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In the face of rapid environmental changes, understanding and monitoring

biological traits and functional diversity are crucial for effective biomonitoring.

However, when it comes to freshwater macroinvertebrates, a significant dearth

of biological trait data poses a major challenge. In this opinion article, we put

forward a machine-learning framework that incorporates phylogenetic

conservatism and trait collinearity, aiming to provide a better vision for

predicting macroinvertebrate traits in freshwater ecosystems. By adopting this

proposed framework, we can advance biomonitoring efforts in freshwater

ecosystems. Accurate predictions of macroinvertebrate traits enable us to

assess functional diversity, identify environmental stressors, and monitor

ecosystem health more effectively. This information is vital for making

informed decisions regarding conservation and management strategies,

especially in the context of rapidly changing environments.

KEYWORDS

biodiversity, global change, sustainable development, phylogenetic tree, trait
1 Introduction

1.1 Freshwater biodiversity and sustainable development

Freshwater biodiversity provides vital natural resources for humans in economic,

cultural, aesthetic, scientific, and educational terms. Its conservation and management are

of paramount importance to the interests and well-being of all humans, nations and

governments. However, despite conservation efforts, freshwater biodiversity is

experiencing rapid declines at regional or global scales, due to increasing intensity of

disturbances from human activity, biotic pressure, and environmental changes (Mouillot
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et al., 2013). As a consequence, biodiversity loss poses a threat to the

sustainability of ecological processes and the provision of ecosystem

services (Renault et al., 2022). Thus, biodiversity challenges become

one of the most important issues in the Sustainable Development

Goals (SDGs). Among the SDGs, the sustainable use of marine and

aquatic resources and terrestrial ecosystems are most closely related

with biodiversity. Biodiversity is an important indicator to evaluate

the sustainable development of human society since it provides the

essential resource for human surviving. The balance between

biodiversity conservation and utilization is crucial for

sustainable development.

Documenting losses of biodiversity, diagnosing their causes,

and finding solutions are key issues in freshwater ecology (Strayer

and Dudgeon, 2010). Traditional freshwater biodiversity studies

mainly focused on taxonomic diversity. Although some kinds of

new technologies were implemented, such as meta-barcoding

(Serrana et al., 2018) and single-molecule real-time (SMRT)

sequencing (Zhang et al., 2020), which obtain species taxonomic

annotation by aligning environmental sequences to reference

databases, analyses of these new methods still primarily focused

on species diversity. It is argued that taxonomic diversity alone

cannot explain the observed patterns that respond to environmental

disturbances (Gagic et al., 2015).
1.2 Biological trait, functional diversity,
macroinvertebrates, and global change

Despite a range of conservation measures being implemented,

biodiversity loss continues to occur widely in the context of habitat

destruction (Visconti et al., 2011) and global changes (Maclean and

Wilson, 2011). So, it cannot wait to develop a method for

quantifying and predicting the impact of disturbance on

biodiversity patterns (Mouillot et al., 2013).

It has been confirmed that the response to disturbances and

other environmental conditions depends on the traits (including life

history, behavior, physiology, morphology, ecology, environmental

preferences, and tolerances or sensitivities) of the species (Mouillot

et al., 2013; Gagic et al., 2015). Functional traits have been shown to

serve as important characterizations of community or ecosystem

function in response to various disturbances (Tilman et al., 1997;

Petchey et al., 2004; Verberk et al., 2013). Furthermore, researches

based on species traits can provide more information than studies

merely on classical taxonomy (Barnett et al., 2007; Luo Q. et al.,

2022). So, the focus of related research has also shifted from

taxonomic diversity to functional diversity (Renault et al., 2022).

Macroinvertebrates, characterized by their rich diversity, wide

distribution, and environmental sensitivity, have been long utilized

to study ecological responses, such as hydrological disturbances,

based on their functional traits (Townsend et al., 1997). Until now,

studies on macroinvertebrates’ functional diversity have kept

exploding for more than 20 years. Recently, research has delved

into the typical number of traits considered for estimating
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functional diversity and the specific traits commonly used for

index calculation (Ao et al., 2023). Some studies summarized the

macroinvertebrate trait databases that have already been produced

(Kefford et al., 2020). These research foundations offered the

possibility of constructing a relatively well-developed framework

based on macroinvertebrate traits to quantitatively predict the

impact of disturbance on biodiversity patterns. However,

acquiring comprehensive trait datasets for organisms demands

substantial sampling efforts, consequently leading to frequent

occurrence of missing data.
1.3 Limitation of current applications and
our intention

We propose a conceptual framework that integrates machine

learning, phylogenetic conservatism, and trait collinearity to

address the paucity of biological trait data for freshwater

macroinvertebrates (Kefford et al., 2020). This lack hinders our

understanding of functional diversity and the effects of global

change. To predict missing traits, we propose a machine-learning

model with predictors of phylogenetic information and trait

collinearity. By incorporating these predictors, we can improve

predictions by accounting for 1) phylogenetic distances among

species and 2) associations among traits within species or

taxonomic groups. This advance contributes to understanding

functional diversity, assessing the impacts of global change, and

guiding conservation and management efforts for freshwater

ecosystems. In the position paper, we then discuss the current

state and our proposed framework for addressing missing trait data.
2 Current state to address the lack of
trait database

2.1 Current frameworks

By addressing the lack of biological trait data, the current

frameworks rely on the selection of traits available in freshwater

macroinvertebrates (Ao et al., 2023). This limitation can be

overcome by predicting biological traits based on phylogenetic

conservatism and using mathematical tools such as machine learning

(Debastiani et al., 2021). Phylogenetic conservatism suggests that

closely related species share similar trait values due to their shared

evolutionary history. Machine learning algorithms analyze large

datasets and extract patterns from complex biological data. By

integrating machine learning into the framework, researchers can

estimate missing trait values based on known trait values of closely

related species. By leveraging machine learning’s ability to identify

patterns and correlations among traits, this approach can enable

researchers to gain insights into the ecological implications of these

traits and their impact on ecosystem dynamics.
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2.2 Phylogenetic conservatism

As species traits are integrated as a part of a hierarchically

structured phylogeny (Felsenstein, 1985), and given the propensity

for greater trait similarity among closely related species compared

to those more distantly related (Pagel, 1999), coupled with the

conservatism of the phylogeny, it gives the theoretical basis for

linking phylogenetic information and traits. So, some data

imputation methods encompassed or based on phylogenetic

information had been developed, such as Phylopars, which

utilizes phylogeny and allometric relationships among traits

(Bruggeman et al., 2009), and Phylogenetic Eigenvector Maps

(PEM) (Guenard et al., 2013).

The methods that take phylogenetic information of species into

account have been considered to be potentially powerful ways to

complete trait data imputation (Swenson, 2014). Debastiani et al.

(2021) proposed a framework that integrates phylogenetic

information with imputation methods employing missForest and

assessed the performance of the missForest algorithm for imputing

species trait values by incorporating phylogenetic information. The

results showed that the inclusion of phylogenetic vectors into the

missForest algorithm leads to a substantial improvement in the

imputation of missing values under some certain conditions. It

demonstrates the promising application of incorporating

phylogenetic conservatism into machine learning frameworks to

predict macroinvertebrate traits.
2.3 Machine learning in ecology and
environmental sciences

Machine learning methods possess a robust nonlinear modeling

capability, making them particularly effective in detecting and

describing structural patterns within large datasets, as well as

providing relative importance values among independent

variables (Biau and Scornet, 2016). They had been widely applied

for species distribution pattern prediction and constrained

environmental factors detection in community-level studies in

ecology and environment sciences (Smith and Carstens, 2020).

The prediction function made machine learning methods being

used in extremely wide areas such as satellite data processing (Kim

et al., 2014), weather and climate prediction (Watson-Parris, 2021),

air quality forecasting (Fu et al., 2023), and monitoring of snow, ice,

and forests (Luo J. et al., 2022). The nonlinear modeling capability

of machine learning methods made them powerful in genomic

prediction for non-linear traits. Song et al. (2023) had performed

Bayesian threshold model and machine learning methods to

improve the accuracy of genomic prediction for ordered

categorical traits in fish. Fish egg color was predicted with both

methods. Machine learning methods showed higher prediction

accuracies than Bayesian methods. In wheat leaf traits monitoring

studies, machine learning methods could provide comparatively
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precise and robust prediction of leaf parameters based on high-

resolution satellite imagery data (Jamali et al., 2023). Li et al. (2020)

extended those methods to population genetic studies. The relative

importance was used to determine environmental factors that drive

adaptive divergence.
3 Proposed framework with
phylogenetic conservatism, trait
collinearity, and machine learning

3.1 The proposed framework

We propose an innovative framework that combines

phylogenetic conservatism, trait collinearity, and machine

learning to revolutionize the prediction and understanding of

biological traits (Figure 1). The analysis of an incomplete

macroinvertebrate trait set using this framework consists of the

following steps: (1) View the data set and clarify missing data.

(2) Get the phylogenetic distances between related species based on

phylogenetic data. (3) Deduce the value of the missing trait by

phylogenetic distances through machine learning. (4) Get the co-

occurrence relationships between related traits and add it to

machine learning to estimate the deduced value. By incorporating

the construct of trait collinearity along with known features such as

phylogenetic conservatism and machine learning, this integrated

framework enhances our ability to accurately estimate missing trait

values. Its applications span across ecology, evolution, and

conservation biology, deepening our understanding of trait

evolution, functional diversity, and the impacts of global change.

Furthermore, the framework informs conservation and

management strategies by highlighting traits crucial for species

resilience. Through this integration, valuable insights into trait

variation and its ecological and evolutionary significance

are unlocked.
3.2 Trait collinearity

The diversity in functional traits within species is shaped by

both genetic differentiation and phenotypic plasticity (Albert et al.,

2010). Additionally, it mirrors the evolutionary past and the species’

adjustments to environmental conditions (Diaz and Cabido, 2001).

Given the intricate nature of the origins of functional diversity,

employing a multivariate framework that combines the

phylogenetic aspects of biodiversi ty with trait-based

methodologies becomes crucial (Felsenstein, 1985). To complete

trait datasets, the use of data imputation methods with phylogenetic

information of species is considered a potentially effective approach

until more accurate trait information is obtained (Swenson, 2014).

The foundation for linking evolutionary traits to traits lies in the

recognition that species traits are interrelated rather than
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independent and they are embedded within a hierarchical

phylogenetic tree (Felsenstein, 1985). Studies of functional

variation are based on the idea of functional trait covariation

(Grime et al., 1997), a model of covariation that can define

general ecological strategies (Reich et al., 2003). The study of

functional variation has been more widely explored in the field of

botany than in aquatic organisms. For example, covariation

patterns among leaf traits (such as the leaf economic spectrum)
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have been linked to strategies for efficient resource acquisition and

resource conservation (Wright et al., 2004).
4 Summary

Here, we propose integrating machine learning, phylogenetic

conservatism, and trait collinearity into a conceptual framework.
B

C

D E

A

FIGURE 1

Current framework (with phylogenetic data) and prospect framework (with addition of trait collinearity information): (A) analysis of incomplete trait
sets in macroinvertebrate, NA representing missing trait information. (B) Phylogenetic distance between species. (C) The value of the missing trait is
deduced by adding phylogenetic data through machine learning (light blue data box). (D) Co-occurrence relationships between traits. (E) The
inclusion of information on trait collinearity makes the derived values (Black data box) of missing traits more reliable. Silhouettes were obtained from
phylopic.org under the public domain licenses.
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The lack of biological trait data for freshwater macroinvertebrates

impedes our exploration of functional diversity and understanding of

global change impacts (Kefford et al., 2020). Thus, there is a global

effort to develop methods for predicting missing traits. To bridge this

gap, we recommend incorporating trait collinearity into the existing

framework that already considers machine learning and phylogenetic

conservatism. Trait collinearity involves the correlation or association

of certain traits within a species or taxonomic group. By integrating

this concept, we can enhance our ability to predict missing traits.

Machine learning algorithms are effective at extracting patterns from

complex biological data, making them valuable tools. By training

these algorithms with existing trait data and incorporating

phylogenetic information, predictive models can estimate missing

traits based on known trait correlations. This approach leverages the

similarity of trait values among closely related species due to

phylogenetic conservatism. Including trait collinearity in the

framework would improve predictions by considering

interrelationships among traits within species or taxonomic groups.

Accounting for these associations enhances the accuracy of trait

predictions and provides a comprehensive understanding of

functional diversity. By integrating trait collinearity and

phylogenetic conservatism into machine learning models, we can

leverage available data to predict missing biological traits in

freshwater macroinvertebrates. This advancement significantly

contributes to our understanding of functional diversity, enables

better assessments of global change impacts, guides conservation

efforts, and informs effective management strategies for freshwater

ecosystems, promoting their long-term sustainability.
Author contributions

SL: Conceptualization, Funding acquisition, Software, Writing –

original draft, Writing – review & editing. QL: Conceptualization,
Frontiers in Ecology and Evolution 05
Software, Writing – original draft. RL: Conceptualization, Writing –

original draft, Writing – review & editing. BL: Conceptualization,

Writing – original draft, Writing – review & editing.
Funding

This research was funded by the National Key R&D Program of

China (No. 2021YFC3200105). The author(s) declare financial

support was received for the research, authorship, and/or

publication of this article.
Acknowledgments

We thank the reviewers for their many insightful comments

and suggestions.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
References
Albert, C. H., Thuiller, W., Yoccoz, N. G., Soudant, A., Boucher, F., Saccone, P., et al.
(2010). Intraspecific functional variability: extent, structure and sources of variation. J.
Ecol. 98, 604–613. doi: 10.1111/j.1365-2745.2010.01651.x

Ao, S., Chiu, M.-C., Lin, X., and Cai, Q. (2023). Trait selection strategy for functional
diversity in freshwater systems: A case framework of macroinvertebrates. Ecol. Indic.
153, 110450. doi: 10.1016/j.ecolind.2023.110450

Barnett, A. J., Finlay, K., and Beisner, B. E. (2007). Functional diversity of crustacean
zooplankton communities: towards a trait-based classification. Freshw. Biol. 52, 796–
813. doi: 10.1111/j.1365-2427.2007.01733.x

Biau, G., and Scornet, E. (2016). A random forest guided tour. Test 25, 197–227.
doi: 10.1007/s11749-016-0481-7

Bruggeman, J., Heringa, J., and Brandt, B. W. (2009). PhyloPars: estimation of
missing parameter values using phylogeny. Nucleic Acids Res. 37, W179–W184.
doi: 10.1093/nar/gkp370

Debastiani, V. J., Bastazini, V. A. G., and Pillar, V. D. (2021). Using phylogenetic
information to impute missing functional trait values in ecological databases. Ecol. Inf.
63, 101315. doi: 10.1016/j.ecoinf.2021.101315

Diaz, S., and Cabido, M. (2001). Vive la difference: plant functional diversity matters
to ecosystem processes. Trends Ecol. Evol. 16, 646–655. doi: 10.1016/s0169-5347(01)
02283-2

Felsenstein, J. (1985). Phylogenies and the comparative method. Am. Nat. 125, 1–15.
doi: 10.1086/284325
Fu, L., Li, J., and Chen, Y. (2023). An innovative decision making method for air
quality monitoring based on big data-assisted artificial intelligence technique. J. Innov.
Knowl. 8. doi: 10.1016/j.jik.2022.100294

Gagic, V., Bartomeus, I., Jonsson, T., Taylor, A., Winqvist, C., Fischer, C., et al.
(2015). Functional identity and diversity of animals predict ecosystem functioning
better than species-based indices. Proc. R. Soc. B Biol. Sci. 282. doi: 10.1098/
rspb.2014.2620

Grime, J. P., Thompson, K., Hunt, R., Hodgson, J. G., Cornelissen, J. H. C., Rorison, I.
H., et al. (1997). Integrated screening validates primary axes of specialisation in plants.
Oikos 79, 259–281. doi: 10.2307/3546011

Guenard, G., Legendre, P., and Peres-Neto, P. (2013). Phylogenetic eigenvector
maps: a framework to model and predict species traits. Methods Ecol. Evol. 4, 1120–
1131. doi: 10.1111/2041-210x.12111

Jamali, M., Soufizadeh, S., Yeganeh, B., and Emam, Y. (2023). Wheat leaf traits
monitoring based on machine learning algorithms and high-resolution satellite
imagery. Ecol. Inf. 74, 101967. doi: 10.1016/j.ecoinf.2022.101967

Kefford, B. J., Botwe, P. K., Brooks, A. J., Kunz, S., Marchant, R., Maxwell, S., et al.
(2020). An integrated database of stream macroinvertebrate traits for Australia:
Concept and application. Ecol. Indic. 114, 106280. doi: 10.1016/j.ecolind.2020.106280

Kim, Y. H., Im, J., Ha, H. K., Choi, J.-K., and Ha, S. (2014). Machine learning
approaches to coastal water quality monitoring using GOCI satellite data. GIsci. Remote
Sens. 51, 158–174. doi: 10.1080/15481603.2014.900983
frontiersin.org

https://doi.org/10.1111/j.1365-2745.2010.01651.x
https://doi.org/10.1016/j.ecolind.2023.110450
https://doi.org/10.1111/j.1365-2427.2007.01733.x
https://doi.org/10.1007/s11749-016-0481-7
https://doi.org/10.1093/nar/gkp370
https://doi.org/10.1016/j.ecoinf.2021.101315
https://doi.org/10.1016/s0169-5347(01)02283-2
https://doi.org/10.1016/s0169-5347(01)02283-2
https://doi.org/10.1086/284325
https://doi.org/10.1016/j.jik.2022.100294
https://doi.org/10.1098/rspb.2014.2620
https://doi.org/10.1098/rspb.2014.2620
https://doi.org/10.2307/3546011
https://doi.org/10.1111/2041-210x.12111
https://doi.org/10.1016/j.ecoinf.2022.101967
https://doi.org/10.1016/j.ecolind.2020.106280
https://doi.org/10.1080/15481603.2014.900983
https://doi.org/10.3389/fevo.2023.1260173
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Li et al. 10.3389/fevo.2023.1260173
Li, B., Yaegashi, S., Carvajal, T. M., Gamboa, M., Chiu, M.-C., Ren, Z., et al. (2020).
Machine-learning-based detection of adaptive divergence of the stream
mayflyEphemera strigatapopulations. Ecol. Evol. 10, 6677–6687. doi: 10.1002/ece3.6398

Luo, Q., Chiu, M.-C., Tan, L., and Cai, Q. (2022). Hydrological season can have
unexpectedly insignificant influences on the elevational patterns of functional diversity
of riverine macroinvertebrates. Biology 11. doi: 10.3390/biology11020208

Luo, J., Dong, C., Lin, K., Chen, X., Zhao, L., and Menzel, L. (2022). Mapping snow
cover in forests using optical remote sensing, machine learning and time-lapse
photography. Remote Sens. Environ. 275. doi: 10.1016/j.rse.2022.113017

Maclean, I. M. D., and Wilson, R. J. (2011). Recent ecological responses to climate
change support predictions of high extinction risk. Proc. Natl. Acad. Sci. U. S. A. 108,
12337–12342. doi: 10.1073/pnas.1017352108

Mouillot, D., Graham, N. A. J., Villeger, S., Mason, N. W. H., and Bellwood, D. R.
(2013). A functional approach reveals community responses to disturbances. Trends
Ecol. Evol. 28, 167–177. doi: 10.1016/j.tree.2012.10.004

Pagel, M. (1999). Inferring the historical patterns of biological evolution. Nature 401,
877–884. doi: 10.1038/44766

Petchey, O. L., Hector, A., and Gaston, K. J. (2004). How do different measures of
functional diversity perform? Ecology 85, 847–857. doi: 10.1890/03-0226

Reich, P. B., Wright, I. J., Cavender-Bares, J., Craine, J. M., Oleksyn, J., Westoby, M.,
et al. (2003). The evolution of plant functional variation: Traits, spectra, and strategies.
Int. J. Plant Sci. 164, S143–S164. doi: 10.1086/374368

Renault, D., Hess, M. C. M., Braschi, J., Cuthbert, R. N., Sperandii, M. G., Bazzichetto, M.,
et al. (2022). Advancing biological invasion hypothesis testing using functional diversity
indices. Sci. Total Environ. 834. doi: 10.1016/j.scitotenv.2022.155102

Serrana, J. M., Yaegashi, S., Kondoh, S., Li, B., Robinson, C. T., and Watanabe, K.
(2018). Ecological influence of sediment bypass tunnels on macroinvertebrates in dam-
fragmented rivers by DNAmetabarcoding. Sci. Rep. 8, 10185. doi: 10.1038/s41598-018-
28624-2

Smith, M. L., and Carstens, B. C. (2020). Process-based species delimitation leads to
identification of more biologically relevant species. Evolution 74, 216–229. doi: 10.1111/
evo.13878
Frontiers in Ecology and Evolution 06
Song, H., Dong, T., Yan, X., Wang, W., Tian, Z., and Hu, H. (2023). Using Bayesian
threshold model and machine learning method to improve the accuracy of genomic
prediction for ordered categorical traits in fish. Agric. Commun. 1, 100005. doi:
10.1016/j.agrcom.2023.100005

Strayer, D. L., and Dudgeon, D. (2010). Freshwater biodiversity conservation: recent
progress and future challenges. J. North Am. Benthol. Soc. 29, 344–358. doi: 10.1899/
08-171.1

Swenson, N. G. (2014). Phylogenetic imputation of plant functional trait databases.
Ecography 37, 105–110. doi: 10.1111/j.1600-0587.2013.00528.x

Tilman, D., Naeem, S., Knops, J., Reich, P., Siemann, E., Wedin, D., et al. (1997).
Biodiversity and ecosystem properties. Science 278, 1866–1867. Retrieved from <Go to
ISI>://WOS:A1997YL00200004. doi: 10.1126/science.278.5345.1865c

Townsend, C. R., Scarsbrook, M. R., and Doledec, S. (1997). Quantifying disturbance
in streams: alternative measures of disturbance in relation to macroinvertebrate species
traits and species richness. J. North Am. Benthol. Soc. 16, 531–544. doi: 10.2307/
1468142

Verberk, W. C. E. P., van Noordwijk, C. G. E., and Hildrew, A. G. (2013). Delivering
on a promise: integrating species traits to transform descriptive community ecology
into a predictive science. Freshw. Sci. 32, 531–547. doi: 10.1899/12-092.1

Visconti, P., Pressey, R. L., Giorgini, D., Maiorano, L., Bakkenes, M., Boitani, L., et al.
(2011). Future hotspots of terrestrial mammal loss. Philos. Trans. R. Soc. B Biol. Sci. 366,
2693–2702. doi: 10.1098/rstb.2011.0105

Watson-Parris, D. (2021). Machine learning for weather and climate are worlds
apart. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 379. doi: 10.1098/
rsta.2020.0098

Wright, I. J., Reich, P. B., Westoby, M., Ackerly, D. D., Baruch, Z., Bongers, F., et al.
(2004). The worldwide leaf economics spectrum. Nature 428, 821–827. doi: 10.1038/
nature02403

Zhang, M., Dang, N., Ren, D., Zhao, F., Lv, R., Ma, T., et al. (2020). Comparison of
bacterial microbiota in raw mare’s milk and koumiss using PacBio single molecule real-
time sequencing technology. Front. Microbiol. 11, 581610. doi: 10.3389/
fmicb.2020.581610
frontiersin.org

https://doi.org/10.1002/ece3.6398
https://doi.org/10.3390/biology11020208
https://doi.org/10.1016/j.rse.2022.113017
https://doi.org/10.1073/pnas.1017352108
https://doi.org/10.1016/j.tree.2012.10.004
https://doi.org/10.1038/44766
https://doi.org/10.1890/03-0226
https://doi.org/10.1086/374368
https://doi.org/10.1016/j.scitotenv.2022.155102
https://doi.org/10.1038/s41598-018-28624-2
https://doi.org/10.1038/s41598-018-28624-2
https://doi.org/10.1111/evo.13878
https://doi.org/10.1111/evo.13878
https://doi.org/10.1016/j.agrcom.2023.100005
https://doi.org/10.1899/08-171.1
https://doi.org/10.1899/08-171.1
https://doi.org/10.1111/j.1600-0587.2013.00528.x
https://doi.org/10.1126/science.278.5345.1865c
https://doi.org/10.2307/1468142
https://doi.org/10.2307/1468142
https://doi.org/10.1899/12-092.1
https://doi.org/10.1098/rstb.2011.0105
https://doi.org/10.1098/rsta.2020.0098
https://doi.org/10.1098/rsta.2020.0098
https://doi.org/10.1038/nature02403
https://doi.org/10.1038/nature02403
https://doi.org/10.3389/fmicb.2020.581610
https://doi.org/10.3389/fmicb.2020.581610
https://doi.org/10.3389/fevo.2023.1260173
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org

	Incorporating phylogenetic conservatism and trait collinearity into machine learning frameworks can better predict macroinvertebrate traits
	1 Introduction
	1.1 Freshwater biodiversity and sustainable development
	1.2 Biological trait, functional diversity, macroinvertebrates, and global change
	1.3 Limitation of current applications and our intention

	2 Current state to address the lack of trait database
	2.1 Current frameworks
	2.2 Phylogenetic conservatism
	2.3 Machine learning in ecology and environmental sciences

	3 Proposed framework with phylogenetic conservatism, trait collinearity, and machine learning
	3.1 The proposed framework
	3.2 Trait collinearity

	4 Summary
	Author contributions
	Funding
	Acknowledgments
	References


