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Haiyan Wu, Rikke Bateman, Xinxin Zhang, and Morten Lind

Department of Electrical Engineering, Technical University of Denmark, Denmark

ABSTRACT

With the expansion of robotic applications in the industrial
domain, it is important that the robots can execute their
tasks in a safe and reliable way. A monitoring system can be
implemented to ensure the detection of abnormal situations of
the robots and report the abnormality to their human super-
visors or cooperators. In this work, we focus on developing a
modeling framework for monitoring robotic system based on
means-end analysis and the concept of action phases from
action theory. A circular cascaded action phase structure is
proposed for building the model of cyclical robotic events.
This functional model provide a formal way of decompose
robotic tasks and analyze each level of conditions for an action
to be executed successfully. It can be used for monitoring
robotic systems by checking the preconditions in the action
phases and identifying the failure modes. The proposed
method is demonstrated by using a simulated robotic manip-
ulation system. The simulation results demonstrate the feasi-
bility of the developed functional model in finding errors
during the execution monitoring.

Introduction

The development of robot technology enables intelligent robot systems to be
more and more involved in various areas, such as automatic manufacturing,
transportation, agriculture and medication. With the increased flexibility
provided by the advanced robot systems, the execution of the robot motion
in a safe and reliable way becomes important. The uncertainties from the
robot system itself and the environment may cause problems for the robot
system and make it fail, and thus impose significant influence on task
execution. In order to monitor the behavior of the robot system and be
able to identify the causes of failure, the robot system has to be modeled in an
appropriate manner which facilitates the supervision system.

The modeling of robot system has been extensively studied in the litera-
ture. For example, a robot system is often modeled through approach such as
building a quantitative model of physical model of the system using
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differential equations (Spong, Hutchinson, and Vidyasagar 2006). However,
these equations can hardly be used as the analysis for the cause of failure is
carried out in a more abstract level. Bridging the gap between the quantita-
tive functionalities of the existing control system and the qualitative knowl-
edge needed by an intelligent monitoring system requires a considerable
effort. The interpretation of the system from a functional perspective for
system supervision is the main focus of the proposed work, especially for the
systems with multiple inter-relationships for solving highly complex pro-
blems such as multi-agent system or flexible production system.

Functional modeling describes systems with a focus on causality relations
between system functions and the operation goals. As pointed out in Lind and
Zhang (2014) functional modeling is different from the physical modeling in
the sense of different knowledge representation (goals and functions versus
behavior) and different information representation (quantitative versus quali-
tative). Understanding the system and its working environment at different
abstraction level is important for an intelligent supervision system. On one side,
the modeling of the system at different functional level can serve for different
purpose, such as using the lower level for monitoring a control element while
using a higher level for monitoring the planned execution. On the other side,
the functional modeling provides a systematic way of representing the purpose
of complex dynamics systems, which is often implicit in other model repre-
sentations. In order to understand robotic system at different abstraction levels,
the action theory and means-end analysis are used to establish a functional
modeling framework. The means-end concept is adopted in multilevel flow
modeling (MFM) (Lind 1982) to achieve functional modeling of complex
process system on multiple abstraction levels. The benefits of using means-
end analysis in functional modeling have been demonstrated through the
applications of MFM in modeling of nuclear power plants, alarm design and
risk analysis (Jing et al. 2013; Lind 2011; Lind et al. 2011). Different from
process systems, robotic systems are often discrete and event-based systems.
The temporal and sequential property of the system has to be addressed in
functional modeling and brings the action theory into the development of the
modeling framework for robotic system.

The remainder of this paper is organized as follows: Section “State of the art
of modeling within robotics” gives an overview of the related work in the field
of robotic system modeling. The key concepts for developing the functional
modeling in this work are introduced in section “Action theory.” The proposed
modeling framework for robotic system based on means-end analysis and
hierarchical model is presented in section “Modeling Framework for Robotic
System.” In order to validate the developed modeling framework, a case study is
carried out on a pick and place robotic system in section “Case study.” The last
section offers concluding remarks and future perspectives.
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State of the art of modeling within robotics

In this section, the modeling methodology for robotic system is briefly
discussed with regard to its application for monitoring. There are different
definitions of monitoring in the literature. In this work, monitoring to
detection of abnormal situations of the monitored system. The modeling
methods including analytical approach, data-driven approach and knowl-
edge-based approach, and their connections to system monitoring are intro-
duced first. Then, the functional modeling related works for robotic system
are studied.

Models for execution monitoring of robotic systems

In order to carry out the execution monitoring, a robotic model providing
knowledge required by the supervision system is needed. There are mainly
three categories of modeling methods, which can be considered as analytical
approach, data-driven approach and knowledge-based approach (Pettersson
2005).

With the analytical approach, the physical behavior of the system is
described by a mathematical model. The most common approach, the obser-
ver-based approach (Frank 1990), belongs to this category. This approach
contains redundant analytically generated variables. The difference between
redundant variables is examined for detecting system deviation in dynamics
level. The analytical approach requires a well understanding of the system as
well as limited uncertainty of the system.

If the analytical model of the system is not available, which is usually the
case for complex system involving high-dimensional input/output data
accompanying with inadequate system model, the data-driven approach
can be applied. Statistical model is often applied to capture information
from the input data, such as using the machine learning technology to create
the network between the input data and the output features (Montgomery
2007; Pettersson, Karlsson, and Saffiotti 2004). The system behavior can be
monitored through this approach. For instance, in (Pettersson, Karlsson, and
Saffiotti 2007) the execution monitoring is realized by classifying observed
behavioral patterns into normal or abnormal execution through pattern
recognition. For data-driven approach, it is assumed that the characteristics
of the data are relatively stable over time.

If the monitoring has to be carried out in different levels of abstraction,
the knowledge-based approach can be adopted. The analytical approach
and the data-driven approach are combined in this approach to perform
hybrid monitoring execution. Causal analysis and expert systems are often
used to simulate the behavior of human expert (Jackson 1986). An expert
system can provide knowledge from first principles to activation level of
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behaviors. The knowledge is formulated in terms of rules, which are used
for fault detection. The modeling approach developed in this work, which
studies the system behavior at different functional levels, belongs to the
third category.

In this section, the different modeling methods for execution monitoring
are discussed. In the next section, some examples related to the functional
modeling approach are introduced.

Functional modeling for robotic systems

The robot SHAKEY uses the triangle tables associated with STRIPS to
monitor the execution of a plan (Noreils and Chatila 1995). The precondi-
tion and the postcondition at the operation level are monitored. However,
these preconditions and postconditions are not formulated through a
generic frame, which is very useful for representing and replanning of
complex systems. For example, for some common actions belonging to a
certain category, such as “leaving” and “approaching” both belonging to
“moving,” a generic definition of preconditions and postconditions could
be formalized to facilitate the design of the monitoring system and the
reactivity system. In Geib et al. (2006), the object-action complexes
(OACs) are used to integrating the high-level planning with low-level
robotic control system by identifying the possible actions based on object
accordances. Some work focuses on designing robot system through a
behavioral network, which associates a behavior with a specific event. It
leads to the work of decomposing the robot functions into to different
levels of behaviors (Brooks 1986; Floreano and Urzelai 2000). This
approach is limited to the space of behaviors defined in the system, and
it results in a system lacking adequate capability dealing with unexpected
environmental stimuli. In Albus (1988), NASREM is proposed to describe
system with hierarchical levels, where the “coordinate transform and
servoing” locates at the lower level while the “mission planning” locates
at the higher level.

Another issue related to the monitoring of plan execution is the represen-
tation of the world. The evolution of the environment has to be coped with
respect to robot’s motion. The new events in the environment are considered
in controller design for monitoring the plan execution in (Munson 1971).
Moreover, the environment stimuli are provided for reactivity of robot
system in dynamic environments (Payton 1986). However, the relationship
among the components in the environments, the robot system and the goal
of the task is not well formulated. The world representation is often built in a
standalone fashion with the focus on the environmental dynamics itself.
Interpreting the relationship between the world and the robot system
through systematic approach from the action-role perspective has not been
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addressed yet in most work. This study combines action theory with means-
end and hierarchical model to systematically describe the relationships
among different types of actions. The concepts used in this work are
described in the following section.

Action theory

This section deals with the theory of action types, which is the idea that all
actions can be defined as belonging to a more overall group of actions. For
instance, pushing a glass or lifting a table could both be classified as moving
an object. Von Wright’s theory of action (Lind 2012) is such an analysis, and
has identified four basic types of action. Lind has expanded on this theory
and identified eight types, by including the role that intervention and omis-
sion plays. Action roles describe how the entities that are part of an action
are participating in said action.

Von Wright’s theory of action and elementary action types

Von Wright’s theory of action asserts that there are four basic types of action:
happen, remain, disappear, and remain absent. These are illustrated using a
pTp schema (Lind 2012), where T is the action or change, and p is the object
or event that this action or change affects. This schema can be observed in
Table 1.

For example, imagine p being an apple. Eating the apple would be pT~p,
as the apple disappears, where as putting an apple on a plate could be either
~pTp since the apple is in a place it was not before, or pT~p since the apple
is no longer where it was.

M. Lind interpretation: interventions and omissions

Morten Lind has expanded upon these, creating eight action types by intro-
ducing interventions and Omissions. This is shown in Table 2.

Omissions can be seen as the act of letting something happen, and in that
way the basic action types are altered. Interventions seek to change the
outcome, which is how the four action types produce, maintain, destroy,
and suppress were created (Lind 2012).

Table 1. Von Wright's basic action types.

Change schema Description
~pTp p happens
pTp p remains
pT~p p disappears

~pT~p p remains absent
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Table 2. Intervention and omission action types.

Change schema Description
~pTlpl~p] let p happens
pTlpl~p] let p remains
pTl~plp] let p disappears
~pTl~plp] let p remains absent
~pTlpl~p] produce p

pTlpl~p] maintain p
pT[~plp] destroy p
~pTl~plp] suppress p

This can be illustrated by using the same pTp schema as in Table 2 and
including the I in the outcome of the action. The square brackets illustrate
what change would have happened without the intervention or omission.
The p on the left side of the I represent what happens due to the intervention
or omission, and the p on the right side of the I represents what would have
happened without.

As such, I can be read as “instead of.” Then, the line pT[~plp] (destroy)
reads as “p changes to [not-p instead of p].”

As an example, think of an apple falling from a tree. This would be pT
[~pIp] (let disappear) in relation to the branch the apple fell from.
However, if a person placed their hand under the apple, it could be read
as pT[pI~p], as the apple would not disappear, i.e., would be maintained
on the branch.

If an apple was plucked from the tree, it would be thought of as pT[~plIp],
since the apple would have remained on the branch without the intervention,
but because of the intervention the concept of the apple being on the branch
was destroyed.

The four intervention action types are serving either a promotive function
(produce, maintain) or an opposive function (destroy, suppress).

Action roles

For each action, the entities that are engaged in the action can have one
of four different roles (Lind 2009). The most important roles are the
Agent and the Object. The action roles will be capitalized for easy
identification.

« The Agent is the entity performing the action.

« The Object is the entity that this action is being performed upon.

 The Helper assists the agent in performing the task.

» The Counter-agent is the entity working against the action taking place.

In a case such as an object being lifted, the Agent would be the entity that
does the upwards motion, the Object would be the entity being lifted, the
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Helper could be a mechanism holding on to the Object, such as glue, and the
Counter-agent is just gravity.

While the Agent and Object are always present in an action, a Counter-
agent and Helper are not always present or easily identifiable.

In a sequence of events, the roles may be changed from one action to
another. That is, the Agent of the initial action might be the Object, Helper,
or Counter-agent of the second action.

Action phases

Action Phases describe the conditions for a successful action, and are pro-
vided in Figure 1 (Lind 2010). Each action type contains its own action
phases that need to be fulfilled in order to complete the given action.

Potentiality describes the capability that the system should have for
completing the desired tasks. During design, the potentiality of an action
should be ensured. As can be seen from the figure, potentiality is the only
field under Design, where the remaining fields can be grouped under
Operation. It is different from Opportunity in that the system must be
designed with the ability to complete said task, whereas Opportunity is the
possibility of the task being completed due to circumstances. Examples of
potentiality can be the strength of a robotic arm being large enough to lift an
object, a camera being able to detect infra-red light, or a person having the
knowledge to operate a piece of machinery.

Potentiality is achieved by ensuring that the object has the liability (Rom
1975) to undergo the event (undergo change), and the agent has the power to
perform the event (perform change). In this way, liability and power are two
sides of the same coin, and one cannot exist without the other. For example,
a hammer smashing a plate (Rom 1975). For this action to be possible, not
only must the hammer be strong enough to smash the plate, the plate must
also be fragile, i.e., have the liability, to be smashed. Another example could
be a robot having the strength to bend a metal object of a certain size, but if

< Design: >|< Operation/Controt >

Potentiality Opportunity Execution Completion

( Power ) ( Liability) : (Capability) (Reachabiiit\D (Initiation}»(Performance) (Terminatior}»(DisengagemenD
I I I I I N\ | I

| R | | £\ | |
___________ —_—— —_—— =L N —_—— —_——
1 1 a 1 1
The sgenthas | l The object has ||| The sgentand | | The agentcan | The |I The | l Zhe | o | agent and |
the power to do the liability to | the object "reach” the | a;!i‘on | agent | © éecl | Is object are
| A | undergo A | are enabled | | object | inilialfed | | does A | ;2;: | achieved | disengaged

Figure 1. Action phases.
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the object is made of wood it is unbendable, and thus the object does not
have the liability to be bent, just as the robot does not have the power to
bend it.

Opportunity is guaranteed by ensuring the capability and reachability of
an agent and object. Both need to be “enabled” and the agent also needs to be
physically able to complete its task. Considering a robotic arm, if it could be
strong enough to lift the object, it is the agent of, thereby having the
potentiality for completing the action. But if it is in another room than the
object (and unable to transport itself from that room to the object), it lacks
the opportunity to complete the action. Other examples of opportunity are,
using the previous examples, that the camera is turned on, and turned the
correct direction, and that the person is awake and knows where the
machinery that needs operating is placed.

Execution is a two-part process that begins with initiation and is com-
pleted by the task being performed. In some cases execution can be simply
the triggering of an event, in other cases the performing part is more
cumbersome, such as in maintaining a situation for an extended period of
time.

An action can be initiated by the flip of a switch, or in the case of a person
performing a jump, the initiation would be the straightening of the legs from
a crouching position, which would result in upwards motion of the body.
The performing part in this case would be the follow-through, of continuing
to tighten the muscles to propel oneself upwards. Another example could be
in the case of a maintenance action, where the performance portion of the
action would have a much longer duration.

Completion is achieved when the goal of the action is achieved. This could
be a short instance in time such as a picture being taken and saved to the
camera memory, or it could be a much longer time, such as in a maintenance
case where completion would be an ongoing process.

Action Phase theory ties in with the concept of action roles, since the roles
are the entities which ensure that all the phases of the action can be
completed. The role of counter-agent is important to consider in the design
phase of a system, as it could be used to ensure potentiality. For instance, if
the counter-agent is gravity, potentiality is ensured by having an agent with
the strength to counter the force of gravity.

Modeling framework for robotic system

Section “Models for execution monitoring of robotic systems” explains the
relevance of using action theory as the foundation for establishing a func-
tional modeling framework, which can be used to represent robots actions
systematically. Based on this discussion, a modeling framework is developed
in this section.
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Means-end analysis and hierarchical model

A hierarchy is commonly understood as a type of arrangement of items in
which the items are represented as being above, below or at the same level.
The concept has been brought into the field of cognitive engineering as an
approach to organizing functional concepts. (Brooks 1986) developed the
abstraction hierarchy (AH), to utilize the different levels of means-end
abstractions to represent complex system functions in a hierarchical way,
which, proved by various empirical studies, is coherent with the human
operators’ fault finding strategies in the control room.

AH organizes the functional concepts related to a complex system into
tive different levels: functional purpose, abstract function, generalized
function, physical function and physical form. Thus it can be used for
system analysis to navigate through different levels to find the appropriate
abstraction to fit for the application. The core of AH is the means-end
dependencies between the five levels, and it gives AH the facility to handle
functional complexity.

In robotic systems, complexity also poses similar challenge for system
analysis. However, the complexity of analyzing robot behaviors lays more
in the actions of the agents and transformations of the objects. Therefore, the
means-end hierarchy is adopted to analyzing the robotic actions.

An example of means-end hierarchy was developed to show how it can
apply to robotic actions. The model is developed for the pick up and place
task of a robot arm. The object is grabbed from a conveyor belt and placed
onto a goal position. The levels of abstraction were, in descending order:
tasks, activities, actions, roles, and preconditions. The model is shown in
Figure 2.

o Tasks: the overall goals that need to be achieved by the robot system.

o Activities: the breakdown of a task into more specific sub-goals that
need to be achieved in sequence to complete the task.

o Actions: activities can be further decomposed into a set of actions that of
the four basic action types.

» Roles: the requirement for the physical components to serve their
individual action roles.

This model helped in identifying the separate events as well as the pre-
conditions for these events to be successful.

A hierarchical model of a system is useful for understanding how the
system works. However, it is also incomplete for modeling the robot system,
as there is no indication in the model that how each block in the model can
influence other blocks beyond one thread of means-end dependency.
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Figure 2. Hierarchical means-end model of the robotic system.

Modeling of action phases

Using the basic action types described in section “Models for execution
monitoring of robotic systems,” it is possible to describe the robotic system
events. And by applying the means-end analysis, one can trace the functional
requirements for individual activities. The action role analysis in the means-
end model also looks at the components and how they act in an event.

In order to create a model that can describe the actions of the robotic
system, the concept of action phases introduced in section “Models for
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Figure 3. Cascaded action phase diagram.

execution monitoring of robotic systems” was used. Action phases introduce
the temporal element in a means-end model, thus it creates the dependency
connection between different activities. Then, the hierarchical structure of
the means-end model became a action network. Since the end of one action
is often the precondition for the start of another, it was considered logical to
chain these actions together, so that the completion of, for example, the
gripper opening, would satisfy the opportunity criteria of the reach object
action of the gripper.

Figure 3 is the first attempt at an analysis of the robotic system with a
focus on action phases. The actions are chosen to follow the previous means-
end model. In order to reduce the visual clutter, the content of the action
phase boxes have been reduced to brief description. The arrows connecting
the action phase boxes indicate how the completion of one action becomes
the opportunity of another action.

The application of the action phases theory revealed a great deal of
preconditions in a systematic way that had not been previously considered.
In the hierarchical model, preconditions are included. However, these pre-
conditions are few and vague compared to the preconditions outlined in this
section. This is due to the distinction between preconditions of opportunity
and potentiality. Having to think about an action in terms of the opportunity
to perform that action and the potentiality for that action to be performed,
reveals more preconditions than that are revealed when simply thinking
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about “what needs to be in place for this action to take place?” This revealing
of preconditions is also part of the reason why a structured way to think
about actions is valuable.

Documenting actions as separate events does not leave room for the
intended outcome of the system. A sequence of successful events does not
automatically result in the intended outcome. For instance, if the object is the
wrong size or weight, all the actions that the robot system perform might be
successful, but the object would be impossible to pick up by the robot arm,
during, or after the robot attempts to lift it off the conveyor belt. This can be
avoided by analyzing the potentiality and opportunity of each action phase
while designing the robot system, as this could motivate the designers to
implement monitoring systems for the power, liability, capability and reach-
ability of each action phase.

Modeling framework

When examine robotic systems commonly used in the industry, three dis-
tinct types of activity can be observed. The first type of activity consists of a
series of sequential actions that has a start triggering event and an end point
marking the finish of the activity. The end result is used to evaluate the
successfulness of the activity. The previously used example can be categorized
as a sequential activity, see Figure 4(a).

In the robotic systems for manufacturing lines, for a single robot unit, the
activities are often repetitive. And the end of the activity is often to resume
the initial state just to repeat the previous activity. This type of periodical
behavior can be categorized as cyclical. Consider the robot system that has to
pick up objects repeatedly from one location to another; this activity becomes
cyclical rather than sequential, see Figure 4(b). This type of activity is often
evaluated by using the collective result instead of a single run of the actions.

Reach Grip Lift e
Lift
(a)
trigerring Ready Reach
Reach Grip
detected mengle Move
Camera
Detection g
(c) (b)

Figure 4. Three different types of activity: (a) sequential activity; (b) cyclical activity; (c) facilitat-
ing activity.
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There is also a third type of activity that has less to do with motion but
more with facilitate robot system to perform. This type of activity does not
change the form or the location of the object, but exists to provide pre-
conditions for other actions to be performed during other activity. One
example can be laser scanner for testing the availability of the object in
order to trigger the robot arm to move toward the object, see Figure 4(c).
The facilitating activity only exists when other activity provides an objective.

This work focuses on the modeling of robotic system executing cyclical
activity with a facilitating triggering. The development of the modeling
framework is conducted in section “Case study” through a case study.

Monitoring system based on the developed model

A model developed using the methodology outlined previously in this section
can be useful in many phases of system development and utilization, such as
design, monitoring, diagnosis and planning.

A system can be designed based on a functional analysis of the desired
tasks to be performed. In a finished system, the model can be used for
monitoring the system and registering if anything goes wrong by check-
ing preconditions to actions. This in turn could be useful for diagnosing
why an error occurred, and even planning how to move forward and
either bypass the error, correct the error, or stop the system.

The monitoring system tracks the robotic system for detecting devia-
tions. A monitoring system can be developed based on the modeling
framework introduced in this section. Because the actions in the model-
ing framework are specified by using a defined form, knowledge based
system can be developed to reason about the actions’ means-end
dependencies.

The knowledge base (Giarratano and Riley 1998) is applied for the
implementation of the monitoring system. It is made up of the tem-
plates, the main model rulebase, and the error rulebase. The details
about the implementation is explained and discussed in section “Case
study.”

Case study

In this section, a case study is carried out to develop the modeling framework
for robotic system executing cyclical actions. First, the robotic platform is
introduced. Then, the modeling framework is proposed with the given
robotic system. A monitoring system is developed based on the established
model. Finally, simulated signals are generated for testing the monitoring
system. The details of these steps are described in the rest of this section.
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The robotic system platform

The robot system used in this case study consists of a 6-joint robotic arm
with a two-finger gripper, a camera system, and a conveyor belt. They will
throughout the report be referred to as “components” of the whole system. It
is intended to be part of a slaughterhouse process, where its specific function
is for the robotic arm to lift a slab of meat off a conveyor belt and move it to
a collection of meat-hooks on a pole, referred to from here on as the
Christmas tree or CT. The meat hooks will be referred to as a CT spike.

The platform of the robotic system is shown in Figure 5(a).

The robot control box, the camera and the gripper are connected to a
PC where the control algorithm is implemented. The robot control box
is used for communicating with the robot arm. The conveyor belt can be
turned on/off manually through a standalone control box. The function
of the system is depicted in Figure 5(b). The system starts with an
initialization process, which initializes the gripper, starts the camera
system, and enables the communication between the control PC and
other components of the system. For this step, a timer is applied to
indicate the end of the procedure. Once the timer has finished, the meat
can be placed on the conveyor belt. The image processing algorithm
detects the meat as soon as the meat appears in the camera’s field of
view. Then, the position and orientation of the meat will be sent to the
controller. With this information the controller calculates the path from
the start position to the position where it has to grab the meat. The
robot arm is then triggered to reach for the meat, and the gripper is
closed to grab the meat. Having lifted the meat off the conveyor belt, the
robot arm moves the meat toward a CT spike, and pushes the gripper
down, impaling the meat on the spike. Once the gripper has reached the
base of the spike, the gripper opens. Finally, the robot arm moves back
to the start position, being ready to move again if another piece of meat
is detected. It has to be mentioned that another timer is applied when
the robot arm is waiting for the next meat. The timer is started again
every time the arm moves back to the initial position. The purpose of

Vision:
object
detection

| System Cruising: _l»
\ A s : Approach: Contact:
y / _> vzzé)ljtefcc;r reach object ™ grab object
_ . t Y
Conveyor Approach: Contact: Approach:
Belt : go backto (e« push object w— lift and move
: initial pose onto CT spike towards target

(b)

Figure 5. The robotic system and its functional block diagram.
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using this timer is to indicate the waiting time. It can be used for
presenting a warning message to the operator if a long period of time
has elapsed.

According to the platform, the following five signals can be measured and
provided for the control system:

e the state of the robotarm

e the position of the gripper,

e the distance between the gripper fingers,

e whether the conveyor belt is on or off,

e image sequence from the camera at 30°Hz, which is the input of image
processing algorithm.

As only five signals are assumed to be known, it means some preconditions
for events must be assumed. For instance, for the type of gripper used in this
system it cannot register an object in hand when the fingers are not moving.
Therefore, it is assumed that the meat stays in the gripper when it is lifted off
the conveyor belt.

Functional modeling of the robotic system

Following the discussion in sections “models for execution monitoring of
robotic systems” and “Modeling framework for robotic system,” the hier-
archical means-end analysis and cascaded action phase diagram are utilized
for the modeling of the robotic system introduced in section “The robotic
system platform.”

According to the hierarchical means-end model depicted in Figure 2 and
the cascaded action phase diagram in Figure 3, the following steps have to be
identified for creating the model: identify tasks, identify actions, identify

Move to Start
Start |:> Position
Opeii Gripper

Push
onto
Ready Spike
to Go
Moye
Camera to CT
oS Reach Spike
Meat Meat
Lift
Grab
Meat "

Figure 6. The functional model of the robotic system.
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action phases. Then, it has to identify cascade action chain. Here, the action
should be chained together by identify which actions need to be completed in
order to trigger the opportunity requirements of other actions. Finally, by
explicitly identifying the initialization, triggering and circular processes of the
system, and adding the accompanying node points, the model is established,
see also the Figure 6. The system consists of four parts:

e initialization: it happens only once when the system starts up. The
components such as robot arm and gripper are initialized during this
step. When this step is completed, the gripper is open and moved to the
start position.

e triggering: the camera part represents the meat detection through image
processing. Once the meat is detected, the position and orientation of
the meat on the conveyor belt is sent to the controller. This part is
independent from the rest of the system, as it will register an object
regardless of which action the system is carrying out at the moment.

e cyclical actions: every time a new object is detected, this circle is
followed and completed. In order to repeat the activity when new object
appears, the system has to resume the initial state after it finished the
actions on the circle

e node point: the “Ready to go” is a state where the system waits for a
trigger.

A more detailed version of the developed model given in Appendix 1,
where the action phases for each step is described.

Monitoring system for robotic system

In order to build the monitoring system for detecting the deviation of the
system, the knowledge base consisting of the main model rulebase and the

System Knowledge Base Robotic System

Component

rules and &

template y

Main Model | | \ Working

Control fact Rulebase KNV | ‘o m;rgtc;ry

template (facts)

Error Error R
messages < | Rulebase > Output
template

Figure 7. The knowledge rulebase for monitoring of the robotic system.
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error rulebase is constructed, see Figure 7. The main rulebase contains the
rules that check the state of the robotic system, while the error rulebase
contains the rules for error detection. Moreover, three templates are designed
to describe the status of components, the state of the system and error
message. A simulated robotic system, which completes the task in the plat-
form shown in Figure 6, is created to generate the signals for testing the
monitoring system. The signals are saved to the working memory which is
accessible by other blocks. The system state/fact and the error message are
presented to operators as well as logged into a file through the output block.

The monitoring system is implemented in C Language Integrated
Production System (CLIPS) which is a programming language used for the
development of expert system (Giarratano 2002)The templates, the rulebase,
the simulated signals as well as the communication among those blocks are
described in this section.

Templates

Following the CLIPS syntax of templates, three templates are created. The
component template is updated by the simulation. Typically the simulated
robotic system asserts the updated component values as facts to the
working memory, which triggers the component rules to update the
component templates. For each component in the system, a component
template is created, including component templates for the robotarm, the
gripper, the fingers of the gripper, the detection by camera and the
conveyor belt.

The control fact template tracks the state of the robotic system and
updates the state of the system triggered by the main rulebase. The error
message template is used to set whether errors have been detected or not. If
an error is detected by the error rulebase, the error template registers the
error in the error message. It has to be mentioned that the template is not
changed, but the values of the variables they contain are updated through the
rulebase.

Main model rulebase
The main model rulebase checks the robotic system states according to the
functional system model. As shown in Figure 7, the main rulebase reads the
component information from the component block and the facts from the
working memory respectively. It asserts new facts if the system state switches
from one state to another. The control fact template is modified accordingly
to capture the update of the system state. The new fact is also saved to the
working memory, so that the rest of the system knows which state the robotic
system stays.

The main rulebase consists of three types: the initialization rules, the
triggering rules and the circular process rules, shown in Figure 8(a).
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Figure 8. The main rules and error rules for the robotic system.

Initialization process rules are the rules that are related to the initialization
of the system, including moving the robot to the initial pose and opening the
gripper. The triggering rules are rules that are activated when an object is
registered by the vision system. The circular process rules are the rules for
checking the activity of the circular process. Once the system is ready and an
object is registered the first rule of the circular process is triggered.

Error rulebase

The rules of error monitoring are the rules checking if the errors are present.
Error templates are crated for setting or resetting error messages easily. Three
types of error are chosen to test the monitoring system: the synchronization
error, the timeout error, and the conveyor belt error, see Figure 8(b).

The synchronization error refers to the problem caused by the synchro-
nization issue among different components. For example, if an object is
detected on the conveyor before the system is ready, an error message will
be shown to the operator. The timeout error rule is used to record the time
elapsed since the system enters a new state. It checks whether the robotic
system progresses as planned, or is possibly stuck somewhere. The rule for
detecting conveyor belt error is used to monitor the status of the conveyor
belt. The rule throws a message if the conveyor belt stops moving.

The main model rules and the error model rules run in parallel. The error
rules do not influence the main system monitoring, but simply throw an alert
by writing to the screen and a file.

Simulation and results

The monitoring system developed from the functional system model is imple-
mented in this section for validation. The robotic system is used to generate
signals for testing. As described in section “The robotic system platform” five
signals are assumed to be available for monitoring system, see also Table 3. Each
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Table 3. Simulated signals for testing monitoring system.
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Figure 9. Simulated signals for a successful execution of the pick-and-place task.
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signal has different values denoting different status of the component. Most of
the vales in this table are self-explanatory. For the robotarm and the gripper a
short explanation is needed. The moving state of the robot arm is whenever the
arm is moving but neither lifting nor pushing. NotReady is activated after the
robotarm is moved to the start position, but before the timer for moving runs
out. For gripper NotStart is when the gripper should be moved to the start
position by the robotarm. Start is when the Gripper is at the start position. Object
is when the gripper is tracking the object. CTbegin and CTend are active when
the gripper is at the spike point and the spike base, respectively. Figure 9 shows
an example of simulated signals for the components during the pick-and-place
task. It is assumed that each signal is updated every 0.1°.

Test 1: detection of synchronization error

In order to detect the synchronization error, the simulated signals shown
in Figure 10(a) are used for testing. In this scenario the system is supposed to
start up the initialization process. However, the camera detects the object
before the robot arm finished the timer, which lasts 1.2 s in the simulation.
Therefore, the system is not ready for manipulating object, which means the
object will not be processed by the robotarm correctly. In this case, an error
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Figure 10. Simulated signals for detection of synchronization error and screen snapshot after
test.
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Figure 11. Simulated signals for the detections of conveyor belt error and the timeout error.

message should be thrown to the screen by the monitoring system. A screen
snapshot is shown in Figure 10(b).

After the completion of each step, a message is printed to update the state
of the system on the screen. When the object is detected before the system is
ready, the monitoring system throws an error message to the interface.

Test 2: detection of timeout error and conveyor belt error

Similarly to test 1, the simulated signals shown in Figure 11 are generated
to test the detections of conveyor belt error and the timeout error.

As shown in Figure 11(a), the signal of the conveyor belt is set to “0,” which
means the conveyor belt is stopped from moving. By running the monitoring
system, the error is detected and the error messaged is printed to the screen, as
shown in Figure 11(c).

The signals given in Figure 11(b) describe the scenario where the system has
been waiting for the object for too long time. A threshold of 10 seconds is
applied. The error message is printed when the object does not show up within
10 seconds, as shown in Figure 11(d).
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The simulation in this section demonstrates the usefulness of the mon-
itoring system for error detection.

Conclusion

In this work the framework of function modeling for robotic system is
developed through a case study on a known robotic system. The action
theory and the means-end hierarchical analysis are studied and applied to
generate the modeling methodology. The analysis of the action phases is
useful for identifying preconditions, thus useful for locating the error in the
robotic system. The expert system CLIPS is used to implement the developed
monitoring system based on the functional model. The implementation of
the model covered all the model states. Three error types are chosen for
testing the monitoring system. The simulation results demonstrate that the
monitoring system can successfully detect the errors and communicates to
operators through error messages on the screen.

The future work is concerned with testing the developed monitoring
system on the real robotic system and expanding the error detection system,
in order to develop a diagnosis system, and furthermore a planning system
that would be able to guide the robotic system back to working smoothly in
the event of errors.
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A complete functional model
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