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Abstract
The exotic nature of quantum mechanics differentiates machine learning applications in the
quantum realm from classical ones. Stream learning is a powerful approach that can be applied to
extract knowledge continuously from quantum systems in a wide range of tasks. In this paper, we
propose a deep reinforcement learning method that uses streaming data from a continuously
measured qubit in the presence of detuning, dephasing, and relaxation. The model receives
streaming quantum information for learning and decision-making, providing instant feedback on
the quantum system. We also explore the agent’s adaptability to other quantum noise patterns
through transfer learning. Our protocol offers insights into closed-loop quantum control,
potentially advancing the development of quantum technologies.

1. Introduction

Quantum computation and quantum information [1] are no longer just promising research fields, but they
have become current realities with increasing applicability in the next decade, in particular, that related to
computational intelligence [2, 3]. Quantum computation relies on quantum bits (qubits), which are the
quantum generalization of classical bits. The two basic states of a qubit are |0⟩ and |1⟩, corresponding with
the states zero and one, respectively, of a classical bit. However, a qubit |Ψ⟩ has the unique feature of allowing
states formed by the superposition of |0⟩ and |1⟩, namely, |Ψ⟩= α|0⟩+β|1⟩, where α and β are complex
coefficients. When a qubit is in a superposition state, its measurement will collapse it to one of its basic states,
but it is impossible to determine in advance which one. The only available information is that the probability
of |0⟩ is |α|2 and the probability of |1⟩ is |β|2, hence, |α|2 + |β|2 = 1. The primary operation when dealing
with qubits is the unitary transformation U. Applying U to a superposition state results in another
superposition state that superposes all basis vectors, which is known as quantum parallelism. This feature
can be employed to evaluate the different values of a function f (x) for a given input x at the same time.
The unitary transformation U(t, t0) evolves a qubit state |Ψ(t0)⟩ to |Ψ(t)⟩= U(t, t0)|Ψ(t0)⟩
= T exp[−(i/ℏ)

´ t
t0
H(t ′)dt ′]|Ψ(t0)⟩, where H(t ′) is its Hamiltonian. Consequently, quantum control arises

as the most critical problem in realizing quantum computation. Its goal is to design a time-dependent
Hamiltonian H(t), which drives the qubit to its target by a unitary transform. While simple solutions like the
quantum NOT gate, which can be achieved with a resonant pulse H= ℏΩσx/2 and an operation time
T= ℏπ/2Ω, exist, they are not robust and far from optimal. Any slight systematic error T→ T+ δT or
equivalently Ω→ Ω+ δΩ will lead to fidelity loss. Furthermore, qubits cannot be perfectly isolated from the
external environment, where quantum noises induce decoherence. Therefore, optimal quantum control is
necessary to achieve high-fidelity and high-robustness gate operations, which are the milestones in
fault-tolerant universal quantum [4–6].

Physicists have proposed several protocols for achieving quantum control objectives, such as adiabatic
quantum evolution [7], composite pulses [8–10], pulse-shaping engineering [11–14], shortcuts to
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adiabaticity [15–17]. Particularly, machine learning (ML) algorithms can be combined with them for further
optimizations [18–22]. It is also natural to consider applying reinforcement learning (RL) individually for
quantum control tasks [22–33]. In recent years, deep reinforcement learning (DRL) has successfully
addressed pulse design for fast and robust quantum state preparation [34–36], gate operation [37], and
quantum Szilard engine [38]. However, as highlighted in our previous research [20, 21], the full potential of
RL for quantum control has yet to be realized due to the challenge of quantum measurement. RL requires the
observation of states for outputting an action, which conflicts with quantummechanics’ fundamental feature
that the state is destroyed after direct quantum measurement. Most RL models for quantum control are
trained in numerical environments instead of real quantum devices, to save resources, followed by fixed
pulses after observation and evaluation. These fixed pulses hardly prevail over gradient-based optimization
methods. Another approach involves combining the model with a quantum environment for evaluation.
This approach allows the RL model to output an instant action after observing a state, even though the state
is destroyed by direct measurement. However, this approach suffers from inefficiencies when historical
actions are stored for repetitive operation of n(n+ 1)/2 steps, retrieving the last destroyed state. Here, n is
the maximum number of time steps in each episode.

In this work, we present a RL approach to quantum control by employing the RL algorithm for
closed-loop quantum control. In this paradigm, qubit’s wave functions are no longer destroyed but slightly
perturbed after information extraction via weak measurement. The model observes the state, which contains
weak values as the partial information of the qubit with less confidence, resulting in an action to evolve the
quantum environment to the next timestep. Our scheme reflects the spirit of stream learning once the length
of each timestep is sufficiently small, resembling the dynamics of continuous measurement. It also enables
transfer learning by adapting the model to the environment during the evaluation while external noises
patterns are changing. We reckon that our protocol enhances the performance of quantum computing and
quantum information processing in real-time experiments, accelerating its development from noisy
intermediate-scale devices to the next level.

2. Physics models

2.1. Open quantum system
The dynamics of isolated quantum systems are governed by Schrödinger equation iℏ∂t|ψ(t)⟩=H(t)|ψ(t)⟩,
where the operator H(t) represents the Hamiltonian of the quantum system, with its expectation be in the
unit of energy. The von Neumann equation, ρ̇(t) =−(i/ℏ)[H(t),ρ(t)], is equivalent to the Schrödinger
equation, where the pure state wave function |ψ(t)⟩ is extended to density matrix ρ(t) = |ψ(t)⟩⟨ψ(t)|.
However, isolated quantum system are theoretical constructs that do not exist in the real world. External
environments always affect the quantum system by coupling themselves to it, inducing undesired dynamics,
such as decoherence.

Generally speaking, one can always write down the total Hamiltonian HT =HS +HE +HI, including the
system Hamiltonian HS, the environment Hamiltonian HE, and the coupling interaction Hamiltonian HI.
The dynamics of the new system are described by the von Neumann equation, and one retrieves information
about the original system by tracing out the environmental subsystem ρ= TrE(ρT), resulting in the Lindblad
master equation

ρ̇(t) =− i

ℏ
[H(t),ρ(t)]+

∑
n

1

2

[
2Cnρ(t)C

†
n − ρ(t)C†

nCn −C†
nCnρ(t)

]
, (1)

where Cn =
√
γnAn are the collapse operators, An are the operators that couples the system to environment in

HI, and γn are the corresponding rates. The density matrix is assumed to be initially in the product state as
ρT(0) = ρ(0)⊗ ρE(0), i.e. the original system and the environment are not correlated at t= 0. They still
remains separable ρT(t)≈ ρ(t)⊗ ρE during the evolution since the environment does not evolve
significantly. The environment is considered to be Markovian, requiring the fast decays of its correlation
functions than those of the system. it is also worthwhile to mention that the evolution of an open quantum
system is no longer unitary. Therefore, the density matrix of the quantum system is not a pure state, but a
mixed state ρ=

∑
n pn|ψn⟩⟨ψn| instead, with pn be the classical probability of being in |ψn⟩ state.

2.2. Weakmeasurement and continuous measurement
One of the major difficulties in applying ML algorithms in the quantum regime is caused by measurement,
which is usually costless in the classical realm. The act of measurement in the quantum system destroys it,
being projected to an eigenstate once quantum information is extracted. Measuring a wave function by
operator Â outputs eigenvalues, whose expectation follows ⟨Â⟩= ⟨ψ |Â|ψ ⟩. It can also be expressed in the
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Figure 1. The expectations on Y (red) and Z (blue) directions of repetitively measured qubits, when a weak measurement takes
place per (a)∆t/T= 0.1, (b)∆t/T= 0.01, and (c)∆t/T= 0.001. The qubit is driven by a resonant π-pulse, whose
measurement-free dynamics is plotted in dashed curves as a textbook open-loop quantum control. By averaging over the

trajectories ⟨σ̂i⟩ in the ensemble of N= 20 qubits (shaded curves), we have the average trajectories ⟨σ̂i⟩ plotted in solid curves.
For the closed-loop quantum control, the characteristics of dynamics vary from each other by the scale of the measurement
interval. The corresponding weak value feedbacks q0 from measuring the inaccurate Gaussian pointer σ= 10 are also recorded
and averaged as q̄0, showing a low signal-to-noise ratio by comparing to the standard deviation σ(q0).

language of density matrix as ⟨Â⟩= Tr(ρÂ). Aharonov’s work [39] proposed an extension that extracts
partial information from the quantum system without destroying it. The weak value Aw = ⟨ψf|Â|ψi ⟩/⟨ψf|ψi ⟩
is no longer real eigenvalues of the operator, but exotic values instead or even complex, where |ψi ⟩ and |ψf⟩
are pre/post-selected states. The post-selection operation does not always succeed, and the wave function is
discarded once the operation fails. To address this issue, we couple the quantum system to a pointer for
entanglement and measure the pointer projectively for a weak value, which is actually the original framework
proposed by Aharonov, instead of the later developed pre/post-selection formalism. Specifically, a Gaussian

pointer |Φ⟩=
´
(2πσ2)−1/4 exp(−q2/4σ2)|q⟩dq is coupled to the qubit |Ψ⟩= [cos(α/2), sin(α/2)]T,

following the interaction Hamiltonian Hint = g(t)p⊗ Â, where σ is the standard deviation of the pointer’s
position, p is its conjugate momentum operator, and g(t) is the coupling strength. A non-correlated initial
state |Φ(q)⟩⊗ |Ψ⟩ is evolved by the Hamiltonian, entangling as cos(α/2)|Φ(q− a1)⟩⊗ |a1⟩
+ sin(α/2)|Φ(q− a2)⟩⊗ |a2⟩, where ai and |ai ⟩ are the eigenvalues and eigenstates of the operator Â to be
weakly measured, respectively, if

´ t0
0 g(t)dt= 1. For example, if one aims at performing a weak measurement

on the Z direction, i.e. the Pauli-Z operator Â= σ̂z, the measurement outputs of the pointer’s position follow
the probability distribution

P(q)≈ 1√
2πσ2

exp

[
− (q− cosα)2

2σ2

]
, (2)

shifting a displacement of the expectation ⟨Ψ |σ̂z|Ψ⟩= cosα. Correspondingly, the wave function of the
qubit is slightly perturbed as

|Ψ̃⟩ ∝ 1

(2πσ2)1/4

{
cos

(α
2

)
e−

(q0−1)2

4σ2 |0⟩+ sin
(α
2

)
e−

(q0+1)2

4σ2 |1⟩
}
, (3)

if the weak value q0 is the measurement feedback of the projective measurement.
Additionally, quantum information can be continuously extracted from the quantum system, allowing

for continuous measurement as the information obtained per measurement approaches zero. In this
framework, the total operation time is divided into intervals of timestep∆t, so that a weak measurement is
performed in each interval. The limit∆t→ 0 results in continuous measurement, with stochastic differential
equations governing its dynamics [40, 41]. In figure 1, we illustrate the dynamics of stochastic Schrödinger
equations, used to flip a qubit with a fixed resonant π-pulse, with varying scales of time interval∆t. It can be
observed that if one continuously measures the qubit weakly, without taking any action based on the
feedback, and evolves a resonant π-pulse, the final state is more likely to deviate from the target state, which
is given by the open-loop quantum control with a π-pulse as its time-optimal solution. The more frequently
we measure, the larger the expected deviation. Hence, for closed-loop quantum control, feedback must be
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exploited to control the system. We explore this idea further by studying the design of an RL algorithm to
solve the closed-loop control of a noisy qubit.

3. Numerical experiments

3.1. Physical system and task
In section 2, we introduced Lindblad master equations as the governing equations for quantum systems
under noise. For pure dephasing, the diagonal Lindblad operators are given by Cn =

√
γn|n⟩⟨n|, yielding the

master equation

ρ̇=− i

ℏ
[H(t),ρ(t)]+Γ[diag(ρ)− ρ] , (4)

with γ0 = γ1, affecting the coherence by reducing the off-diagonal elements of the density matrix. For
relaxation, we consider the energy dissipation from the qubit to the external environment on the X direction,
modeled by C=

√
γσ̂x. The non-unitary evolution due to the Lindblad terms in master equation leads to a

mixed state density matrix, where the classical probability pn of being in |ψn⟩ cannot be retrieved. Therefore,
the perturbed system after weak measurement cannot be analytically calculated by equation (3) [42]. To
extend our analysis to the case of the density matrix, we consider a Gaussian pointer of pure state
ρp = |Φ⟩⟨Φ |, coupled to a two-level system of mixed state ρ through the interaction Hamiltonian
Hint = gδ(t− t ′)p⊗ σ̂z. The collective system is evolved from the initial state ρini = ρp ⊗ ρ to ρfin after the
coupling by

ρfin = exp(−igp⊗ σ̂z)ρini exp(igp⊗ σ̂z), (5)

shifting the pointer by ⟨σ̂z⟩= Tr(ρσ̂z) when g= 1. One retrieves the wave pointer after the coupling by
tracing out the qubit. The measurement of the pointer’s position projects the pointer to its eigenstate |q0⟩,
where the projection operator of the collective system reads P̂= |q0⟩⟨q0| ⊗ I. In this way, we have the qubit’s
density matrix after the weak value feedback of q0 by the projection operator and tracing out the pointer.

After clarifying the calculation of state perturbation in terms of the density matrix, we can now formulate
the specific task to be studied by RL. We aim to study the optimal control of a continuously measured qubit
within operation time T by ML algorithm. The goal is to flip the qubit from the state |0⟩ to |1⟩ using a
sequence of pulses on the X direction. Each pulse lasts a small interval of∆t, being described by the driving
Hamiltonian H=Ωσ̂x, followed by a weak measurement on the Z direction. We assume that the
measurement process is impulsive, meaning that the coupling and projective measurement on the pointer are
instant and independent of the dynamical evolution. Meanwhile, the control pulses may also be imprecise,
including slight detuning H=Ωσ̂x +∆σ̂z and amplitude error Ω→ Ω+ δΩ. The weak value and the last
pulse amplitude are fed to the ML model as streaming data. Accordingly, the model’s instant feedback then
controls the quantum system for the next timestep.

3.2. Numerical setup
We apply the DRL method to our task for the RL approach. The environment consists of a qubit that is
continuously measured, perturbed for weak values, and controlled by the agent’s pulses. The agent is
implemented as an artificial neural network (ANN) that takes in the qubit state as input, and outputs an
action for the control problem. The ANN is trained by deep learning algorithms to approximate the optimal
policy function π(a|s). Upon receiving the action from the agent, the environment evolves to the next
timestep, computes the new RL state, and provides a corresponding reward. It is worth noting that the
environment in the quantum realm is different from other physical environments. In the RL environment,
quantum information, e.g. density matrix elements or fidelity, is encoded in the RL state, requiring the
numerical simulation. Unlike other physical environments, the density matrix elements cannot be directly
obtained from the qubit without destroying it. Hence, one has to compute the density matrix based on the
weak value and the control pulses, making the quantum environment non-trivial and computationally
demanding.

In our practice, we set the tunable range of the Rabi frequency (pulse amplitude) as the action Ω ∈ [0,3π]
in dimensionless units, which is then renormalized to Ω̃ ∈ [0,1] for fitting the neuron. Total operation time
T= 1 is uniformly separated into n= 100 control pulses, with each pulse driving the qubit for a time interval
of∆t= 0.01. To save the computational resources, we limit the position space of the pointer to q ∈ [−50,50],
with uniform separation by∆x= 1. Consequently, the momentum operator p is constructed by [q,p] = iℏ
with boundary conditions. The density matrix of the collective quantum matrix has a size of 202× 202. The
coarse grained position space leads to weak values q0 of integer number, which is renormalized to
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Figure 2. Schematic diagram of the environment without a reward function. The qubit is repetitively coupled to the apparatus
weakly for information extraction. Its last state after the measurement is characterized by the density matrix ρ(ti−1), being driven
to a new unperturbed state by the last actionΩ(ti) as ρ̃(ti). The apparatus weakly measures the qubit for feedback of q0(ti), and
perturbs it to the state ρ(ti). The absolute values of its elements, together with the last actionΩ(ti), feedback q0(ti), and
renormalized system time ti = i/n, are defined to be the RL State s(ti), being observed by the RL Agent (an artificial neural
network), resulting in the corresponding action a(si) for driving the qubit to its next state.

q̃0 = (q0 + 50)/100 ∈ [0,1]. Thereby, the state is defined as s(ti) = {Ω̃(ti−1), q̃0(ti), i/n, |ρ11(ti)|,
|ρ12(ti)|, |ρ21(ti)|, |ρ22(ti)|}, including the last action as renormalized pulse, renormalized weak value, current
system time, and elements of the density matrix. The RL state is observed by the agent, an ANN with three
fully connected hidden layers of 64 neurons activated by ReLU, evolving to the next state by the numerical
simulation part of the environment, which receives an action from the agent. We show the schematic flow
diagram of the RL environment in figure 2 for a better understanding.

3.3. Training of the agent and results
We train three separate models for driving the qubit in the presence of detuning, dephasing, and relaxation
on the X direction, respectively. The agents approximate the optimal policy, which maximizes accumulated
artificial rewards. We keep the generality in the design of reward functions since we have no specific
preference for any pulse shape. For the task of flipping the qubit, |0⟩ → |1⟩, we reward the agent by
r(ti) = |ρ22(ti)− 1| per timestep as a negative value, aiming at a fast flipping operation. The agent receives an
extra reward of 1000 if ρ22 exceeds the threshold of |ρ22|> 0.99, and terminates the episode for calculating
the total reward early. We also notice that punishment of 100 if |ρ11|> 0.05 at the final timestep helps the
convergence of the model.

Figure 3 shows the high-fidelity closed-loop quantum control under various errors or noises. For
relaxation on the X direction, we modify the terminal condition to |ρ22(ti)|> 0.99 for four neighboring
timesteps, to prevent the model from converging on trivial resonant π-pulses. We use the Proximal Policy
Optimization (PPO) method [43] to train the agent, with the learning rate being 1× 10−3 and a batch size of
20. PPO is the well-known baseline algorithm for DRL, which guarantees the convergence in most cases. All
other hyperparameters are set to the default values in Tensorforce v0.5.3 [44]. Moreover, we introduce a
random error on the action, characterized by a centered Gaussian distribution with a standard deviation of
0.02, which emulates the time-varying systematic error in the quantum system. The models give control
pulses that are robust against systematic errors. It is important to note that a trade-off between fidelity and
robustness often exists. We obtain the models in figure 3 after about 2000, 3000, and 8000 episodes for
controlling the system under detuning, dephasing, and relaxation on the X direction, respectively.

3.4. Transfer of the agent
AML model is online for service after being trained for a particular task, such as flipping a qubit under σ̂x
relaxation as figure 3(c) does. One can evaluate the model by querying the information from the
environment to check its validity after it is online. The flipped qubit can go for further tasks, which are
independent of the model’s duty. In this way, the performance of the model can be evaluated by checking the
results of additional tasks without querying the environment or the model. If the performance of a
well-trained model deviates from its expected behavior, one can conclude that the qubit in the environment
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Figure 3. The expectations on X (green), Y (red), and Z (blue) directions of repetitively measured qubits, which are driven by
trained DRL agents under (a) detuning, (b) dephasing, and (c) σ̂x relaxation, respectively. The dynamics of each qubit are plotted

by shaded curves ⟨σ̂i⟩, being averaged for the solid curve ⟨σ̂i⟩. Fidelities are calculated by F=
(
Tr
√√

ρ|1⟩⟨1|√ρ
)2
, leading to

average fidelities of 0.9922, 0.9919, and 0.9636 for each case, with the standard deviation of 0.0012, 0.0012, and 0.0361. Control
pulses provided by the agent as step functions are also plotted in different colors. We set the detuning strength∆= 0.05Ω, the
dephasing rate Γ = 0.05, and the relaxation rate γ= 0.05. Other parameters are the same as those in previous figures, which are
listed in the main text. Dashed curves, as baselines, are derived by averaging the expectations of qubits under π-pulse control.

has changed, and quantum errors or noises have shifted to other patterns. It is then necessary to develop
another model for precise control in the new environment. Instead of discarding the current model and
training a new one, which would be inefficient, the agent can be transferred to the new environment in order
to explore its capability to adapt to the new conditions with minimal effort.

We test the proposal by starting from the trained agent in figure 3(c). By directly evaluating the agent in a
new environment in the presence of detuning∆= 0.1Ω, dephasing rate Γ = 0.05, and σ̂x relaxation rate
γ= 0.05, the average final state deviates significantly from the previous result (cf figure 4(a)), resulting in a
decrease in fidelity as well. To recover the performance, we train the agent with the same setting for about
2000 episodes, and within an additional 20% of the total episodes, the agent retrieves its performance before
the environment shift happens (cf figure 4(b)).

4. Discussion

Based on the numerical experiment in section 3, we have demonstrated that DRL can be employed to
investigate the closed-loop quantum control. The fidelity can be further improved by fine-tuning the DRL
agent in another training environment, with different thresholds and reward function designs. Interestingly,
we have found out that the optimized policy from the agent is interpretable to some extent, as figures 3(c)
and 4 shown. Specifically, we have observed that the maximal tunable Rabi frequency is 3π, which is 1.5
times the π-pulse for an operation time of T= 1. The agent drives the qubit with a relatively high frequency,
for reaching a large ρ22 as quickly as possible. It is understandable since continuous measurement can be
described in the language of superoperators, affecting the dynamics like quantum noises, which can be
effectively suppressed by reduced operation time. Later on, the pulse strength decreases significantly once ρ22
is large enough, converging to a small constant value for more precise operations. Accordingly, the weak
measurement predominantly governs the state evolution instead of the control pulse. This behavior is similar
to the quantum Zeno effect, which locks a wave function on its eigenstate by repeatedly performing
projective measurements.

Now we further discuss this topic after analyzing the results above. In section 3, we explained that the RL
environment consists of a qubit and a numerical simulation part. The qubit can be physical, e.g. constructed
in superconducting circuits, trapped ions, photonics, etc or simulated by classical computers as we
performed in numerical experiments. Here we emphasize again that the numerical simulation for calculating
the qubit dynamics is compulsory if we include quantum information ρii or fidelity in the RL state and
reward. Although we can perform the weak measurement, extracting partial quantum information and
converting it to weak value q0 without destroying the quantum state, it is still impossible to retrieve the total
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Figure 4. (a) The expectations on X (green), Y (red), and Z (blue) directions of repetitively measured qubits once the agent in
figure 3(c) (Old Model trained in the Old Environment) is employed for driving the qubits in the presence of hybrid detuning
errors and quantum noises (New Environment). The solid curves in figure 3(c) are plotted in dashed curves as the benchmark.
The average fidelity decreases from 0.9636 to 0.8805 with the standard deviation of 0.1874. Imprecise control pulses outputted by
the agent as step functions are plotted in different colors. (b) The expectations after training for about 2000 episodes. The solid
curves in figure (a) (Old Model, New Environment) are plotted in dashed curves for the benchmark. The agent (New Model) fits
the New Environment, retrieving an average fidelity of 0.9513 with the standard deviation of 0.0353. Corrected control pulses
outputted by the agent as step functions are plotted in different colors.

information of the density matrix by a single shot of measurement. We cannot treat the qubit as a black box,
as we usually do in other classical scenarios, where the observation of the RL state is instant and cost-less. By
contrast, we have to calculate the qubit dynamics based on the actions and feedback, deducing ρii without
operating on the qubit. It becomes a setback when one performs stream learning in the quantum realm since
simulating the quantum dynamics is time-consuming, e.g. about 7 s for an episode in our numerical
experiment. However, the implementation in real quantum devices requires the simulation speedup of about
105 times (compared to the T1 time of state-of-the-art superconducting qubit). A possible solution is to train
another ANN to mimic the dynamics of the quantum system, with available information as input,
outputting the quantum information to be deduced without measurements. The training of such ANN needs
plenty of training data and adequate training methods, which goes beyond the scope of this work.

Another method to avoid the black-box problem is to exclude the quantum information in the RL state.
The RL state may contain the weak value q0 and other classical information such as last action, the system
time, etc. However, this approach comes with challenges. Since the threshold criteria for early termination
are no longer available in this paradigm, the training environment only rewards the agent by a constant at the
end of each episode once a projective measurement on the target state succeeds. The agent struggles to learn
the precise control due to the low signal-to-noise ratio of q0. The reward criteria also needs a large ensemble
(batch size) to evaluate the fidelities of final quantum states. In this way, the problem becomes more difficult,
which can be applied for evaluating RL algorithms.

5. Conclusion

In summary, we have studied the closed-loop quantum control of a noisy qubit using DRL. We have
employed a Gaussian apparatus to extract the quantum information from the qubit through weak coupling.
In the presence of detuning, dephasing, and relaxation, which are typical systematic error and quantum
noises, we have developed the corresponding models for the bit-flipping task with high fidelity. Moreover, we
have proved that transfer learning can be used to adapt a model to a new noise pattern instead of training
from scratch, once the performance decay resulting from changing the noises and errors is observed. To
facilitate reproducibility, we have made all source codes for the simulation of quantum dynamics, ML
models, and evaluation scripts available on an open-source platform.

7



Mach. Learn.: Sci. Technol. 4 (2023) 025020 Y Ding et al

Data availability statement

The data that support the findings of this study are openly available at the following URL/DOI: https://
github.com/yongchengding/closed-loop-qubit.

Acknowledgments

This work was financially supported by EU FET Open Grant EPIQUS (899368); the Basque Government
through Grant No. IT1470-22; the Valencian Government Grant with Reference Number CIAICO/2021/184;
the Spanish Ministry of Economic Affairs and Digital Transformation through the QUANTUM ENIA project
call—Quantum Spain project, and the European Union through the Recovery, Transformation and
Resilience Plan—NextGenerationEU within the framework of the Digital Spain 2025 Agenda; the Project
Grant PID2021-126273NB-I00 funded by MCIN/AEI/10.13039/501100011033 and by ‘ERDF A way of
making Europe’ and ‘ERDF Invest in your Future’; NSFC (12075145), STCSM (Grant No.
2019SHZDZX01-ZX04), and QUANTEK Project (KK-2021/00070). X C acknowledges ‘Ayudas para
contratos Ramón y Cajal’—2015–2020 (RYC-2017-22482).

ORCID iDs

Yongcheng Ding https://orcid.org/0000-0002-6008-0001
Xi Chen https://orcid.org/0000-0003-4221-4288
José D Martín-Guerrero https://orcid.org/0000-0001-9378-0285

References

[1] Nielsen M A and Chuang I 2010 Quantum Computation and Quantum Information: 10th Anniversary Edition (Cambridge:
Cambridge University Press)

[2] Manju A and Nigam M J 2014 Artif. Intell. Rev. 42 79–156
[3] Nguyen N H, Behrman E C, Moustafa M A and Steck J E 2020 IEEE Trans. Neural Netw. Learn. Syst. 31 2522
[4] Shor P W 1996 Proc. 37th Conf. on Foundations of Computer Science (IEEE) pp 56–65
[5] Preskill J 1998 Introduction to Quantum Computation and Information (Singapore: World Scientific) pp 213–69
[6] Gottesman D 2010 Proc. Symp. in Applied Mathematics vol 68 pp 13–58
[7] Král P, Thanopulos I and Shapiro M 2007 Rev. Mod. Phys. 79 53
[8] Brown K R, Harrow AW and Chuang I L 2004 Phys. Rev. A 70 052318
[9] Torosov B T, Guérin S and Vitanov N V 2011 Phys. Rev. Lett. 106 233001
[10] Rong X, Geng J, Shi F, Liu Y, Xu K, Ma W, Kong F, Jiang Z, Wu Y and Du J 2015 Nat. Commun. 6 1
[11] Steffen M and Koch R H 2007 Phys. Rev. A 75 062326
[12] Barnes E and Das Sarma S 2012 Phys. Rev. Lett. 109 060401
[13] Daems D, Ruschhaupt A, Sugny D and Guérin S 2013 Phys. Rev. Lett. 111 050404
[14] Dridi G, Liu K and Guérin S 2020 Phys. Rev. Lett. 125 250403
[15] Guéry-Odelin D, Ruschhaupt A, Kiely A, Torrontegui E, Martínez-Garaot S and Muga J G 2019 Rev. Mod. Phys. 91 045001
[16] Torrontegui E, Ibánez S, Martínez-Garaot S, Modugno M, Campo A D, Guéry-Odelin D, Ruschhaupt A, Chen X and Muga J G

2013 Adv. At. Mol. Opt. 62 117
[17] Chen X, Ruschhaupt A, Schmidt S, Campo A D, Guéry-Odelin D and Muga J G 2010 Phys. Rev. Lett. 104 063002
[18] Zahedinejad E, Ghosh J and Sanders B C 2016 Phys. Rev. Appl. 6 054005
[19] Liu B-J, Song X-K, Xue Z-Y, Wang X and Yung M-H 2019 Phys. Rev. Lett. 123 100501
[20] Ding Y, Ban Y, Martín-Guerrero J D, Solano E, Casanova J and Chen X 2021 Phys. Rev. A 103 L040401
[21] Ai M Z, Ding Y, Ban Y, Martín-Guerrero J D, Casanova J, Cui J M, Huang Y F, Chen X, Li C F and Guo G C 2022 Sci. China: Phys.

Mech. Astron. 65 1
[22] Yao J, Lin L and Bukov M 2021 Phys. Rev. X 11 031070
[23] Bukov M, Day A G R, Sels D, Weinberg P, Polkovnikov A and Mehta P 2018 Phys. Rev. X 8 031086
[24] Porotti R, Tamascelli D, Restelli M and Prati E 2019 Commun. Phys. 2 1
[25] Niu M Y, Boixo S, Smelyanskiy V N and Neven H 2019 npj Quantum Inf. 5 1
[26] Dalgaard M, Motzoi F, Sørensen J J and Sherson J 2020 npj Quantum Inf. 6 1
[27] Zhang X-M, Cui Z-W, Wang X and Yung M-H 2018 Phys. Rev. A 97 052333
[28] Wu R-B, Ding H, Dong D and Wang X 2019 Phys. Rev. A 99 042327
[29] Ostaszewski M, Miszczak J, Banchi L and Sadowski P 2019 Quantum Inf. Process. 18 1
[30] Borah S, Sarma B, Kewming M, Milburn G J and Twamley J 2021 Phys. Rev. Lett. 127 190403
[31] Chen C, Dong D, Li H-X, Chu J and Tarn T-J 2014 IEEE Trans. Neural Netw. Learn. Syst. 25 920
[32] Martín-Guerrero J D and Lamata L 2022 Neurocomputing 470 457
[33] Martín-Guerrero J D and Lamata L 2021 Appl. Sci. 11 8589
[34] Henson B M, Shin D K, Thomas K F, Ross J A, Hush M R, Hodgman S S and Truscott A G 2018 Proc. Natl Acad. Sci. 115 13216
[35] Zhang X M, Wei Z, Asad R, Yang X C and Wang X 2019 npj Quantum Inf. 5 1
[36] Haug T, Mok W K, You J B, Zhang W, Png C E and Kwek L C 2020Mach. Learn.: Sci. Technol. 2 01LT02
[37] An Z and Zhou D 2019 Europhys. Lett. 126 60002
[38] Sørdal V B and Bergli J 2019 Phys. Rev. A 100 042314
[39] Aharonov Y, Albert D Z and Vaidman L 1998 Phys. Rev. Lett. 60 1351

8

https://github.com/yongchengding/closed-loop-qubit
https://github.com/yongchengding/closed-loop-qubit
https://orcid.org/0000-0002-6008-0001
https://orcid.org/0000-0002-6008-0001
https://orcid.org/0000-0003-4221-4288
https://orcid.org/0000-0003-4221-4288
https://orcid.org/0000-0001-9378-0285
https://orcid.org/0000-0001-9378-0285
https://doi.org/10.1007/s10462-012-9330-6
https://doi.org/10.1007/s10462-012-9330-6
https://doi.org/10.1109/TNNLS.2019.2933394
https://doi.org/10.1109/TNNLS.2019.2933394
https://doi.org/10.1103/RevModPhys.79.53
https://doi.org/10.1103/RevModPhys.79.53
https://doi.org/10.1103/PhysRevA.70.052318
https://doi.org/10.1103/PhysRevA.70.052318
https://doi.org/10.1103/PhysRevLett.106.233001
https://doi.org/10.1103/PhysRevLett.106.233001
https://doi.org/10.1038/ncomms9748
https://doi.org/10.1038/ncomms9748
https://doi.org/10.1103/PhysRevA.75.062326
https://doi.org/10.1103/PhysRevA.75.062326
https://doi.org/10.1103/PhysRevLett.109.060401
https://doi.org/10.1103/PhysRevLett.109.060401
https://doi.org/10.1103/PhysRevLett.111.050404
https://doi.org/10.1103/PhysRevLett.111.050404
https://doi.org/10.1103/PhysRevLett.125.250403
https://doi.org/10.1103/PhysRevLett.125.250403
https://doi.org/10.1103/RevModPhys.91.045001
https://doi.org/10.1103/RevModPhys.91.045001
https://doi.org/10.1016/B978-0-12-408090-4.00002-5
https://doi.org/10.1016/B978-0-12-408090-4.00002-5
https://doi.org/10.1103/PhysRevLett.104.063002
https://doi.org/10.1103/PhysRevLett.104.063002
https://doi.org/10.1103/PhysRevApplied.6.054005
https://doi.org/10.1103/PhysRevApplied.6.054005
https://doi.org/10.1103/PhysRevLett.123.100501
https://doi.org/10.1103/PhysRevLett.123.100501
https://doi.org/10.1103/PhysRevA.103.L040401
https://doi.org/10.1103/PhysRevA.103.L040401
https://doi.org/10.1007/s11433-021-1841-2
https://doi.org/10.1007/s11433-021-1841-2
https://doi.org/10.1103/PhysRevX.11.031070
https://doi.org/10.1103/PhysRevX.11.031070
https://doi.org/10.1103/PhysRevX.8.031086
https://doi.org/10.1103/PhysRevX.8.031086
https://doi.org/10.1038/s42005-019-0169-x
https://doi.org/10.1038/s42005-019-0169-x
https://doi.org/10.1038/s41534-019-0141-3
https://doi.org/10.1038/s41534-019-0141-3
https://doi.org/10.1038/s41534-019-0241-0
https://doi.org/10.1038/s41534-019-0241-0
https://doi.org/10.1103/PhysRevA.97.052333
https://doi.org/10.1103/PhysRevA.97.052333
https://doi.org/10.1103/PhysRevA.99.042327
https://doi.org/10.1103/PhysRevA.99.042327
https://doi.org/10.1007/s11128-019-2240-7
https://doi.org/10.1007/s11128-019-2240-7
https://doi.org/10.1103/PhysRevLett.127.190403
https://doi.org/10.1103/PhysRevLett.127.190403
https://doi.org/10.1109/TNNLS.2013.2283574
https://doi.org/10.1109/TNNLS.2013.2283574
https://doi.org/10.1016/j.neucom.2021.02.102
https://doi.org/10.1016/j.neucom.2021.02.102
https://doi.org/10.3390/app11188589
https://doi.org/10.3390/app11188589
https://doi.org/10.1073/pnas.1811501115
https://doi.org/10.1073/pnas.1811501115
https://doi.org/10.1038/s41534-019-0201-8
https://doi.org/10.1038/s41534-019-0201-8
https://doi.org/10.1088/2632-2153/abc81f
https://doi.org/10.1088/2632-2153/abc81f
https://doi.org/10.1209/0295-5075/126/60002
https://doi.org/10.1209/0295-5075/126/60002
https://doi.org/10.1103/PhysRevA.100.042314
https://doi.org/10.1103/PhysRevA.100.042314
https://doi.org/10.1103/PhysRevLett.60.1351
https://doi.org/10.1103/PhysRevLett.60.1351


Mach. Learn.: Sci. Technol. 4 (2023) 025020 Y Ding et al

[40] Gross J A, Caves C M, Milburn G J and Combes J 2018 Quantum Sci. Technol. 3 024005
[41] Jacobs K and Steck D A 2006 Contemp. Phys. 47 279
[42] Ding Y, Martín-Guerrero J D, Sanz M, Magdalena-Benedicto R, Chen X and Solano E 2020 Phys. Rev. Lett. 124 140504
[43] Schulman J, Wolski F, Dhariwal P, Radford A and Klimov O 2017 arXiv:1707.06347
[44] Kuhnle A, Schaarschmidt M and Fricke K 2017 Tensorforce: a tensorflow library for applied reinforcement learning (available at:

https://github.com/tensorforce/tensorforce)

9

https://doi.org/10.1088/2058-9565/aaa39f
https://doi.org/10.1088/2058-9565/aaa39f
https://doi.org/10.1080/00107510601101934
https://doi.org/10.1080/00107510601101934
https://doi.org/10.1103/PhysRevLett.124.140504
https://doi.org/10.1103/PhysRevLett.124.140504
https://arxiv.org/abs/1707.06347
https://github.com/tensorforce/tensorforce

	Closed-loop control of a noisy qubit with reinforcement learning
	1. Introduction
	2. Physics models
	2.1. Open quantum system
	2.2. Weak measurement and continuous measurement

	3. Numerical experiments
	3.1. Physical system and task
	3.2. Numerical setup
	3.3. Training of the agent and results
	3.4. Transfer of the agent

	4. Discussion
	5. Conclusion
	References


