ϕ

)
, (2)

ϑ = ϕ + arc cos
(

b2 − c2 − a2

−2ac

)
, (3)

β = ϑ + ρ, (4)

c = f + Ci. (5)

The solution for this equation exists if and only if:

abs
(

a2 − c2 − b2

−2bc

)
< 1 and abs

(
b2 − c2 − a2

−2ac

)
< 1 Ci =

Cm

∑
j=C0

j, (6)

Cm = dm + C0. (7)

2.2. Finger Real Motion
2.2.1. Experimental Setup

To propose an improvement to the actual prototype, we performed several experi-
ments to obtain real curves for the fingers’ flexion–extension movements. These real curves
were used to evaluate the accuracy of the elliptical trajectory proposed in the original
prototype. The finger movements were recorded using the motion capture system Qualisys
Track Manager (v2018, Qualisys, Göteborg, Sweden, 2018), which was used to process
those records. A set of coordinates for each marker as a function of time was defined to
analyze the data. Mokka (v0.6.2, BTK, 2019) and MATLAB software (v2018, MathWorks,
Meudon, France, 2018) were used.
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The system was calibrated using a reference frame located in the corner on a flat
surface. The volunteer placed their forearm, as shown in Figure 7. We recorded the
flexion–extension movements from the index to small fingers. A total of six volunteers
were involved in the experimentation, both men and women, in the age range of 25 to
40 years old without any finger injury.

Figure 7. The experimental site with the Qualysis system.

A set of 21 markers was used and installed on the right hand of each volunteer. Table 2
describes each marker’s location and the label that was used to reconstruct the hand in
digital form. The digital reconstruction of the hand is shown in Figure 8. The digital
reconstruction was based on marker locations following the anatomy of the subject.

Table 2. Localization and names of the markers in the hand.

Finger Marker Articulation

Thumb
T1 Tip
T2 IP
T3 MCP

Index

I1 Tip
I2 DIJ
I3 PIJ
I4 MCP

Middle

M1 Tip
M2 DIJ
M3 PIJ
M4 MCP

Ring

R1 Tip
R2 DIJ
R3 PIJ
R4 MCP

Small

S1 Tip
S2 DIJ
S3 PIJ
S4 MCP

Wrist
W1 Carpal bones
W2 Carpal bones
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Figure 8. Location of the markers and the digital reconstruction of the hand.

Each volunteer’s forearm was placed on a flat surface, with the palm perpendicular
to the surface and their fingers in the extended position. The subjects were asked to
close and then open their fist, as shown in Figure 9, and to repeat the exercise 10 times.
The plane where the flexion–extension movements from the index to small fingers were
performed was perpendicular to the plane where the thumb’s flexion–extension movements
are performed.

Figure 9. (a) Initial position to record. (b) Hand in closed fist configuration.

The existing prototype was designed only for the flexion–extension movements from
the index to small fingers and considered only the trajectory of the distal phalanx; for this
reason, only the marker placed in the distal phalanx for these fingers (I1, M1, R1, and S1)
was analyzed.

2.2.2. Results of the Analysis of the Fingers Real Motion

The recorded gesture focused on the flexion–extension movement leading to the
fingertip trajectory. This finger movement occurs in the finger plane, which is normal
to all joint axes. Consequently, the fingertip trajectory were defined only by the x and z
coordinates (as shown in Figure 10). A series of three-dimensional curves, as shown in
Figure 11, was obtained using the flexion–extension movement in the xyz space, which
corresponded to the recorded motion for a volunteer’s index finger.

All subjects were asked to move their finger with a fixed abduction–adduction. De-
spite this virtual constraint and the low-speed exercise, the obtained fingertip trajectory
presented a reduced variation along the y-axes, probed through principal component anal-
ysis (PCA). The PCA reduces the dimensionality of a dataset of interrelated variables while
retaining the dataset’s variation. A new set of variables is generated, a linear combination
of the original variables. This new set of variables is called the principal components [42].
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Figure 10. Finger trajectory in the xz plane.

Figure 11. Flexion–extension movement in the space for the index finger of a volunteer.

The PCA indicates which variable is the most valuable for clustering the data. In this
article, the original set of variables are the xyz coordinates of the n point of the flexion–
extension movement, which means that three principals components exist. The principal
component is obtained by calculating the average values for all the variables, as shown in
Equation (8). The original variables are defined as p-dimensional vectors that need to be
projected onto a q-dimensional subspace.

x =
∑n

i=1 xi

n
y =

∑n
i=1 yi

n
z =

∑n
i=1 zi

n
(8)

The PCA identifies the directions (principal components) along which the variation in
the data is maximal. The direction of PC1 represents the most significant variation among
the data, PC2 is the second most important direction and is uncorrelated to PC1 and PC3.
PC3 represents the less important direction, also uncorrelated with the other principal
components. Principal components are normalized eigenvectors of the covariance matrix.
These are ordered according to how much of the variation present in the data they contain.
The dimensionality of the three-dimensional data can be reduced to two-dimensional data
using the first two principal components [43,44].

Table 3 shows the covariance data matrix’s eigenvalues and the percentage of each
principal component total variance. The eigenvalues measure the amount of variation
retained by each principal component [44].
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Table 3. Eigenvalues and percentage of the variance of each principal component.

New Set of Variables Eigenvalues % of the Total Variance % of the Cumulative Variance

PC1 2444.9 82.0531 82.05

PC2 516.5 17.3345 99.39

PC3 18.2 0.6125 100.00

As can be observed in Table 3, the first two components explained 99.39% of all
variability, as shown in Figure 12. This proves that the y-axis presents a reduced variation
in the flexion–extension movement of the fingers. Due to this, one can conclude that the
flexion–extension movement can be assumed in the xz plane. The abduction–adduction
movement of the finger was not considered.

Figure 12. Principal components representation. (a) Percentage of the total variance. (b) The data represented in the space
of the three principal components.

The finger motion, from the index to small, was analyzed. A similarity was observed
between all fingertip trajectories, as shown in Figure 13a. An example of graphs obtained
for all fingers of one subject is depicted in Figure 13b. The left side of Figure 14 shows all
the trajectories recorded in the xyz space. The right side shows one movement in the xz
plane to improve the visualization of each finger’s trajectories.

Figure 13. Trajectories for flexion–extension from index to small, (a) xyz spatial representation, (b) xz planar representation
of one participant.
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Figure 14. Real trajectories of flexion–extension.

Aside from the trajectories, we computed the range of motion of every finger. We
defined the ufi

vector in the finger plane, where f ε{I, F, R, S} corresponds to index (I),
Middle (M), Ring (R), and Small (S), and the index i corresponds to the frame number from
1 (initial position) to N (last position). The computed vector corresponds to the subtraction
between the xz position of the tip marker (I1, M1, R1, S1) and the xz position of the MCP
marker (I4, M4, R4, S4), as defined in Equation (9).

Finger Vector
Index uIi = I1− I4,

Middle uMi = M1−M4,
Ring uRi = R1− R4,
Small uPi = S1− S4.

(9)

Then, we defined ûfi
as the normal vector of ufi

as Equation (10) shows. The vector
wf represents the dot product between the initial position and the ith position, in order to
compute the angle between these normal vectors, which is expressed in Equation (11).

ûf =
uf∣∣uf
∣∣ ,w f =

[
j=2
∑

j=1
v f 1·v f j . . .

j=K
∑

j=1
v f 1·v f j . . .

j=N
∑

j=1
v f 1·v f j

]
, (10)

γ(i) = arc cos
(

w f

)
. (11)

Figure 15 shows the trajectories of one subject from the index to small in the xz plane
and the maximum and minimum angle of each finger’s movement. The maximum angle
for the small finger was chosen as γmax ∼= 76◦ because several points were outside the
trajectory and represented false measurements (Figure 13).

As can be observed from Figure 14, the trajectories for the different fingers were
similar in shape but with different maximum angle (γmax) amplitudes. Table 4 shows the
values of the angles of movement among the volunteers after several tests.
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Figure 15. (a) Real finger trajectory and the trajectory of the end-effector prototype. (b) The quadratic error between trajectories.

Table 4. The angle (◦) of movement of every finger among the subjects.

Finger Subject 1 γmax Subject 2 γmax Subject 3 γmax Subject 4 γmax Subject 5 γmax Subject 6 γmax

Index 119◦ 104◦ 101◦ 92◦ 116◦ 104◦

Middle 106◦ 117◦ 120◦ 92◦ 122◦ 130◦

Ring 110◦ 108◦ 119◦ 95◦ 113◦ 119◦

Small 76◦ 105◦ 109◦ 89◦ 92◦ 116◦

To conclude this section on real finger motion. Figure 15a simultaneously illustrates
the original prototype trajectory and index finger trajectory from one subject, which was
chosen as the recorded real trajectory. The real finger trajectory did not have a regular
elliptical shape, and it seems to have a more closed shape. In contrast, when the end-
effector’s prototype trajectory maintained an elliptical behavior, an offset between the two
trajectories was noted.

It seems feasible that the prototype trajectory follows the real trajectory more closely.
Figure 15b shows the quadratic error between the two trajectories. It can be noticed that
this error was not negligible and the error was used as an optimization criterion. The end-
effector, located at the fingertip, was required to follow a specified curve with a minimum
error computed between the obtained and desired trajectories.

2.3. Synthesis Problem

Three types of formulation applied to mechanism synthesis problems can be found
in the literature: function generation, trajectory generation, and body guidance [45]. This
article focused on trajectory generation based on an optimization process. An optimal
mechanism to generate the desired trajectory followed by the fingertip was found. The
data from the real finger trajectory, described in the previous section, was used in the
computation of the objective function. This allowed us to find the optimal parameter of the
solution to reconfigure the existing rehabilitation mechanism. The optimization problem
was solved using the genetic algorithm method.

2.3.1. Formulation of the Problem

The optimization problem can be established as the minimization of the error function
E(F), which is the sum of the square distance between the ith recorded position (Rxi:N , Rzi:N )
and the coordinates of point D of the mechanism (Dxi:N , Dzi:N ). The error function is
expressed by Equation (12). This point corresponds to the end-effector of the slider-crank
mechanism. Equation (13) defines the design vector F, which contains the set of variables
that should be computed during the optimization procedure.
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fm represents the individual in the genetic algorithm; H f defines the lower and upper
boundaries for each of the design variables; and gm1 and gm2 are constraints applied to
the mechanism.

E(F) =
1
N

N

∑
i=1

√
(Dxi − Rxi )

2 + (Dzi − Rzi )
2. (12)

The optimization synthesis problem was formulated as follows with m = 10 parameters
for a chosen objective function E(F):

Minimize E(F),

Subject to:

F = [ f1, . . . , fm], m = 10, fm ε H f =
[

fm
min, fm

max
]

gm1(F) ≤ 1,gm2(F) ≤ 1, (13)

where H f =
[

fm
min, fm

max] is the bounding interval for each parameter of vector F. The
parameters of vector F are defined in Table 5; most of the parameters are defined in the
kinematic section. The variables xt and yt represent an offset applied to the real trajectory
to relocate it to the same work area of the existing mechanism, allowing for a comparison
of both trajectories.

Table 5. Definition of vector F.

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

a b d e ϕ ρ f xt yt Ci

The kinematic model of the slider-crank mechanism was defined by Equations (1)–(7)
in previous sections. Equation (14) defines the inequality constraints to guarantee a feasible
solution of the optimization problem and comes from the closed-loop equations. The
constraints gm1 and gm2 are defined in the following formulation:

gm1 =

∣∣∣∣ a2 − c2 − b2

−2bc

∣∣∣∣ ≤ 1,gm2 =

∣∣∣∣ b2 − c2 − a2

−2ac

∣∣∣∣ ≤ 1. (14)

2.3.2. Genetic Algorithm Method Implementation and Curves Enhancement

The genetic algorithm (GA) is a probabilistic technique based on the evolutionary
theory of natural selection that uses a population of designs rather than a single design at a
time. The GA generates a population of individuals at each iteration. These individuals
are a combination of the previous population’s characteristics (called parents). However,
they can also present some mutations in their characteristics. Only the best individuals in
the population are used to create a new generation, which allows the approach toward
an optimal solution. The GA operators select the next population by computation using a
random number generator.

Nevertheless, this algorithm presents a limited accuracy of the final solution. A large
number of iterations is needed to obtain a solution [46,47]. Figure 16 shows the scheme of
the GA method applied to the problem of mechanism synthesis.

The main goal of the GA is to identify the best value of the design vector F, which
contains all the parameters that describe the mechanism. Each design vector is called
an individual.

The design vector is evaluated through the fitness function that quantifies the result
of the individual’s parameters. The best fitness value for a population is the smallest
fitness value for any individual in the population [47]. In order to obtain better results
in the GA implementation, it is recommended that the input trajectory presents the same
step between points. A polynomial fitting method is used and included in the optimal
synthesis process.
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Figure 16. The optimal synthesis process of the rehabilitation device mechanism.

In order to obtain a uniformly distributed trajectory, the desired trajectory was approxi-
mated using a polynomial fitting method, as shown in Figure 17 and given by Equation (15),
where a0, a1, a2, a3, a4, and a5 are the fitting parameters. An example, based on the index
finger’s trajectory of subject three, is given in this section. The numerical values of the
fitting parameters are defined in Table 6.

P(x) = a0 + a1x + a2x2 + a3x3 + a4x4 + a5x5 (15)
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Figure 17. The desired and fitted trajectories.

Table 6. Fitting parameters and errors.

Fitting Parameter Error

a0 = 7.22 × 10−8 5.91 × 10−8 ≤ a0 ≤ 8.53 × 10−8

a1 = 1.5 × 10−5 1.3 × 10−5 ≤ a1 ≤ 1.6 × 10−5

a2 = 1.2 × 10−3 0.001085 ≤ a2 ≤ 0.001257
a3 = 5 × 10−2 0.04915 ≤ a3 ≤ 0.05114

a4 = 1.3 1.281 ≤ a4 ≤ 1.331
a5 = 10.13 9.954 ≤ a5 ≤ 10.31

A population of 1000 individuals was used, which was manipulated through
1000 generations (Gmax). The objective function was evaluated 1 × 106 times. The al-
gorithm was allowed to select the design parameter values in the interval stated in Table 7.
This interval corresponds to the function H f . The best fitness value was obtained in the
last generation. This solution represents an optimal solution for the mechanism.

Table 7. The lower (mm) and upper (mm) boundaries for each one of the design variables.

Hf
F

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

fm
min 100 20 5 10 −10 −20 0 −100 −10 −10

fm
max 1000 600 70 200 120 200 900 4 4 10

3. Improvement of the Existing Mechanism and Results

Figure 18 shows the evolution of the objective function along with the generations.
The figure shows the convergence between the best fitness and average fitness values
found during the GA iterations. The upper plot (Figure 18a) displays the best score
value (black dots) and the mean score (blue dots) versus generation. It showed little
progress in lowering the fitness value. The best individual’s fitness value remained small
throughout the generations. The lower plot (Figure 18b) shows the average distance
between individuals at each generation and represents the population’s diversity.
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Figure 18. The transition of the fitness function. (a) Fitness value plot. (b) Average distance plot.

Table 8 shows the comparison between the optimal solution provided for the GA and
the prototype’s real dimensions. The GA provided a smaller mechanism through the best
values of the seven parameters representing the mechanism’s dimensions. The optimized
mechanism followed the desired trajectory with a minimal error of 1.62 mm. Furthermore,
it shows the distance the slider needs to move to reproduce the desired trajectory, which is
generally proposed by the designer.

Table 8. Comparison between the existing prototype and the new proposal, units in mm.

F f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

Prototype 411.19 83.77 7.63 87.17 10 90 344 0 0 125
GA 295.11 54.29 21.11 69.88 −3.56 139.71 246.11 3.99 −6.51 9.99

Figure 19 shows the trajectories among the real data, the polynomial form, and the GA.
It can be noticed that even though the error was minimal at the end of the trajectory, the
mechanism was unable to reach the last point. This is logical considering the configuration
of a slider-crank mechanism, derived from the fact that the slider-crank mechanism cannot
close the path of the end-effector even when the distance traveled is increased.

Figure 19. Results of the genetic algorithm (GA).

Figure 20 shows how the error between the trajectories was dramatically reduced
when implementing the GA method. Figure 20a shows the error between the real trajectory
recorded by the motion capture system and the end-effector’s trajectory of the existing
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prototype (this figure has already been presented at the end of Section 2.2.2). Figure 20b
shows the error between the real recorded trajectory and the end-effector’s trajectory
obtained with the GA method.

Figure 20. The error between trajectories: (a) with the original mechanism, (b) with the optimized mechanism.

To validate the quality of the convergence, Figure 21 shows the histogram of the last
population. The histogram shows the distribution of the last population in the upper and
lower limits of each individual. The frequency represents the number of times that an indi-
vidual is presented in each limit. The cumulative frequency (expressed in percentage) is the
sum of the absolute frequencies and indicates the number of individuals in each interval.

Figure 21. The last population histogram.

Concerning the angle of motion γ, a difference of 2.5 degrees was found between
the real trajectory and the end-effector’s trajectory of the new mechanism (as is shown in
Figure 22).

Figure 22. Angles of the amplitude of the trajectories.



Appl. Sci. 2021, 11, 708 19 of 24

Improvement in size over the existing mechanism can be made. Both mechanisms
were drawn in extreme positions (corresponding to flexion and extension positions), as
shown in Figure 23.

Figure 23. Comparison between the two mechanisms in their extreme positions: (a) flexion and (b)
extension.

In Figure 24, a CAD proposal for the new mechanism and the desired curve is pre-
sented. Figure 25 shows the redesign of the four fingers. The distance between mechanisms,
measured from the point D of every mechanism, was 28 mm.

Figure 24. The new mechanism and the trajectory of the end-effector.
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Figure 25. Four mechanisms from the index to small fingers.

4. Discussion

The shape and amplitude of the flexion–extension trajectory had to be considered to
design a better mechanism. This is because the mechanism must be able to adjust the range
of motion for different flexion–extension amplitudes. Since the optimized mechanism’s
configuration is an end-effector, it allows for the extrapolation of the result obtained for
use with different subjects. The flexion–extension movement is not affected since the trace
is at the fingertip.

Using the PCA technique, it was possible to transform the real flexion–extension move-
ment from the xyz space to the xz plane. This simplification of the workspace simplifies the
design of the mechanism and does not compromise the trajectory’s shape. The use of PCA
to derive postural synergies has mainly been used to study the hand’s different kinematic
configurations during the grasping and manipulation processes [48–51]. This article did
not use PCA to reduce kinematic configurations during grasping. It consisted of verifying
that the fingers’ flexion–extension movement in space could be simplified to a movement
in a plane, resulting in a design simplification of the mechanisms that tried to reproduce
this trajectory.

The rehabilitation mechanism presented did not seek to emulate the hand’s grip
functions, but sought to intervene during the first stage of rehabilitation where the physio-
therapist repeatedly and independently mobilized the patient’s fingers to reduce stiffness
and expand the range of motion.

Regarding GA performance, the low measure of population diversity ensured that the
best individuals were close to the optimal solution. The number of generations and the
population size used also contributed to finding the best solution. The algorithm converges
due to the average distance between individuals in terms of fitness value decreasing as
generations passed. The capability to converge to an optimal solution means that the
objective function was successfully minimized based on the error between the real finger
trajectory and the mechanism’s trajectory. The error between the original mechanism’s
trajectories and the real finger increased as the flexion–extension movement was performed.
In contrast, this error decreased with the dimensions of the mechanism obtained through
the GA.

The amplitude of the trajectory γ of the optimal design had a difference of almost
2.5 degrees, compared with the real trajectory considered for the optimization process. It
is assumed that the difference between trajectories is representative of the mechanism’s
performance. As can be observed in Figure 23, the mechanism trajectory followed the
real trajectory very closely. This can be an indicator of mobility recovery in the patient
because as the patient has an improvement in the rehabilitation process, the amplitude of
the trajectory will increase. It is important to point out that clinical tests are required to
evaluate the device’s feasibility and potential benefits.
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Even though the design results for a slider-crank-based rehabilitation device are promis-
ing, this type of mechanism cannot reproduce more closed trajectories. This means that for
a certain number of patients, the device cannot meet successful rehabilitation criteria.

One of the issues addressed and successfully handled in this work is that the design
vector includes the geometric parameters of the slider-crank mechanism and the distance
that the slider needs to displace to generate the desired trajectory. This point is significant
because this distance is the input of the mechanism and traditionally considered as known.
For example, this distance was fixed in the existing prototype as a consideration of the
designer at 125 mm [34].

The mechanism design was limited only to physical therapy because it only helps
the patient improve flexion–extension movements. Occupational therapy requires a more
complex mechanical design that allows for different finger trajectories to be performed as
well as some virtual interaction schemes that simulate daily life activities.

The prototype proposed needs less workspace to operate than Amadeo [22], one of the
available commercial finger rehabilitation devices. The optimized prototype is expected
to occupy a volume of 0.09 m3 against the 3 m3 that Amadeo needs [52]. The optimized
prototype pretends to improve every joint’s ROM using a near trajectory to the natural
flexion–extension trajectory regarding Amadeo’s end-effector linear trajectories.

Another available commercial finger rehabilitation device is Digitrainer. The workspace
of the DigiTrainer is about 0.017 m3. However, its configuration uses end-effector rollers
that make contact across the entire surface of the finger [53], which can be uncomfortable
if the patient has sensitive skin. The optimized prototype presented in this paper avoids
sensitive skin problems as the contact is only in the fingertip.

5. Conclusions

This article proposed an improvement of a finger rehabilitation device based on a
real trajectory. The slider-crank mechanism is one of the most studied in the theory of
mechanisms due to its simplicity, efficiency, and suitability for many applications in which
it can be used. The significance of the slider-crank mechanism presented in this article
is that the mono-actuator action is applied toward a medical solution. The presented
mechanism is a novel finger flexion–extension rehabilitation device.

Its synthesis requires a careful analysis of the natural flexion–extension trajectory of
the fingers. The focus of the optimization problem was the mono-objective formulation
to minimize the error between the real trajectory and the mechanism’s trajectory. This
optimal solution allows the mechanism to follow a real trajectory more closely. The
optimal dimensions of the finger rehabilitation prototype presented in this article allow
for the optimization of the therapist’s workspace without compromising the end-effector
trajectory’s performance.

An experimental setup was performed to obtain real trajectories using a motion
capture system and healthy volunteers. The real fingertip trajectory was used as an input
to the synthesis problem of the slider-crank mechanism. The presented method is still
available for all other subjects and fingers and is also based on the recorded real trajectories.

The kinematic equations were reformulated to be included in the GA method. Using
other synthesis methods for this application would mean omitting the design’s original
purpose: finger rehabilitation. The GA fitness function calculates the distance that the slider
must travel to generate a flexion–extension path in the end-effector. This characteristic
is a peculiarity of this function because GA proposes the optimal distance between the
maximal flexion position and maximal extension position and does not need to be defined
by the designer.

Future work will focus on a new topology of mechanisms with more degrees of
freedom, which could describe more complex shapes of trajectories. In the next work, the
study of transmitted forces on the fingers will also be examined. The idea of studying the
behavior of the exchange forces between the patient and the device is to develop a more
appropriate control strategy that could address the differences in the fingers’ capabilities.
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This is an important point because, at this stage, the mechanism can only reproduce
the flexion–extension trajectory but cannot deal with situations such as the pain experi-
enced by the patient when trying to complete the movements. A suitable rehabilitation
device must consider the relationship between the force provided by the mechanism and
finger movement.

Author Contributions: Conceptualization, M.A.L., E.C.C. and A.Z.G.; Methodology, A.Z.G. and
M.A.L.; Software, M.A.L. and A.Z.G.; Validation, A.Z.G. and M.A.L.; Formal analysis, A.Z.G., M.A.L.,
and E.C.C.; Investigation, A.Z.G., M.A.L., and E.C.C.; Resources, M.A.L.; Data curation: A.Z.G.,
M.A.L., and E.C.C.; Writing-original draft preparation, A.Z.G.; Writing-review and editing: M.A.L.,
E.C.C., and A.Z.G.; Visualization, M.A.L., E.C.C., and A.Z.G.; Supervision, M.A.L. and E.C.C.; Project
administration, M.A.L. and E.C.C.; Funding acquisition, M.A.L. and E.C.C. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Ethical review and approval were waived for this study due
to non-invasive experimentation being performed.

Informed Consent Statement: Verbal informed consent was obtained from all subjects involved in
the study due to non-invasive experimentation being performed.

Data Availability Statement: Data sharing is not applicable to this article.

Acknowledgments: The authors are grateful to the University of Poitiers, France and the Instituto
Politécnico Nacional (IPN), México. As well as the Consejo Nacional de Ciencia y Tecnología
(CONACYT), México, for the facilities provided for this research.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Cooper, R.A.; Dicianno, B.E.; Brewer, B.; LoPresti, E.; Ding, D.; Simpson, R.; Grindle, G.; Wang, H. A Perspective on Intelligent

Devices and Environments in Medical Rehabilitation. Med. Eng. Phys. 2008, 30, 1387–1398. [CrossRef] [PubMed]
2. Freis, N.E. La Rehabilitación En Ortopedia y Traumatología Parte, I. Rev. Asoc. Argentina Ortop. Traumatol. 2006, 71, 272–277.

(In Spanish) [CrossRef]
3. Freis, N.E.; Heinrichs, K. La Rehabilitación En Ortopedia y Traumatología Parte II. Rev. Asoc. Argentina Ortop. Traumatol. 2006, 71,

362–368. (In Spanish)
4. Dutton, M. Range of Motion. In Introduction to Physical Therapy and Patient Skills; McGraw-Hill Education: New York, NY, USA,

2014.
5. Physical Rehabilitation. Available online: https://www.martinpetkov.com/your-opportunity/physical-rehabilitation

(accessed on 9 December 2020).
6. Borobia, C. Valoración Del Daño Corporal. Medicina de Los Seguros. Miembro Superior; Valoración del Daño Corporal; Masson

Elsevier: Barcelona, Spain, 2006. Available online: https://books.google.com.mx/books?id=OClwWvys-ysC (accessed on
19 April 2020).

7. Kim, Y.H.; Choi, J.H.; Chung, Y.K.; Kim, S.W.; Kim, J. Epidemiologic Study of Hand and Upper Extremity Injuries by Power Tools.
Arch. Plast. Surg. 2019, 46, 63–68. [CrossRef]

8. Krebs, H.I.; Edwards, D.; Hogan, N. Forging Mens et Manus: The MIT Robotic Therapy; Reinkensmeyer, D.J., Dietz, V., Eds.; Springer
International Publishing: Berlin, Germany, 2016; pp. 333–350. [CrossRef]

9. Burgar, C.G.; Lum, P.S.; Shor, P.C.; Machiel Van der Loos, H.F. Development of Robots for Rehabilitation Therapy: The Palo Alto
VA/Stanford Experience. J. Rehabil. Res. Dev. 2000, 37, 663–673.

10. Fasoli, S.E.; Krebs, H.I.; Stein, J.; Frontera, W.R.; Hogan, N. Effects of Robotic Therapy on Motor Impairment and Recovery in
Chronic Stroke. Arch. Phys. Med. Rehabil. 2003, 84, 477–482. [CrossRef]

11. Krebs, H.I.; Volpe, B.T.; Williams, D.; Celestino, J.; Charles, S.K.; Lynch, D.; Hogan, N. Robot-Aided Neurorehabilitation: A Robot
for Wrist Rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 2007, 15, 327–335. [CrossRef]

12. Volpe, B.T.; Ferraro, M.; Krebs, H.I.; Hogan, N. Robotics in the Rehabilitation Treatment of Patients with Stroke. Curr. Atheroscler.
Rep. 2002, 4, 270–276. [CrossRef]

13. Fasoli, S.E.; Adans-Dester, C.P. A Paradigm Shift: Rehabilitation Robotics, Cognitive Skills Training, and Function after Stroke.
Front. Neurol. 2019, 10, 1–10. [CrossRef]

14. Rodríguez-Prunotto, L.; Cano-De La Cuerda, R.; Cuesta-Gómez, A.; Alguacil-Diego, I.M.; Molina-Rueda, F. Terapia Robótica Para
La Rehabilitación Del Miembro Superior En Patología Neurológica. Rehabilitacion 2014, 48, 104–128. [CrossRef]

15. Aggogeri, F.; Mikolajczyk, T.; Kane, J.O. Robotics for Rehabilitation of Hand Movement in Stroke Survivors. Adv. Mech. Eng.
2019, 11, 1–14. [CrossRef]

http://doi.org/10.1016/j.medengphy.2008.09.003
http://www.ncbi.nlm.nih.gov/pubmed/18993108
http://doi.org/10.1016/s0211-5638(04)73123-5
https://www.martinpetkov.com/your-opportunity/physical-rehabilitation
https://books.google.com.mx/books?id=OClwWvys-ysC
http://doi.org/10.5999/aps.2018.00815
http://doi.org/10.1007/978-3-319-28603-7
http://doi.org/10.1053/apmr.2003.50110
http://doi.org/10.1109/TNSRE.2007.903899
http://doi.org/10.1007/s11883-002-0005-7
http://doi.org/10.3389/fneur.2019.01088
http://doi.org/10.1016/j.rh.2014.01.001
http://doi.org/10.1177/1687814019841921


Appl. Sci. 2021, 11, 708 23 of 24

16. Maciejasz, P.; Eschweiler, J.; Gerlach-hahn, K.; Jansen-troy, A.; Leonhardt, S. A Survey on Robotic Devices for Upper Limb
Rehabilitation. J. Neuroeng. Rehabil. 2014, 11, 1–29. [CrossRef] [PubMed]

17. Yue, Z.; Zhang, X.; Wang, J. Hand Rehabilitation Robotics on Poststroke Motor Recovery. Behav. Neurol. 2017, 2017, 3908135.
[CrossRef] [PubMed]

18. Wege, A.; Zimmermann, A. Electromyography Sensor Based Control for a Hand Exoskeleton. In Proceedings of the 2007 IEEE
International Conference on Robotics and Biomimetics, ROBIO, Sanya, China, 15–18 December 2007; pp. 1470–1475. [CrossRef]

19. Bhandari, V.B. Design of Machine Elements; Tata McGraw-Hill Education: New Delhi, Delhi, India, 2007. Available online:
https://books.google.com.mx/books?id=d-eNe-VRc1oC (accessed on 31 March 2020).

20. Chiri, A.; Vitiello, N.; Giovacchini, F.; Roccella, S.; Vecchi, F.; Carrozza, M.C. Mechatronic Design and Characterization of the
Index Finger Module of a Hand Exoskeleton for Post-Stroke Rehabilitation. IEEE/ASME Trans. Mechatron. 2012, 17, 884–894.
[CrossRef]

21. Pierce, R.M.; Fedalei, E.A.; Kuchenbecker, K.J. A Wearable Device for Controlling a Robot Gripper with Fingertip Contact,
Pressure, Vibrotactile, and Grip Force Feedback. IEEE Haptics Symp. HAPTICS 2014, 19–25. [CrossRef]

22. Amadeo®: The Hand Therapy World Champion. Available online: https://tyromotion.com/en/produkte/amadeo/ (accessed on
25 August 2019).

23. Amar, J.; Nagase, K. Design Optimization of Tree-Type Robotic Systems Using Exponential Coordinates and Genetic Algo-
rithms. In Proceedings of the 2020 6th International Conference on Control, Automation and Robotics (ICCAR), Singapore,
20–23 April 2020; pp. 67–73. [CrossRef]

24. Premachandra, H.A.G.C.; Herath, H.M.A.; Suriyage, M.P.; Thathsarana, K.M.; Amarasinghe, Y.W.; Gopura, R.A.R.;
Nanayakkara, S.A. Genetic Algorithm Based Pick and Place Sequence Optimization for a Color and Size Sorting Delta
Robot. In Proceedings of the 2020 6th International Conference on Control, Automation and Robotics, ICCAR 2020, Singapore,
20–23 April 2020; pp. 209–213.

25. Jamwal, P.K.; Kapsalyamov, A.; Hussain, S.; Ghayesh, M.H. Performance Based Design Optimization of an Intrinsically Compliant
6-Dof Parallel Robot. Mech. Based Des. Struct. Mach. 2020, 1–16. [CrossRef]

26. Zeiaee, A.; Soltani-Zarrin, R.; Langari, R.; Tafreshi, R. Kinematic Design Optimization of an Eight Degree-of-Freedom Upper-Limb
Exoskeleton. Robotica 2019, 37, 2073–2086. [CrossRef]

27. Zhou, L.; Li, Y.; Bai, S. A Human-Centered Design Optimization Approach for Robotic Exoskeletons through Biomechanical
Simulation. Rob. Auton. Syst. 2017, 91, 337–347. [CrossRef]

28. Moosavian, S.A.A.; Nabipour, M.; Absalan, F.; Akbari, V. RoboWalk: Explicit Augmented Human-Robot Dynamics Modeling for
Design Optimization. arXiv 2019, arXiv:1907.04114.

29. Hernandez, E.; Valdez, S.I.; Carbone, G.; Ceccarelli, M. Design Optimization of a Cable-Driven Parallel Robot in Upper Arm
Training-Rehabilitation Processes. Mech. Mach. Sci. 2018, 54, 413–423. [CrossRef]

30. Dong, H.; Asadi, E.; Qiu, C.; Dai, J.; Chen, I.M. Geometric Design Optimization of an Under-Actuated Tendon-Driven Robotic
Gripper. Robot. Comput. Integr. Manuf. 2018, 50, 80–89. [CrossRef]

31. Bhupender, B.; Rahul, R. Study and Analysis of Design Optimization and Synthesis of Robotic ARM. Int. J. Adv. Eng. Manag. Sci.
2016, 2, 239459.

32. Dutton, M. Improving Mobility. In Dutton’s Orthopaedic Examination, Evaluation, and Intervention; McGraw-Hill Education:
New York, NY, USA, 2020.

33. Edgerton, V.R.; Roy, R.R. Robotic Training and Spinal Cord Plasticity. Brain Res. Bull. 2009, 78, 4–12. [CrossRef] [PubMed]
34. Aguilar-Pereyra, J.F.; Castillo-Castaneda, E. Design of a Reconfigurable Robotic System for Flexoextension Fitted to Hand Fingers

Size. Appl. Bionics Biomech. 2016, 1712831. [CrossRef] [PubMed]
35. Yu, Y.; Iwashita, H.; Kawahira, K.; Hayashi, R. Development of Rehabilitation Device for Hemiplegic Fingers by Finger-Expansion

Facilitation Exercise with Stretch Reflex. In Proceedings of the 2013 IEEE International Conference on Robotics and Biomimetics,
ROBIO 2013, Shenzhen, China, 12–14 December 2013; pp. 1317–1323. [CrossRef]

36. Castillo-Castaneda, E.; Bemardo-Vasquez, A. Personalized Design of a Hand Prosthesis Considering Anthropometry of a Real
Hand Extracted from Radiography. In Proceedings of the 2017 IEEE International Conference on Rehabilitation Robotics (ICORR),
London, UK, 17–20 July 2017; pp. 1215–1220. [CrossRef]

37. Kamper, D.G. Stereotypical Fingertip Trajectories During Grasp. J. Neurophysiol. 2003, 90, 3702–3710. [CrossRef]
38. Bishop, L.; Gordon, A.M.; Kim, H. Hand Robotic Therapy in Children with Hemiparesis: A Pilot Study. Am. J. Phys. Med. Rehabil.

2017, 96, 1–7. [CrossRef]
39. Stein, J.; Bishop, L.; Gillen, G.; Helbok, R. Robot-Assisted Exercise for Hand Weakness After Stroke. Am. J. Phys. Med. Rehabil.

2011, 90, 887–894. [CrossRef]
40. Treatment Technology. Available online: http://synergicpro.com/en/treatment-en/ (accessed on 9 December 2019).
41. Zapatero-Gutiérrez, A.; Castillo-Castañeda, E. Control Design for a Fingers Rehabilitation Device. In Proceedings of the 2017 IEEE

3rd Colombian Conference on Automatic Control, CCAC 2017, Cartagena, Colombia, 18–20 October 2018; pp. 1–6. [CrossRef]
42. Jolliffe, I.T. Principal Component Analysis; Springer Series in Statistics; Springer: New York, NY, USA, 2013. Available online:

https://books.google.com.mx/books?id=-ongBwAAQBAJ (accessed on 19 April 2020).
43. Ringnér, M. What Is Principal Component Analysis? Nat. Biotechnol. 2008, 26, 303–304. [CrossRef]
44. Practical Guide to Principal Component Methods in R. Available online: http://www.sthda.com (accessed on 8 October 2019).

http://doi.org/10.1186/1743-0003-11-3
http://www.ncbi.nlm.nih.gov/pubmed/24401110
http://doi.org/10.1155/2017/3908135
http://www.ncbi.nlm.nih.gov/pubmed/29230081
http://doi.org/10.1109/ROBIO.2007.4522381
https://books.google.com.mx/books?id=d-eNe-VRc1oC
http://doi.org/10.1109/TMECH.2011.2144614
http://doi.org/10.1109/HAPTICS.2014.6775428
https://tyromotion.com/en/produkte/amadeo/
http://doi.org/10.1109/ICCAR49639.2020.9108071
http://doi.org/10.1080/15397734.2020.1746669
http://doi.org/10.1017/S0263574719001085
http://doi.org/10.1016/j.robot.2016.12.012
http://doi.org/10.1007/978-3-319-67567-1
http://doi.org/10.1016/j.rcim.2017.09.012
http://doi.org/10.1016/j.brainresbull.2008.09.018
http://www.ncbi.nlm.nih.gov/pubmed/19010399
http://doi.org/10.1155/2016/1712831
http://www.ncbi.nlm.nih.gov/pubmed/27524880
http://doi.org/10.1109/ROBIO.2013.6739647
http://doi.org/10.1109/ICORR.2017.8009415
http://doi.org/10.1152/jn.00546.2003
http://doi.org/10.1097/PHM.0000000000000537
http://doi.org/10.1097/PHM.0b013e3182328623
http://synergicpro.com/en/treatment-en/
http://doi.org/10.1109/CCAC.2017.8276484
https://books.google.com.mx/books?id=-ongBwAAQBAJ
http://doi.org/10.1038/nbt0308-303
http://www.sthda.com


Appl. Sci. 2021, 11, 708 24 of 24

45. Erdman, A.G. Computer-Aided Mechanism Design: Now and the Future. J. Mech. Des. Trans. ASME 1995, 117, 93–100. [CrossRef]
46. Laribi, M.A.; Mlika, A.; Romdhane, L.; Zeghloul, S. A Combined Genetic Algorithm-Fuzzy Logic Method (GA-FL) in Mechanisms

Synthesis. Mech. Mach. Theory 2004, 39, 717–735. [CrossRef]
47. What Is the Genetic Algorithm? Available online: https://la.mathworks.com/help/gads/what-is-the-genetic-algorithm.html

(accessed on 15 April 2019).
48. Ortenzi, D.; Scarcia, U.; Meattini, R.; Palli, G.; Melchiorri, C. Synergy-Based Control of Anthropomorphic Robotic Hands with

Contact Force Sensors. IFAC-PapersOnLine 2019, 52, 340–345. [CrossRef]
49. Ficuciello, F.; Palli, G.; Melchiorri, C.; Siciliano, B. Postural Synergies of the UB Hand IV for Human-like Grasping. Robot. Auton.

Syst. 2014, 62, 515–527. [CrossRef]
50. Palli, G.; Ficuciello, F.; Scarcia, U.; Melchiorri, C.; Siciliano, B. Experimental Evaluation of Synergy-Based in-Hand Manipulation; IFAC:

Cape Town, South Africa, 2014; Volume 19. [CrossRef]
51. Santello, M.; Flanders, M.; Soechting, J.F. Postural Hand Synergies for Tool Use. J. Neurosci. 1998, 18, 10105–10115. [CrossRef]

[PubMed]
52. Amadeo®in Practice. Available online: https://irp-cdn.multiscreensite.com/91b5b819/files/uploaded/Factsheet_Amadeo_V1

_en_screen.pdf (accessed on 13 December 2019).
53. Digitrainer. Available online: https://www.ostracon.gr/wp-content/uploads/2020/12/DigiTrainer_Flyer_english_2019-20_

web.pdf (accessed on 13 December 2019).

http://doi.org/10.1115/1.2836476
http://doi.org/10.1016/j.mechmachtheory.2004.02.004
https://la.mathworks.com/help/gads/what-is-the-genetic-algorithm.html
http://doi.org/10.1016/j.ifacol.2019.11.698
http://doi.org/10.1016/j.robot.2013.12.008
http://doi.org/10.3182/20140824-6-za-1003.00784
http://doi.org/10.1523/JNEUROSCI.18-23-10105.1998
http://www.ncbi.nlm.nih.gov/pubmed/9822764
https://irp-cdn.multiscreensite.com/91b5b819/files/uploaded/Factsheet_Amadeo_V1_en_screen.pdf
https://irp-cdn.multiscreensite.com/91b5b819/files/uploaded/Factsheet_Amadeo_V1_en_screen.pdf
https://www.ostracon.gr/wp-content/uploads/2020/12/DigiTrainer_Flyer_english_2019-20_web.pdf
https://www.ostracon.gr/wp-content/uploads/2020/12/DigiTrainer_Flyer_english_2019-20_web.pdf

	Introduction 
	Materials and Methods 
	Finger Rehabilitation Device 
	Existing Prototype 
	Architecture and Kinematic Model 

	Finger Real Motion 
	Experimental Setup 
	Results of the Analysis of the Fingers Real Motion 

	Synthesis Problem 
	Formulation of the Problem 
	Genetic Algorithm Method Implementation and Curves Enhancement 


	Improvement of the Existing Mechanism and Results 
	Discussion 
	Conclusions 
	References

