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Abstract
Studies on the binary block codes generated by some ordered algebraic structures have been the interest of
many researchers. In this paper, we study the binary block code generated by an arbitrary JU -algebra and
investigate some of its properties. For this intent, we introduce the notion of a JU -function φ on a nonempty
set P into a JU -algebra X, and by using that concept, j-functions and j-subsets of P for an arbitrary element
j on a JU -algebra X are investigated. Furthermore, we define a new order on the generated code C based
on the JU -algebra X, and show that every finite JU -algebra with its order and the corresponding generated
code C with the defined order have the same structures. Finally, we generate a JU -algebra from a particular
set of binary block code.
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1 Introduction
The transmutation of information was one of the engineering issues of the twentieth century. In 1948 and
1950, Shannon [1] and Hamming [2] provided a framework for resolving the issue. As a result, coding theory
was established and information could be transmitted over the noisy channel. The idea of coding theory is to
provide a method for converting information into bits of zeros and ones such that errors in the received data are
minimized.

An error-correcting code that stores data in blocks is known as block code in coding theory. In 2011, Jun and
Song [3] applied coding theory in ordered algebraic structures and discussed its applications. During the last few
years, researchers have been interested on binary block codes generated by various types of ordered algebraic
structures.

In 2009, Leerawat and Prabpayak [4] presented the notion of KU -algebra. After a few years, Ali et al. [5] and
Ansari et al. [6] introduced and examined the idea of JU -algebra as a generalization of KU -algebras. However,
the concept of this class of algebra was previously presented by Leerawat and Prabpayak [7] under the name
“pseudo KU -algebra or PKU . Since then, studies on generalization of KU -algebra have been the interest of
numerous researchers.

In this study, the method used in generating binary block code in BL-algebras, KU -algebras, and BCK-
algebras will be applied to JU -algebras. Relationships between the generated code and JU -algebras are obtained
analogous to the results found in [3], [8]-[11].

2 Preliminary Notes
Some definitions of the concepts covered in this study are included below. You may refer on the remaining terms
and definitions in [6].

Definition 2.1. [6] (JU-algebra) A nonempty set X with binary operation ∗ and a constant 1 is said to be a
JU -algebra if it satisfies the following for any x, y, z ∈ X,

(JU1) (y ∗ z) ∗ [(z ∗ x) ∗ (y ∗ x)] = 1,

(JU2) 1 ∗ x = x,

(JU3) x ∗ y = y ∗ x implies x = y.

For brevity, a JU -algebra (X, ∗, 1) shall be denoted by X.

Example 2.1. Let X1 = {1, 2, 3, 4, 5} be a set with binary operation ∗ defined by the following Cayley table:

∗ 1 2 3 4 5
1 1 2 3 4 5
2 1 1 3 4 5
3 1 2 1 4 5
4 1 1 3 1 5
5 1 1 1 1 1

Then X1 is a JU -algebra.

Lemma 2.2. [6] For a given JU -algebra X, define a relation “� ”on X by y � x if and only if x ∗ y = 1 where
x, y ∈ X. Then (X,�) is a partially ordered set.

Lemma 2.3. [6] If X is a JU -algebra, then the following hold for any x, y, z ∈ X:
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(J4) x� y implies y ∗ z � x ∗ z,

(J5) x� y implies z ∗ x� z ∗ y,

(J6) (z ∗ x) ∗ (y ∗ x)� y ∗ z,

(J7) (y ∗ x) ∗ x� y,

(J8) x ∗ x = 1,

(J9) z ∗ (y ∗ x) = y ∗ (z ∗ x),

(J10) If (x ∗ y) ∗ y = 1, then X is a KU -algebra,

(J11) (y ∗ x) ∗ 1 = (y ∗ 1) ∗ (x ∗ 1).

Given the codeword c, the Hamming weight w(c) of a codeword c is the number of nonzero components in the
codeword. The Hamming distance between two codewords c1 and c2, denoted by d(c1, c2) is the number of places
in which the codewords c1 and c2 differ. In other words, d(c1, c2) is the Hamming weight of the vector c1 − c2,
representing the component-wise difference of the vectors c1 and c2. Theminimum Hamming distance of a code C
is the minimum distance between any two codewords in the code C, that is, d(C) = min{d(x, y)|x 6= y, x, y ∈ C}.

A code with code length n, a total of M codewords, and minimum distance d shall be denoted by (n,M, d).

3 Main Results
In this section, the notions of JU -functions on a nonempty set P based on a JU -algebra X, the j-functions, and
the j-subsets of P for an arbitrary element j ∈ X, will be introduced. Moreover, the structures of the graphs of
JU -algebra X with respect to its order � and the JU -code C based on X with its order � will be presented.

3.1 JU-Functions on a Nonempty Set P

Definition 3.1. (JU-function on P ) Let P be a nonempty set and X be a JU -algebra. Any function φ :
P → X is called a JU -function on P .

Definition 3.2. (j-subset of P ) Let P be a nonempty set and X be a JU -algebra. For a JU -function φ :
P → X on P and each j ∈ X, Pj := {p ∈ P |j ∗ φ(p) = 1}. Here, Pj is called a j-subset of P .

Definition 3.3. (j-function of φ) Let P be a nonempty set and X be a JU -algebra. For a JU -function φ :
P → X on P and each j ∈ X, define φj : P → {0, 1} for each p ∈ P as follows:

φj(p) =

{
1, if j ∗ φ(p) = 1,
0, otherwise.

The function φj is called a j-function of φ.

Example 3.1. By using Example 2.1, for a set P = {p1, p2, p3, p4, p5}, the function φ : P → X1 defined by

φ(p1) = 1, φ(p2) = 2, φ(p3) = 3, φ(p4) = 4, and φ(p5) = 5

is a JU-function on P , and the j-subsets of P for each j ∈ X1 are as follows:

P1 = {p1}, P2 = {p1, p2}, P3 = {p1, p3}, P4 = {p1, p2, p4}, and P5 = P .

In addition, for each j ∈ X1, the j-functions of φ are shown in the following table:

φj p1 p2 p3 p4 p5
φ1 1 0 0 0 0
φ2 1 1 0 0 0
φ3 1 0 1 0 0
φ4 1 1 0 1 0
φ5 1 1 1 1 1
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Remark 3.1. Let P be a nonempty set and X be a JU -algebra. For a JU -function φ : P → X on P , p ∈ Pφ(p)
for all p ∈ P .

The following proposition shows the relationship between JU -function on P and its j-functions and j-subsets of
P for each j ∈ X.

Proposition 3.1. Let φ : P → X be a JU-function on a nonempty set P based on X, where X is a JU-algebra.
Then the function φ can be described by its j-functions and j-subsets of P for each j ∈ X and for all p ∈ P , as
the infimum of the following sets:

φ(p) = inf{j ∈ X|p ∈ Pj}.

In other words, φ(p) = inf{j ∈ X|φj(p) = 1}.

Proof. Let p ∈ P such that φ(p) = j. By Remark 3.1, p ∈ Pj . Thus, j ∈ S = {j1 ∈ X|p ∈ Pj1}. If j′ ∈ S, then
p ∈ Pj′ which means that j � j′. Hence, φ(p) = inf S. �

Proposition 3.2. Let X be a JU-algebra and φ : P → X be a JU-function on a nonempty set P based on X.
If j1 � j2 for all j1, j2 ∈ X, then Pj

1
⊆ Pj

2
.

Proof. Let j1, j2 ∈ X such that j1 � j2. By Lemma 2.2, j2 ∗ j1 = 1. If u ∈ Pj
1
, then j1 ∗ φ(u) = 1 which means

that φ(u)� j1. By (J5), j2 ∗ φ(u)� j2 ∗ j1 and by (JU2),

1 = (j2 ∗ j1) ∗ (j2 ∗ φ(u)) = 1 ∗ (j2 ∗ φ(u)) = j2 ∗ φ(u).

Thus, u ∈ Pj
2
and so, Pj

1
⊆ Pj

2
. �

Theorem 3.2. Let φ : P → X be a JU-function on P . Then the following holds:

(i) for all p1, p2 ∈ P, φ(p1) 6= φ(p2) ⇐⇒ Pφ(p1 ) 6= Pφ(p2 ); and

(ii) for all j ∈ X and p ∈ P, p ∈ Pj ⇐⇒ Pφ(p) ⊆ Pj.

Proof. Let φ : P → X be a JU -function on P .

(i) Let p1, p2 ∈ P such that φ(p1) 6= φ(p2). Then by (JU3), φ(p1) ∗ φ(p2) 6= 1 or φ(p2) ∗ φ(p1) 6= 1. Now,
Pφ(p

1
) = {u ∈ P |φ(p1) ∗ φ(u) = 1} and Pφ(p

2
) = {u ∈ P |φ(p2) ∗ φ(u) = 1}. Thus, p2 ∈ Pφ(p2 ) r Pφ(p1 ) or

p1 ∈ Pφ(p
1
) r Pφ(p

2
) and so, Pφ(p

1
) 6= Pφ(p

2
).

Conversely, let p1, p2 ∈ P such that Pφ(p1 ) 6= Pφ(p2 ). Suppose on the contrary that φ(p1) = φ(p2). If
u ∈ Pφ(p1 ), then φ(p1) ∗ φ(u) = 1. Since φ(p1) = φ(p2), it follows that 1 = φ(p1) ∗ φ(u) = φ(p2) ∗ φ(u)
which means that u ∈ Pφ(p

2
). Hence, Pφ(p

1
) ⊆ Pφ(p

2
). Similarly, if v ∈ Pφ(p

2
), then v ∈ Pφ(p

1
). Thus,

Pφ(p
1
) = Pφ(p

2
) which is a contradiction. Therefore, φ(p1) 6= φ(p2).

(ii) Let j ∈ X and p ∈ P such that p ∈ Pj . Then j ∗ φ(p) = 1 which means that φ(p) � j. By Proposition
3.2, Pφ(p) ⊆ Pj .
Conversely, let j ∈ X and p ∈ P such that Pφ(p) ⊆ Pj . Since φ(p) ∗ φ(p) = 1, it follows by (J8) that
p ∈ Pφ(p). Thus, p ∈ Pj since Pφ(p) ⊆ Pj by assumption.

�

Theorem 3.2 part (ii) shows that the converse of Proposition 3.2 is true. Thus, we have the following corollary.
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Corollary 3.3. Let φ : P → X be a JU-function on a nonempty set P based on X, where X is a JU-algebra.
Then for all p1, p2 ∈ P , φ(p2) ∗ φ(p1) = 1 ⇐⇒ Pφ(p

1
) ⊆ Pφ(p

2
).

For a JU -algebra X and JU -function φ : P → X on a nonempty set P , define the set PX as follows:
PX := {Pj |j ∈ X}.

Proposition 3.3. Let φ : P → X be a JU-function on a nonempty set P . Then

P = ∪{Pj |j ∈ X}.

Proof. Clearly, ∪{Pj |j ∈ X} ⊆ P . Now, let p ∈ P and j ∈ X such that φ(p) = j. Then by using (J8),
1 = j ∗ j = j ∗ φ(p) which means that p ∈ Pj . That is, there exists j ∈ X such that p ∈ Pj ⊆ ∪{Pj |j ∈ X}.
Therefore, P = ∪{Pj |j ∈ X}. �

Let φ : P → X be a JU -function on a nonempty set P . Define a relation ≈ on X by

j1 ≈ j2 ⇐⇒ Pj1 = Pj2 (3.1)

for all j1, j2 ∈ X. Then the relation ≈ is an equivalence relation on X.

For an arbitrary element j ∈ X, define the sets φ(P ) and {j}� as follows:

φ(P ) := {j ∈ X|φ(p) = j for some p ∈ P},
{j}� := {u ∈ X|u� j} = {u ∈ X|j ∗ u = 1}.

The relationships between an equivalence relation ≈ and the sets φ(P ) and {j}� are described in the following
theorem.

Theorem 3.4. For a JU-function φ : P → X on a nonempty set P and the elements j1, j2 ∈ X, we have the
following assertion:

j1 ≈ j2 ⇐⇒ φ(P ) ∩ {j1}� = φ(P ) ∩ {j2}�

Proof. Let j1, j2 ∈ X.
Suppose j1 ≈ j2. Then Pj1 = Pj2 . Let u ∈ φ(P ) ∩ {j1}�. Since u ∈ φ(P ), it means that u = φ(p) for some
p ∈ P and so, φ(p) ∈ {j1}�. Hence, j1 ∗ φ(p) = 1 which means that p ∈ Pj1 . Since Pj1 = Pj2 , p ∈ Pj2 and so,
j2 ∗ φ(p) = 1. That is, φ(p) ∈ {j2}�. Thus, u = φ(p) ∈ φ(P ) ∩ {j2}�. Similarly, if v ∈ φ(P ) ∩ {j2}�, then
v ∈ φ(P ) ∩ {j1}�. Therefore, φ(P ) ∩ {j1}� = φ(P ) ∩ {j2}�.
Conversely, suppose φ(P ) ∩ {j1}� = φ(P ) ∩ {j2}�. Let u ∈ Pj1 . Then j1 ∗ φ(u) = 1 which means that
φ(u) ∈ φ(P ) and φ(u) ∈ {j1}�. Hence, φ(u) ∈ φ(P ) ∩ {j1}�. Since φ(P ) ∩ {j1}� = φ(P ) ∩ {j2}�, it follows
that φ(u) ∈ φ(P ) ∩ {j2}�. That is, φ(u) ∈ φ(P ) and φ(u) ∈ {j2}�. Thus, j2 ∗ φ(u) = 1 and so, u ∈ Pj2 .
Similarly, if v ∈ Pj2 , then v ∈ Pj1 . Therefore, Pj1 = Pj2 and so, j1 ≈ j2. �

3.2 Code Generated by a JU-Algebra
Let ≈ be the equivalence relation on X defined in Equation (3.1) and let [j] denotes an equivalence class
containing j for any j ∈ X. Then [j] := {k ∈ X|j ≈ k}.

Example 3.5. By using the j-functions of φ on Example 3.1, the equivalence classes of X1 are [1] = {1},
[2] = {2}, [3] = {3}, [4] = {4}, [5] = {5}. Hence, we have five different equivalence classes, which are
[1], [2], [3], [4], [5].

Definition 3.4. For n ∈ N, let P = {p1, p2, ..., pn} and X be a finite JU -algebra. Let φ : P → X be a JU -
function on a nonempty set P and let j ∈ X. The codeword generated by [j] is cj = c1c2 · · · cn where ci = φj(pi)
with pi ∈ P . The set of all codewords generated by all the equivalence classes on X is the JU -code based on X
and shall be denoted by CX .
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Example 3.6. By using the j-functions of φ on Example 3.1, we obtain

c1 = 10000, c2 = 11000, c3 = 10100, c4 = 11010, c5 = 11111.

Hence, the total number of codewords is 5 (M = 5) and the binary block code of length n = 5 is CX1 =
{10000, 11000, 10100, 11010, 11111}. Moreover, the minimum Hamming distance of CX1 is 1, that is, (d(CX1) =
1).

Definition 3.5. Let cj = j1j2 · · · jn and ck = k1k2 · · · kn be two codewords belonging to a binary block code C
of length n. An order relationship � on a set of codewords belonging to a binary block code C of length n is as
follows:

cj � ck ⇐⇒ ji ≤ ki for i = 1, 2, ..., n.

Example 3.7. By using the j-functions of φ on Example 3.1, the generated binary block code CX1 is CX1 =
{10000, 11000, 10100, 11010, 11111}. Hence, by using Lemma 2.2 for a JU-algebra X1 and Definition 3.5 for a
JU-code CX1 based on X1, we conclude that the graph of X1 concerning the order � and the code CX1 with
respect to the order � have the same structures. For instance, in Example 3.1, we have

5

4

2

1

3

11111

11010

11000

10000

10100

(X1,�) (CX1 , �)

Fig. 1. Graphs of (X1,�) and (CX1 ,�)

Theorem 3.8. Let (X, ∗, 1) be a finite JU-algebra and |X| = n, where n ∈ N. Then X determines a binary
block code C of length n (namely JU-code) such that the graph of X with respect to its order � and the graph
of JU-code C with respect to the order � have the same structures.

Proof. Let X = {j1, j2, ..., jn}. Define φ : X → X by φ(ji) = ji for all i = 1, 2, ..., n. Suppose X
≈ be a set of all

equivalence classes of the elements of X with respect to the equivalence relation ≈ defined in Equation (3.1).
That is,

X
≈ = {[j]|j ∈ X}, where [j] = {j1 ∈ X|Pj = Pj1}

Define the mapping ψ : X
≈ → C by ψ([ji]) = cji , whereby using Definition 3.4, we have

cji = φji(j1)φji(j2) · · ·φji(jn) for i = 1, 2, ..., n. Then ψ is a well-defined monomorphism.

Next, we show that ψ preserves order, suppose ji, jk ∈ X such that ji � jk, for 1 � i, k � n. Then by
Proposition 3.2, we have Xji ⊆ Xjk . If j ∈ X and j ∈ Xji , then φji(j) = 1. Since Xji ⊆ Xjk , it follows that
j ∈ Xjk and so, φjk (j) = 1. Hence, φji(j) � φjk (j). Thus, in this case, cji � cjk . If j ∈ X and j /∈ Xji , then
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φji(j) = 0. Since φjk (j) = 1 if j ∈ Xjk and φjk (j) = 0 if j /∈ Xjk , it follows that φji(j) � φjk (j). Hence,
cji � cjk . Thus, if ji � jk, then ψ(ji) � ψ(jk). Therefore, (X,�) and (C,�) have the same structures. �

Example 3.9. Let X2 = {1, 2, 3, 4, 5, 6} be a JU -algebra with binary operation ∗ given by the following Cayley
table:

∗ 1 2 3 4 5 6
1 1 2 3 4 5 6
2 1 1 3 4 5 6
3 1 1 1 4 5 6
4 1 1 1 1 5 6
5 1 1 1 4 1 6
6 1 1 1 1 1 1

Define φ : X2 → X2 by

φ(1) = 1, φ(2) = 2, φ(3) = 3, φ(4) = 4, φ(5) = 5, and φ(6) = 6.

Then

φj 1 2 3 4 5 6
φ1 1 0 0 0 0 0
φ2 1 1 0 0 0 0
φ3 1 1 1 0 0 0
φ4 1 1 1 1 0 0
φ5 1 1 1 0 1 0
φ6 1 1 1 1 1 1

Clearly, we have six different equivalence classes, which are [1], [2], [3], [4], [5], and [6]. Thus, using Definition
3.4, we have

c1 = 100000, c2 = 110000, c3 = 111000, c4 = 111100, c5 = 111010, c6 = 111111.

That is, the total number of codewords is 6 (M = 6) and the binary block code of length n = 6 is:

CX2 = {100000, 110000, 111000, 111100, 111010, 111111}.

Moreover, the graph of CX2 using the order � is the same with the graph of X2 with the order � as shown
below:
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111111

111010

111000

110000

111100

100000

6

5

3

2

4

1

(CX2 , �) (X2,�)

Fig. 2. Graphs of (CX2 ,�) and (X2,�)

If |CX | 6= |X|, then it is impossible for CX and X to have the same structures. Now, we construct a JU -algebra
from a particular set of binary block code.

Theorem 3.10. Let C = {c1, c2, ..., cn} be a finite binary block code of length n such that
c1 � c2 � · · · � cn, where n ∈ N. Then C determines a JU-algebra X such that |X| = n and the graph of C
with respect to the order � and the graph of X with respect to its order � have the same structures.

Proof. Let X = {1, 2, ....n}. Define φ : C→X by φ(ci) = i. Then φ is an isomorphism. Next, we show that
X = {1, 2, ..., n} is a JU -algebra. Define an operation ∗ on X by

j ∗ k =

{
1, if j ≥ k,
k, if j < k.

Then (X, ∗, 1) is a JU -algebra.

Moreover, we show that φ preserves order. If ci � cj , then i� j for all i, j ∈ {1, 2, ..., n}. Observe that ci � cj
implies i ≤ j which means j ∗ i = 1 and so, i � j. Furthermore, the graphs of (C,�) and (X,�) are shown
below:

cn

cn−1

c2

c1

n

n− 1

2

1

...
...

(C, �) (X,�)

Fig. 3. Graphs of (C,�) and (X,�)
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�

Example 3.11. Let CX3 = {c1 = 1000, c2 = 1100, c3 = 1110, c4 = 1111}. Take X3 = {1, 2, 3, 4}. Using the
binary operation ∗ given in the proof of Theorem 3.10, with Cayley table shown below:

∗ 1 2 3 4
1 1 2 3 4
2 1 1 3 4
3 1 1 1 4
4 1 1 1 1

(X3, ∗, 1) is a JU-algebra.

4 Conclusion and Recommendation
In this article, the binary block code generated by JU -algebra were studied. Results parallel to [8], [3], [9] were
generated. It is worth noting that the JU -code is not linear. For future research, it would be interesting to find
a condition for JU -algebra so that its corresponding JU -code is linear. In general, the authors would like to
investigate how the properties of JU -algebras affect its corresponding JU -code.
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