A Binary Block Code Generated by $J U$-Algebras

Ranelyn I. Ral ${ }^{\mathrm{a}^{*}}$ and Ann Leslie V. Flores ${ }^{\text {a }}$

${ }^{a}$ Department of Mathematics, College of Arts and Sciences, Central Mindanao University, Musuan, Maramag, Bukidnon, Philippines.

Authors' contributions
 This work was carried out in collaboration between both authors. Both authors read and approved the final
 manuscript.
 Article Information

DOI: 10.9734/ARJOM/2023/v19i9699
Open Peer Review History:
This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc are available here: https://www.sdiarticle5.com/review-history/101691

Received: 20/04/2023
Accepted: 24/06/2023
Original Research Article
Published: 30/06/2023

Abstract

Studies on the binary block codes generated by some ordered algebraic structures have been the interest of many researchers. In this paper, we study the binary block code generated by an arbitrary $J U$-algebra and investigate some of its properties. For this intent, we introduce the notion of a $J U$-function ϕ on a nonempty set P into a $J U$-algebra X, and by using that concept, j-functions and j-subsets of P for an arbitrary element j on a $J U$-algebra X are investigated. Furthermore, we define a new order on the generated code C based on the $J U$-algebra X, and show that every finite $J U$-algebra with its order and the corresponding generated code C with the defined order have the same structures. Finally, we generate a $J U$-algebra from a particular set of binary block code.

Keywords: JU-algebra; JU-function; j-function; j-subset; binary block code; coding theory.
2020 Mathematics Subject Classification: 06F35, 03G25, 94B05.

[^0]Asian Res. J. Math., vol. 19, no. 9, pp. 58-67, 2023

1 Introduction

The transmutation of information was one of the engineering issues of the twentieth century. In 1948 and 1950, Shannon [1] and Hamming [2] provided a framework for resolving the issue. As a result, coding theory was established and information could be transmitted over the noisy channel. The idea of coding theory is to provide a method for converting information into bits of zeros and ones such that errors in the received data are minimized.

An error-correcting code that stores data in blocks is known as block code in coding theory. In 2011, Jun and Song [3] applied coding theory in ordered algebraic structures and discussed its applications. During the last few years, researchers have been interested on binary block codes generated by various types of ordered algebraic structures.

In 2009, Leerawat and Prabpayak [4] presented the notion of $K U$-algebra. After a few years, Ali et al. [5] and Ansari et al. [6] introduced and examined the idea of $J U$-algebra as a generalization of $K U$-algebras. However, the concept of this class of algebra was previously presented by Leerawat and Prabpayak [7] under the name "pseudo $K U$-algebra or $P K U$. Since then, studies on generalization of $K U$-algebra have been the interest of numerous researchers.

In this study, the method used in generating binary block code in $B L$-algebras, $K U$-algebras, and $B C K$ algebras will be applied to $J U$-algebras. Relationships between the generated code and $J U$-algebras are obtained analogous to the results found in [3], [8]-[11].

2 Preliminary Notes

Some definitions of the concepts covered in this study are included below. You may refer on the remaining terms and definitions in [6].

Definition 2.1. [6] ($J U$-algebra) A nonempty set X with binary operation $*$ and a constant 1 is said to be a $J U$-algebra if it satisfies the following for any $x, y, z \in X$,
$\left(J U_{1}\right)(y * z) *[(z * x) *(y * x)]=1$,
$\left(J U_{2}\right) 1 * x=x$,
$\left(J U_{3}\right) x * y=y * x$ implies $x=y$.
For brevity, a $J U$-algebra $(X, *, 1)$ shall be denoted by X.
Example 2.1. Let $X_{1}=\{1,2,3,4,5\}$ be a set with binary operation $*$ defined by the following Cayley table:

$*$	1	2	3	4	5
1	1	2	3	4	5
2	1	1	3	4	5
3	1	2	1	4	5
4	1	1	3	1	5
5	1	1	1	1	1

Then X_{1} is a $J U$-algebra.
Lemma 2.2. [6] For a given $J U$-algebra X, define a relation " \ll "on X by $y \ll x$ if and only if $x * y=1$ where $x, y \in X$. Then (X, \ll) is a partially ordered set.

Lemma 2.3. [6] If X is a $J U$-algebra, then the following hold for any $x, y, z \in X$:
$\left(J_{4}\right) x \ll y$ implies $y * z \ll x * z$,
$\left(J_{5}\right) x \ll y$ implies $z * x \ll z * y$,
$\left(J_{6}\right)(z * x) *(y * x) \ll y * z$,
$\left(J_{7}\right)(y * x) * x \ll y$,
$\left(J_{8}\right) \quad x * x=1$,
$\left(J_{9}\right) z *(y * x)=y *(z * x)$,
$\left(J_{10}\right)$ If $(x * y) * y=1$, then X is a $K U$-algebra,

$$
\left(J_{11}\right)(y * x) * 1=(y * 1) *(x * 1)
$$

Given the codeword c, the Hamming weight $w(c)$ of a codeword c is the number of nonzero components in the codeword. The Hamming distance between two codewords c_{1} and c_{2}, denoted by $d\left(c_{1}, c_{2}\right)$ is the number of places in which the codewords c_{1} and c_{2} differ. In other words, $d\left(c_{1}, c_{2}\right)$ is the Hamming weight of the vector $c_{1}-c_{2}$, representing the component-wise difference of the vectors c_{1} and c_{2}. The minimum Hamming distance of a code C is the minimum distance between any two codewords in the code C, that is, $d(C)=\min \{d(x, y) \mid x \neq y, x, y \in C\}$.

A code with code length n, a total of M codewords, and minimum distance d shall be denoted by (n, M, d).

3 Main Results

In this section, the notions of $J U$-functions on a nonempty set P based on a $J U$-algebra X, the j-functions, and the j-subsets of P for an arbitrary element $j \in X$, will be introduced. Moreover, the structures of the graphs of $J U$-algebra X with respect to its order \ll and the $J U$-code C based on X with its order \preceq will be presented.

3.1 JU-Functions on a Nonempty Set P

Definition 3.1. ($J U$-function on P) Let P be a nonempty set and X be a $J U$-algebra. Any function ϕ : $P \rightarrow X$ is called a $J U$-function on P.

Definition 3.2. (j-subset of P) Let P be a nonempty set and X be a $J U$-algebra. For a $J U$-function ϕ : $P \rightarrow X$ on P and each $j \in X, P_{j}:=\{p \in P \mid j * \phi(p)=1\}$. Here, P_{j} is called a j-subset of P.

Definition 3.3. (j-function of ϕ) Let P be a nonempty set and X be a $J U$-algebra. For a $J U$-function ϕ : $P \rightarrow X$ on P and each $j \in X$, define $\phi_{j}: P \rightarrow\{0,1\}$ for each $p \in P$ as follows:

$$
\phi_{j}(p)= \begin{cases}1, & \text { if } j * \phi(p)=1 \\ 0, & \text { otherwise }\end{cases}
$$

The function ϕ_{j} is called a j-function of ϕ.
Example 3.1. By using Example 2.1, for a set $P=\left\{p_{1}, p_{2}, p_{3}, p_{4}, p_{5}\right\}$, the function $\phi: P \rightarrow X_{1}$ defined by

$$
\phi\left(p_{1}\right)=1, \phi\left(p_{2}\right)=2, \phi\left(p_{3}\right)=3, \phi\left(p_{4}\right)=4, \text { and } \phi\left(p_{5}\right)=5
$$

is a $J U$-function on P, and the j-subsets of P for each $j \in X_{1}$ are as follows:

$$
P_{1}=\left\{p_{1}\right\}, P_{2}=\left\{p_{1}, p_{2}\right\}, P_{3}=\left\{p_{1}, p_{3}\right\}, P_{4}=\left\{p_{1}, p_{2}, p_{4}\right\}, \text { and } P_{5}=P .
$$

In addition, for each $j \in X_{1}$, the j-functions of ϕ are shown in the following table:

ϕ_{j}	p_{1}	p_{2}	p_{3}	p_{4}	p_{5}
ϕ_{1}	1	0	0	0	0
ϕ_{2}	1	1	0	0	0
ϕ_{3}	1	0	1	0	0
ϕ_{4}	1	1	0	1	0
ϕ_{5}	1	1	1	1	1

Remark 3.1. Let P be a nonempty set and X be a $J U$-algebra. For a $J U$-function $\phi: P \rightarrow X$ on $P, p \in P_{\phi(p)}$ for all $p \in P$.

The following proposition shows the relationship between $J U$-function on P and its j-functions and j-subsets of P for each $j \in X$.

Proposition 3.1. Let $\phi: P \rightarrow X$ be a JU-function on a nonempty set P based on X, where X is a JU-algebra. Then the function ϕ can be described by its j-functions and j-subsets of P for each $j \in X$ and for all $p \in P$, as the infimum of the following sets:

$$
\phi(p)=\inf \left\{j \in X \mid p \in P_{j}\right\} .
$$

In other words, $\phi(p)=\inf \left\{j \in X \mid \phi_{j}(p)=1\right\}$.
Proof. Let $p \in P$ such that $\phi(p)=j$. By Remark 3.1, $p \in P_{j}$. Thus, $j \in S=\left\{j_{1} \in X \mid p \in P_{j_{1}}\right\}$. If $j^{\prime} \in S$, then $p \in P_{j^{\prime}}$ which means that $j \ll j^{\prime}$. Hence, $\phi(p)=\inf S$.

Proposition 3.2. Let X be a $J U$-algebra and $\phi: P \rightarrow X$ be a $J U$-function on a nonempty set P based on X. If $j_{1} \ll j_{2}$ for all $j_{1}, j_{2} \in X$, then $P_{j_{1}} \subseteq P_{j_{2}}$.

Proof. Let $j_{1}, j_{2} \in X$ such that $j_{1} \ll j_{2}$. By Lemma 2.2, $j_{2} * j_{1}=1$. If $u \in P_{j_{1}}$, then $j_{1} * \phi(u)=1$ which means that $\phi(u) \ll j_{1}$. By $\left(J_{5}\right), j_{2} * \phi(u) \ll j_{2} * j_{1}$ and by $\left(J U_{2}\right)$,

$$
1=\left(j_{2} * j_{1}\right) *\left(j_{2} * \phi(u)\right)=1 *\left(j_{2} * \phi(u)\right)=j_{2} * \phi(u) .
$$

Thus, $u \in P_{j_{2}}$ and so, $P_{j_{1}} \subseteq P_{j_{2}}$.
Theorem 3.2. Let $\phi: P \rightarrow X$ be a JU-function on P. Then the following holds:
(i) for all $p_{1}, p_{2} \in P, \phi\left(p_{1}\right) \neq \phi\left(p_{2}\right) \Longleftrightarrow P_{\phi\left(p_{1}\right)} \neq P_{\phi\left(p_{2}\right)}$; and
(ii) for all $j \in X$ and $p \in P, p \in P_{j} \Longleftrightarrow P_{\phi(p)} \subseteq P_{j}$.

Proof. Let $\phi: P \rightarrow X$ be a $J U$-function on P.
(i) Let $p_{1}, p_{2} \in P$ such that $\phi\left(p_{1}\right) \neq \phi\left(p_{2}\right)$. Then by $\left(J U_{3}\right), \phi\left(p_{1}\right) * \phi\left(p_{2}\right) \neq 1$ or $\phi\left(p_{2}\right) * \phi\left(p_{1}\right) \neq 1$. Now, $P_{\phi\left(p_{1}\right)}=\left\{u \in P \mid \phi\left(p_{1}\right) * \phi(u)=1\right\}$ and $P_{\phi\left(p_{2}\right)}=\left\{u \in P \mid \phi\left(p_{2}\right) * \phi(u)=1\right\}$. Thus, $p_{2} \in P_{\phi\left(p_{2}\right)} \backslash P_{\phi\left(p_{1}\right)}$ or $p_{1} \in P_{\phi\left(p_{1}\right)} \backslash P_{\phi\left(p_{2}\right)}$ and so, $P_{\phi\left(p_{1}\right)} \neq P_{\phi\left(p_{2}\right)}$.
Conversely, let $p_{1}, p_{2} \in P$ such that $P_{\phi\left(p_{1}\right)} \neq P_{\phi\left(p_{2}\right)}$. Suppose on the contrary that $\phi\left(p_{1}\right)=\phi\left(p_{2}\right)$. If $u \in P_{\phi\left(p_{1}\right)}$, then $\phi\left(p_{1}\right) * \phi(u)=1$. Since $\phi\left(p_{1}\right)=\phi\left(p_{2}\right)$, it follows that $1=\phi\left(p_{1}\right) * \phi(u)=\phi\left(p_{2}\right) * \phi(u)$ which means that $u \in P_{\phi\left(p_{2}\right)}$. Hence, $P_{\phi\left(p_{1}\right)} \subseteq P_{\phi\left(p_{2}\right)}$. Similarly, if $v \in P_{\phi\left(p_{2}\right)}$, then $v \in P_{\phi\left(p_{1}\right)}$. Thus, $P_{\phi\left(p_{1}\right)}=P_{\phi\left(p_{2}\right)}$ which is a contradiction. Therefore, $\phi\left(p_{1}\right) \neq \phi\left(p_{2}\right)$.
(ii) Let $j \in X$ and $p \in P$ such that $p \in P_{j}$. Then $j * \phi(p)=1$ which means that $\phi(p) \ll j$. By Proposition $3.2, P_{\phi(p)} \subseteq P_{j}$.
Conversely, let $j \in X$ and $p \in P$ such that $P_{\phi(p)} \subseteq P_{j}$. Since $\phi(p) * \phi(p)=1$, it follows by (J_{8}) that $p \in P_{\phi(p)}$. Thus, $p \in P_{j}$ since $P_{\phi(p)} \subseteq P_{j}$ by assumption.

Theorem 3.2 part (ii) shows that the converse of Proposition 3.2 is true. Thus, we have the following corollary.

Corollary 3.3. Let $\phi: P \rightarrow X$ be a JU-function on a nonempty set P based on X, where X is a JU-algebra. Then for all $p_{1}, p_{2} \in P, \phi\left(p_{2}\right) * \phi\left(p_{1}\right)=1 \Longleftrightarrow P_{\phi\left(p_{1}\right)} \subseteq P_{\phi\left(p_{2}\right)}$.
For a $J U$-algebra X and $J U$-function $\phi: P \rightarrow X$ on a nonempty set P, define the set P_{X} as follows:

$$
P_{X}:=\left\{P_{j} \mid j \in X\right\} .
$$

Proposition 3.3. Let $\phi: P \rightarrow X$ be a JU-function on a nonempty set P. Then

$$
P=\cup\left\{P_{j} \mid j \in X\right\} .
$$

Proof. Clearly, $\cup\left\{P_{j} \mid j \in X\right\} \subseteq P$. Now, let $p \in P$ and $j \in X$ such that $\phi(p)=j$. Then by using (J_{8}), $1=j * j=j * \phi(p)$ which means that $p \in P_{j}$. That is, there exists $j \in X$ such that $p \in P_{j} \subseteq \cup\left\{P_{j} \mid j \in X\right\}$. Therefore, $P=\cup\left\{P_{j} \mid j \in X\right\}$.

Let $\phi: P \rightarrow X$ be a $J U$-function on a nonempty set P. Define a relation \approx on X by

$$
\begin{equation*}
j_{1} \approx j_{2} \Longleftrightarrow P_{j_{1}}=P_{j_{2}} \tag{3.1}
\end{equation*}
$$

for all $j_{1}, j_{2} \in X$. Then the relation \approx is an equivalence relation on X.
For an arbitrary element $j \in X$, define the sets $\phi(P)$ and $\{j\}_{\ll}$ as follows:

$$
\begin{gathered}
\phi(P):=\{j \in X \mid \phi(p)=j \text { for some } p \in P\}, \\
\{j\}_{\ll}:=\{u \in X \mid u \ll j\}=\{u \in X \mid j * u=1\} .
\end{gathered}
$$

The relationships between an equivalence relation \approx and the sets $\phi(P)$ and $\{j\}_{\ll}$ are described in the following theorem.

Theorem 3.4. For a JU-function $\phi: P \rightarrow X$ on a nonempty set P and the elements $j_{1}, j_{2} \in X$, we have the following assertion:

$$
j_{1} \approx j_{2} \Longleftrightarrow \phi(P) \cap\left\{j_{1}\right\}_{\ll}=\phi(P) \cap\left\{j_{2}\right\}_{\ll}
$$

Proof. Let $j_{1}, j_{2} \in X$.
Suppose $j_{1} \approx j_{2}$. Then $P_{j_{1}}=P_{j_{2}}$. Let $u \in \phi(P) \cap\left\{j_{1}\right\}_{\lll}$. Since $u \in \phi(P)$, it means that $u=\phi(p)$ for some $p \in P$ and so, $\phi(p) \in\left\{j_{1}\right\}_{\ll}$. Hence, $j_{1} * \phi(p)=1$ which means that $p \in P_{j_{1}}$. Since $P_{j_{1}}=P_{j_{2}}, p \in P_{j_{2}}$ and so, $j_{2} * \phi(p)=1$. That is, $\phi(p) \in\left\{j_{2}\right\}_{\ll}$. Thus, $u=\phi(p) \in \phi(P) \cap\left\{j_{2}\right\}_{\ll}$. Similarly, if $v \in \phi(P) \cap\left\{j_{2}\right\}_{\ll}$, then $v \in \phi(P) \cap\left\{j_{1}\right\}_{\ll}$. Therefore, $\phi(P) \cap\left\{j_{1}\right\}_{\ll}=\phi(P) \cap\left\{j_{2}\right\}_{\ll}$.
Conversely, suppose $\phi(P) \cap\left\{j_{1}\right\}_{\ll}=\phi(P) \cap\left\{j_{2}\right\}_{\ll}$. Let $u \in P_{j_{1}}$. Then $j_{1} * \phi(u)=1$ which means that $\phi(u) \in \phi(P)$ and $\phi(u) \in\left\{j_{1}\right\}_{\ll}$. Hence, $\phi(u) \in \phi(P) \cap\left\{j_{1}\right\}_{\ll}$. Since $\phi(P) \cap\left\{j_{1}\right\}_{\ll}=\phi(P) \cap\left\{j_{2}\right\}_{\ll}$, it follows that $\phi(u) \in \phi(P) \cap\left\{j_{2}\right\}_{\ll}$. That is, $\phi(u) \in \phi(P)$ and $\phi(u) \in\left\{j_{2}\right\}_{\ll}$. Thus, $j_{2} * \phi(u)=1$ and so, $u \in P_{j_{2}}$. Similarly, if $v \in P_{j_{2}}$, then $v \in P_{j_{1}}$. Therefore, $P_{j_{1}}=P_{j_{2}}$ and so, $j_{1} \approx j_{2}$.

3.2 Code Generated by a $J U$-Algebra

Let \approx be the equivalence relation on X defined in Equation (3.1) and let $[j]$ denotes an equivalence class containing j for any $j \in X$. Then $[j]:=\{k \in X \mid j \approx k\}$.

Example 3.5. By using the j-functions of ϕ on Example 3.1, the equivalence classes of X_{1} are $[1]=\{1\}$, $[2]=\{2\},[3]=\{3\},[4]=\{4\},[5]=\{5\}$. Hence, we have five different equivalence classes, which are [1], [2], [3], [4], [5].
Definition 3.4. For $n \in \mathbb{N}$, let $P=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ and X be a finite $J U$-algebra. Let $\phi: P \rightarrow X$ be a $J U$ function on a nonempty set P and let $j \in X$. The codeword generated by $[j]$ is $c_{j}=c_{1} c_{2} \cdots c_{n}$ where $c_{i}=\phi_{j}\left(p_{i}\right)$ with $p_{i} \in P$. The set of all codewords generated by all the equivalence classes on X is the $J U$-code based on X and shall be denoted by C_{X}.

Example 3.6. By using the j-functions of ϕ on Example 3.1, we obtain

$$
c_{1}=10000, c_{2}=11000, c_{3}=10100, c_{4}=11010, c_{5}=11111 .
$$

Hence, the total number of codewords is $5(M=5)$ and the binary block code of length $n=5$ is $C_{X_{1}}=$ $\{10000,11000,10100,11010,11111\}$. Moreover, the minimum Hamming distance of $C_{X_{1}}$ is 1 , that is, $\left(d\left(C_{X_{1}}\right)=\right.$ 1).

Definition 3.5. Let $c_{j}=j_{1} j_{2} \cdots j_{n}$ and $c_{k}=k_{1} k_{2} \cdots k_{n}$ be two codewords belonging to a binary block code C of length n. An order relationship \preceq on a set of codewords belonging to a binary block code C of length n is as follows:

$$
c_{j} \preceq c_{k} \Longleftrightarrow j_{i} \leq k_{i} \text { for } i=1,2, \ldots, n .
$$

Example 3.7. By using the j-functions of ϕ on Example 3.1, the generated binary block code $C_{X_{1}}$ is $C_{X_{1}}=$ $\{10000,11000,10100,11010,11111\}$. Hence, by using Lemma 2.2 for a JU-algebra X_{1} and Definition 3.5 for a $J U$-code $C_{X_{1}}$ based on X_{1}, we conclude that the graph of X_{1} concerning the order \ll and the code $C_{X_{1}}$ with respect to the order \preceq have the same structures. For instance, in Example 3.1, we have

Fig. 1. Graphs of $\left(X_{1}, \ll\right)$ and $\left(C_{X_{1}}, \preceq\right)$
Theorem 3.8. Let $(X, *, 1)$ be a finite JU-algebra and $|X|=n$, where $n \in \mathbb{N}$. Then X determines a binary block code C of length n (namely JU-code) such that the graph of X with respect to its order \ll and the graph of $J U$-code C with respect to the order \preceq have the same structures.

Proof. Let $X=\left\{j_{1}, j_{2}, \ldots, j_{n}\right\}$. Define $\phi: X \rightarrow X$ by $\phi\left(j_{i}\right)=j_{i}$ for all $i=1,2, \ldots, n$. Suppose $\frac{X}{\approx}$ be a set of all equivalence classes of the elements of X with respect to the equivalence relation \approx defined in Equation (3.1). That is,

$$
\frac{X}{\approx}=\{[j] \mid j \in X\}, \text { where }[j]=\left\{j_{1} \in X \mid P_{j}=P_{j_{1}}\right\}
$$

Define the mapping $\psi: \underset{\approx}{X} \rightarrow C$ by $\psi\left(\left[j_{i}\right]\right)=c_{j_{i}}$, whereby using Definition 3.4 , we have $c_{j_{i}}=\phi_{j_{i}}\left(j_{1}\right) \phi_{j_{i}}\left(j_{2}\right) \cdots \phi_{j_{i}}\left(j_{n}\right)$ for $i=1,2, \ldots, n$. Then ψ is a well-defined monomorphism.

Next, we show that ψ preserves order, suppose $j_{i}, j_{k} \in X$ such that $j_{i} \ll j_{k}$, for $1 \ll i, k \ll n$. Then by Proposition 3.2, we have $X_{j_{i}} \subseteq X_{j_{k}}$. If $j \in X$ and $j \in X_{j_{i}}$, then $\phi_{j_{i}}(j)=1$. Since $X_{j_{i}} \subseteq X_{j_{k}}$, it follows that $j \in X_{j_{k}}$ and so, $\phi_{j_{k}}(j)=1$. Hence, $\phi_{j_{i}}(j) \ll \phi_{j_{k}}(j)$. Thus, in this case, $c_{j_{i}} \preceq c_{j_{k}}$. If $j \in X$ and $j \notin X_{j_{i}}$, then
$\phi_{j_{i}}(j)=0$. Since $\phi_{j_{k}}(j)=1$ if $j \in X_{j_{k}}$ and $\phi_{j_{k}}(j)=0$ if $j \notin X_{j_{k}}$, it follows that $\phi_{j_{i}}(j) \ll \phi_{j_{k}}(j)$. Hence, $c_{j_{i}} \preceq c_{j_{k}}$. Thus, if $j_{i} \ll j_{k}$, then $\psi\left(j_{i}\right) \preceq \psi\left(j_{k}\right)$. Therefore, (X, \ll) and (C, \preceq) have the same structures.

Example 3.9. Let $X_{2}=\{1,2,3,4,5,6\}$ be a $J U$-algebra with binary operation $*$ given by the following Cayley table:

$*$	1	2	3	4	5	6
1	1	2	3	4	5	6
2	1	1	3	4	5	6
3	1	1	1	4	5	6
4	1	1	1	1	5	6
5	1	1	1	4	1	6
6	1	1	1	1	1	1

Define $\phi: X_{2} \rightarrow X_{2}$ by

$$
\phi(1)=1, \phi(2)=2, \phi(3)=3, \phi(4)=4, \phi(5)=5, \text { and } \phi(6)=6 .
$$

Then

ϕ_{j}	1	2	3	4	5	6
ϕ_{1}	1	0	0	0	0	0
ϕ_{2}	1	1	0	0	0	0
ϕ_{3}	1	1	1	0	0	0
ϕ_{4}	1	1	1	1	0	0
ϕ_{5}	1	1	1	0	1	0
ϕ_{6}	1	1	1	1	1	1

Clearly, we have six different equivalence classes, which are [1], [2], [3], [4], [5], and [6]. Thus, using Definition 3.4, we have

$$
c_{1}=100000, c_{2}=110000, c_{3}=111000, c_{4}=111100, c_{5}=111010, c_{6}=111111
$$

That is, the total number of codewords is $6(M=6)$ and the binary block code of length $n=6$ is:

$$
C_{X_{2}}=\{100000,110000,111000,111100,111010,111111\} .
$$

Moreover, the graph of $C_{X_{2}}$ using the order \preceq is the same with the graph of X_{2} with the order \ll as shown below:

Fig. 2. Graphs of $\left(C_{X_{2}}, \preceq\right)$ and $\left(X_{2}, \ll\right)$
If $\left|C_{X}\right| \neq|X|$, then it is impossible for C_{X} and X to have the same structures. Now, we construct a $J U$-algebra from a particular set of binary block code.

Theorem 3.10. Let $C=\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}$ be a finite binary block code of length n such that $c_{1} \preceq c_{2} \preceq \cdots \preceq c_{n}$, where $n \in \mathbb{N}$. Then C determines a JU-algebra X such that $|X|=n$ and the graph of C with respect to the order \preceq and the graph of X with respect to its order \ll have the same structures.

Proof. Let $X=\{1,2, \ldots . n\}$. Define $\phi: C \rightarrow X$ by $\phi\left(c_{i}\right)=i$. Then ϕ is an isomorphism. Next, we show that $X=\{1,2, \ldots, n\}$ is a $J U$-algebra. Define an operation $*$ on X by

$$
j * k= \begin{cases}1, & \text { if } j \geq k, \\ k, & \text { if } j<k .\end{cases}
$$

Then $(X, *, 1)$ is a $J U$-algebra.
Moreover, we show that ϕ preserves order. If $c_{i} \preceq c_{j}$, then $i \ll j$ for all $i, j \in\{1,2, \ldots, n\}$. Observe that $c_{i} \preceq c_{j}$ implies $i \leq j$ which means $j * i=1$ and so, $i \ll j$. Furthermore, the graphs of (C, \preceq) and (X, \ll) are shown below:

Fig. 3. Graphs of (C, \preceq) and (X, \ll)

Example 3.11. Let $C_{X_{3}}=\left\{c_{1}=1000, c_{2}=1100, c_{3}=1110, c_{4}=1111\right\}$. Take $X_{3}=\{1,2,3,4\}$. Using the binary operation $*$ given in the proof of Theorem 3.10, with Cayley table shown below:

$*$	1	2	3	4
1	1	2	3	4
2	1	1	3	4
3	1	1	1	4
4	1	1	1	1

$\left(X_{3}, *, 1\right)$ is a $J U$-algebra.

4 Conclusion and Recommendation

In this article, the binary block code generated by $J U$-algebra were studied. Results parallel to [8], [3], [9] were generated. It is worth noting that the $J U$-code is not linear. For future research, it would be interesting to find a condition for $J U$-algebra so that its corresponding $J U$-code is linear. In general, the authors would like to investigate how the properties of $J U$-algebras affect its corresponding $J U$-code.

Acknowledgment

The authors would like to thank the anonymous referees for helpful and valuable comments.

Competing Interests

Authors declare that they have no competing interests.

References

[1] Shannon CE. A mathematical theory of communications. Bell Syst. Tech. J. 1948;27:379-423.
[2] Hamming RW. Error detecting and error-correcting codes. Bell Syst. Tech. J. 1950;29:147-160.
[3] Jun YB, Song SZ. Codes based on BCK-algebras. Inf. Sci. 2011;181:5102-5109.
[4] Leerawat U, Prabpayak C. On ideals and congruences in $K U$-algebras. Scienctia Magna J. 2009;5(1):54-57.
[5] Ali U, Ansari MA, Rehman MU. Pseudo-valuations and pseudo-metric on $J U$-algebras. Open J. Math. Sci. 2019;1:440-446.
[6] Ansari MA, Haider A, Koam AN. On $J U$-algebras and p-closure ideals. Int. J. Math. Comput. Sci. 2020;15(1):135-154.
[7] Leerawat U, Prabpayak C. Pseudo $K U$-algebras and their applications in topology. Global J. Pure Appl. Math. 2015;11(4):1793-1801.
[8] Bordbar H. The structure of the block code generated by a BL-algebra. Mathematics. 2022;10:692.
[9] Mostafa S, Youssef B, Jad H. Coding theory applied to $K U$-algebras. J. New Theory. 2015;6:43-53.
[10] Romano D. A few comments and some new results on JU-algebras. Open Journal of Mathematical Sciences. 2020;4(1):110-117.
[11] Romano D. Concept of $J U$-filters of $J U$-algebras. Analele Univ. Oradea. 2022;29(1):1-11.

[^1][^2]https://www.sdiarticle5.com/review-history/101691

[^0]: *Corresponding author: E-mail: f.annleslie.flores@cmu.edu.ph;

[^1]: (C) 2023 Ral and Flores; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribu-tion, and reproduction in any medium, provided the original work is properly cited.

[^2]: Peer-review history:
 The peer review history for this paper can be accessed here (Please copy paste the total link in your browser address bar)

