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Abstract
Optical interferometric measurement methods for sound fields have garnered considerable
attention owing to their contactless nature. The capabilities of non-invasive measurement and
reconstruction of three-dimensional sound fields are significant for characterizing acoustic
transducers. However, three-dimensional reconstructions are typically time consuming because
of the two-dimensional scanning and rotation of the measurement system. This paper presents a
scan and rotation-free reconstruction of an axisymmetric sound field in the human hearing
range. A physical-model-based algorithm is proposed to reconstruct an axisymmetric sound
field from optical interferograms recorded using parallel phase-shifting interferometry and a
high-speed polarization camera. We demonstrate that audible sound fields can be reconstructed
from data measured in 10 ms. The proposed method is effective for the rapid evaluation of
axially symmetric acoustic transducers.

Keywords: optical sound measurement, parallel phase-shifting interferometry,
high-speed camera, acousto-optic effect, Helmholtz equation, acoustic transducer

(Some figures may appear in colour only in the online journal)

1. Introduction

Acoustic transducers are key components for various acous-
tic applications; therefore, their measurement and evaluation
are important in acoustics. For example, in acoustic met-
rology, the acoustic standard in air is realized using con-
denser microphones employed as a receiver and transmitter.

Original Content from this work may be used under the
terms of the Creative Commons Attribution 4.0 licence. Any

further distribution of this work must maintain attribution to the author(s) and
the title of the work, journal citation and DOI.

In audio applications, loudspeaker units are ubiquitous in our
daily lives for generating sounds in speech communication
and music listening. Large-scale loudspeaker arrays have been
used in spatial audio applications, such as sound field repro-
duction and acoustic virtual reality. Understanding sound radi-
ations from individual transducers is essential for managing
these applications accurately. Distant microphones are typic-
ally used for characterizing their spatial profiles, such as by
directivity and acoustic intensity measurements. However, the
measurement of three-dimensional (3D) sound fields to sat-
isfy the spatial sampling theorem is difficult to achieve using
microphones.

Optical methods are promising for measuring sound
fields. Their contactless nature enables them to achieve
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high-spatial-resolution measurements without contaminating
the field to be measured, which is inevitable in conventional
microphone measurements. The acousto-optic effect, i.e. light
modulation caused by sound, enables acoustic information to
be captured via optical measurement [1]. Such measurements
are extensively used for various applications, e.g. imaging of
sound fields generated by transducers [2–5], measurement of
sound radiated by musical instruments [6–9], and calibration
of microphones [10–12].

To obtain a 3D sound field from optical measurements,
numerical reconstruction must be performed because the
observed optical signals are proportional to the line integral
of sound pressure. Computed tomography (CT) is the most
typically used technique [1, 13–19], and a physical model-
based algorithm has been proposed recently [20]. The recon-
struction of a 3D sound field generally requires measure-
ments of two-dimensional (2D) integrated fields frommultiple
angles, thereby necessitating the rotation of either measure-
ment instruments or a sound field. This requirement signific-
antly increases the measurement duration and complexity of
the measurement system. However, rotation can be omitted
when a sound field is axially symmetric because the line integ-
ral measurement is angle independent. A rotationally sym-
metric acoustic transducer operating in an axisymmetric mode
typically exhibits an axially symmetric sound field. For high-
intensity ultrasonic transducers, several methods have been
proposed for scan- and rotation-free reconstructions, e.g. holo-
graphic interferometry [21], shadow graph [22, 23], and phase
contrast [24, 25]. In these studies, underwater sound fields
of magnitudes of the order of kilopascal to megapascal were
reconstructed. However, such a reconstruction in the human
hearing range, i.e. a sound pressure of less than 20 Pa and a
frequency of less than 20 kHz, has not been achieved mainly
because the optical modulation caused by audible sound is
several orders of magnitude smaller than that caused by high-
intensity ultrasound in water.

Herein, we propose a physical-model-based reconstruction
method for an axially symmetric sound field from optical inter-
ferometric measurement, which can be applied to the sound
in the human hearing range. The overview of the proposed
method is depicted in figure 1. A sound field is optically
captured using parallel phase-shifting interferometry (PPSI),
which has recently been proposed for the high-speed imaging
of sound fields [4, 26–29]. PPSI is suitable for the measure-
ment of audible sound because of its frequency-independent
high sensitivity. A high-speed camera can capture a sound field
at a frame rate higher than the Nyquist frequency of the audible
sound. Subsequently, an axisymmetric sound field is recon-
structed from interferograms recorded via PPSI, as depicted
in figure 1(b). We developed a reconstruction method based
on the Helmholtz equation for an axisymmetric sound field.
The sound fields radiated by a circularly symmetric loud-
speaker were measured, and the reconstruction results were
compared with the sound fields measured using a scanning
microphone.

2. Measurement system

2.1. Acousto-optic effect

The principle underlying the interferometric observation of
sound is known as the acousto-optic effect, which refers to the
change in light properties when a light passes through a sound
field [1]. The acousto-optic effect with a first-order approxim-
ation, which is acceptable for a weak sound field in air (per-
taining to this study), can be derived using the Gladstone–Dale
relation and adiabatic assumption:

n(r, t) = n0 +
n0 − 1
γp0

p(r, t), (1)

where n is the refractive index modulated by sound pressure
p; n0 and p0 are the refractive index and pressure under static
conditions, respectively; and γ is the specific heat ratio. The
geometric optics formulation describes the phase modulation
of light propagating through a sound field as

E(r, t) = E0(r, t)ei(ωlt+ϕ(r,t)), (2)

where E is the electric vector, r ∈ R3 is the 3D position vector,
t denotes time, E0 is the complex amplitude vector, i=

√
−1,

andωl is the angular frequency of light. The phase term ϕ is the
product of the wavenumber of light and optical path length, i.e.

ϕ(r, t) = kl

ˆ
L(r)

n(l, t)dl

= ϕ0(r)+ kl
n0 − 1
γp0

ˆ
L(r)

p(l, t)dl, (3)

where kl is the wavenumber of light and ϕ0 = kln0|L(r)|
denotes the static phase. Line integral is performed along the
optical path L(r), which can be assumed as a straight line
because light bending caused by airborne sound is negligible.
Equation (3) indicates that, by detecting the phase variation of
the light passing through a sound field, the value proportional
to the line integral of the sound pressure along the optical path
can be obtained.

2.2. Optical instruments

To measure the phase variation of light caused by sound, we
employed PPSI, which is a technique capable of single-shot
observations of the optical phase by simultaneous detections
of multiple phase-shifted interferograms [30, 31]; moreover, it
has recently been applied to the high-speed imaging of sound
fields [4, 26–29].

The schematics of the measurement system are shown
in figure 2. The optical system is based on the Fizeau-type
polarization interferometer [32]. The light source used was a
Nd:YAG laser of wavelength 532 nm and of power 200 mW.
The object light was transmitted through the optical flat,
passed through the measurement area, reflected by the mirror,
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Figure 1. Overview of proposed method. (a) Sound field radiated by an axisymmetric acoustic transducer driven by sinusoidal wave at
acoustic frequency ωs, measured using PPSI. Blue and orange curved surfaces illustrate radiated sound waves. Light passing through the
sound field is modulated by the sound. Modulated light interferes with reference light and interferograms that contain sound-field
information, i.e. line integral of sound pressure along the laser path, is recorded using a high-speed camera. (b) 3D axisymmetric sound field
reconstructed from recorded interferograms based on physical-model-based reconstruction method described in section 3. Optical phase
maps are calculated from the interferograms, and integrated acoustic field at ωs is extracted from phase maps. Subsequently, expansion
coefficients of the solution to the spherical Helmholtz equation are numerically estimated. Finally, 3D sound field can be reconstructed by
substituting the coefficients into the Helmholtz equation.

and transmitted through the optical flat again, whereas the ref-
erence light was reflected by the optical flat. The interfered
light was detected by the high-speed polarization camera
(PI-1P, Photron limited). The camera captured four phase-
shifted interferograms simultaneously owing to a pixelated lin-
ear polarizer array mounted on an image sensor [33]. Sub-
sequently, the optical phase difference between the object and
reference light, ∆ϕ, was calculated from the four interfero-
grams using the hyper ellipse fitting in a subspace (HEFS)
method, whose performance is better than that of the ordin-
ary four-step algorithm [34, 35].

The line integral of sound pressure was obtained from the
optical phase map as follows. Because the difference between
the object and reference paths is only the measurement area,
∆ϕ is written as

∆ϕ(y,z, t) = ∆ϕ0 + 2kl
n0 − 1
γp0

ˆ x2

x1

p(ξ,y,z, t)dξ, (4)

where ∆ϕ0 represents the static term, and the optical path is
assumed to be parallel to the x-axis. The line integral of the
sound pressure was obtained by dividing the measured phase
by the environmental coefficient, 2kl (n0 − 1)/(γp0), and by
removing the static component.

3. Reconstruction method

To reconstruct a sound field from a high-speed video of a
2D line integrated sound pressure field obtained by the meas-
urement system, we present a physical-model-based approach
using the Helmholtz equation. A reconstruction method based
on the equation requiring multi-angle line integral measure-
ments has been proposed previously, and the reconstruction
errors are significantly fewer compared with those of the
ordinal CT method [20]. In this study, to perform recon-
struction from a single-angle measurement, we modeled
the axisymmetric sound field using the Helmholtz equation

in spherical coordinates. The reconstruction problem was
formulated as the estimation of the expansion coefficients of
the solution to the axisymmetric Helmholtz equation from the
line integral values. The sound field can be reconstructed by
substituting the estimated coefficients into the solution of the
equation.

3.1. Physical model of axisymmetric sound field

Consider the Helmholtz equation in the spherical coordinates
(ζ,ϑ,φ) defined by (x, y, z)= (ζsinϑcosφ, ζsinϑsinφ, ζcosϑ)
as depicted in the inset of figure 1(a). The Helmholtz equation
for an acoustic frequency ωs is written as(

∆s + k2s
)
p(ζ,ϑ,φ,ωs) = 0, (5)

where

∆s =
1
ζ2

∂

∂ζ

(
ζ2

∂

∂ζ

)
+

1
ζ2 sinϑ

∂

∂ϑ

(
sinϑ

∂

∂ϑ

)
+

1

ζ2 sin2ϑ

∂2

∂φ2
, (6)

and ks = ωs/cs is the wavenumber of sound and cs is the speed
of sound. The solution to equation (5) can be expanded to

p(ζ,ϑ,φ,ωs) =
∞∑
m=0

m∑
m ′=−m

amm ′ jm (ksζ)Y
m ′

m (ϑ,φ), (7)

where jm is the mth order spherical Bessel function of the first
kind,

Ym
′

m (ϑ,φ) =

√
2m+ 1
4π

(m−m ′)!

(m+m ′)!
Pm

′

m (cosϑ)eim
′φ (8)

is the spherical harmonic, Pm
′

m (x) is the associated Legendre
polynomial, and amm ′ is the coefficient [36].
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Figure 2. Schematics of optical system based on Fizeau-type polarization interferometer. Arrows indicate propagation directions of light.
Line integral of sound pressure along object light within the measurement area is measured. High-speed polarization camera records the
interferograms of the object and reference light.

As the sound fields in this study are axisymmetric, the solu-
tion can be modified to a simpler form. Using the z-axis as
the symmetric axis, the sound field is independent of φ. Sub-
sequently, the solution becomes

p(ζ,ϑ,ωs) =
∞∑
m=0

am jm (ksζ)

√
2m+ 1
4π

Pm (cosϑ) , (9)

where Pm(x) is the m-th order Legendre polynomial.
Equation (9) indicates that any axisymmetric sound field can
be determined by the set of expansion coefficients am.

3.2. Reconstruction from optical observation

To establish the reconstruction method in the frequency
domain, a 2D complex integrated field at acoustic frequency
ωs is considered. The frequency domain representation of the
data is written as

dι,κ =

ˆ x2

x1

p(ξ,yι,zκ,ωs)dξ, (10)

where the pixel of the camera is specified by indices (ι,κ)
and (yι,zκ) is the position of the optical path corresponding
to pixel (ι,κ). By substituting the solution of the Helmholtz
equation into equation (10), the data can be written as

dι,κ =
∞∑
m=0

amῩm,ι,κ, (11)

where

Ῡm,ι,κ =

ˆ x2

x1

jm (ksζ (ξ,yι,zκ))√
2m+1
4π Pm (cosϑ(ξ,yι,zκ))dξ. (12)

Herein, the integral term Ῡm,ι,κ is independent of the sound
field to be reconstructed; it only depends on the measure-
ment and reconstruction conditions such as the wavenumber

of sound, optical path, and expansion order. For numerically
estimating the expansion coefficients, the expansion order m
is truncated by a finite number M. Therefore, equation (11)
becomes

dι,κ =
M∑

m=0

amῩm,ι,κ. (13)

This can be written in the matrix form as follows:

d=Υa, (14)

where d is the data vector vectorized from matrix (dι,κ), Υ is
the matrix whose rows correspond to d and whose columns
correspond to the expansion order, a= [a1, ...,aM]

T, and T is
the transpose.

The expansion coefficients a can be estimated by solving
equation (14). For estimating coefficients a, we employed a
truncated singular value method as used previously [20]. The
coefficient matrix Υ can be factorized by

Υ= UΣVH, (15)

where U and V are unitary matrices, Σ is the diagonal matrix,
and H is the Hermitian transpose. The diagonal entries of Σ
are set in the descending order as σ1 ⩾ σ2 ⩾ . . ., where σi is
the ith singular value. Therefore, the pseudo-inverse of Υ can
be written by

Υ† = VΣ†UH, (16)

where Σ† = diag(1/σ1,1/σ2, . . .), and diag(·) denotes the
function constructs of a square diagonal matrix. Because large
components of Σ† are affected significantly by measurement
noise, the reconstruction becomes unstable. To reduce this
effect, the singular values were truncated by a threshold τ as
follows:

Σ†
τ = diag(1/σ1,1/σ2, . . . ,0, . . . ,0), (17)
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Interferograms

Optical phase

Line integral of
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at　    
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Data vector
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(measured)

Sound pressure
 (physical)

Observation

HEFS method

Calculate from Eq. (4)

Vectorize

Eq. (18)

FFT

Eq. (9)

Eq. (12)

Figure 3. Calculation procedure of proposed method.

where all diagonal entries of Σ† satisfying σi < τσ1 were
replaced by zero. Finally, the coefficient vector a can be cal-
culated by

a=Υ†
τd= VΣ†

τU
Hd. (18)

Once a is estimated, the sound pressure values at arbitrary pos-
itions can be reconstructed by substituting a into equation (9).

3.3. Calculation procedure

Next, we summarize the reconstruction procedure. The flow-
chart is illustrated in figure 3. An axisymmetric sound field
at acoustic frequency ωs was observed using the optical sys-
tem described in section 2.2. Each image recorded by the
high-speed polarization camera comprised four phase-shifted
interferograms, from which optical phase values were calcu-
lated using the HEFS method [34, 35]. Subsequently, one-
dimensional unwrapping was performed along the temporal
direction. The line integrals of sound pressure can be obtained
by dividing the unwrapped phase by the environmental con-
stant 2kl (n0 − 1)/(γp0). Subsequently, the matrix represent-
ing the integrated sound field at ωs was obtained by calculat-
ing the time-directional Fourier transform to each pixel and

Measurement 
area

Loudspeaker

Laser beam

0

0.3

0.25

0.06

Figure 4. Cross-sectional view of experimental configuration.

Table 1. Experimental conditions.

Optical system

Integral path −1.25⩽ x⩽ 1.25
Measurement area 60 mm × 50 mm
Image resolution (87, 72)
Frame rate 50 kfps
Camera shutter 20 µs
Number of images 500
Laser wavelength 532 nm
Laser power 200 mW

Reconstruction

Expansion order M 5
Truncation threshold τ 10−3

Microphone scanning

Microphone 1/4 inch (BK 4939)
Scanning area 60 mm × 50 mm
Scanning step 5 mm
Sampling frequency 50 kHz

extracting the frequency component at ωs. Finally, the data
vector d was obtained by vectorizing the matrix.

The coefficient matrixΥ was calculated from the measure-
ment and reconstruction conditions using equation (12). To
calculate the matrix elements, the coordinate must be determ-
ined. Although the origin can be at an arbitrary position along
the symmetric axis, its position affects the expansion coeffi-
cients. To efficiently represent an original sound field with a
small expansion order, the origin of the coordinate should be at
the acoustic center of the sound source. Calculating equation
(12) for every pixel and every order yields Υ.

Once d and Υ were obtained, the coefficient vector a was
estimated using the truncated singular value decomposition
(TSVD). Finally, by substituting a in equation (9), the original
sound field was reconstructed.

Two arbitrary parameters were used for the reconstruction:
the expansion order of the solution of the Helmholtz equation
M and the threshold of TSVD τ . A greater M provides a bet-
ter representation of a complicated sound field; however, the
overfitting risk and computational time increase. The threshold

5



Meas. Sci. Technol. 32 (2021) 045202 K Ishikawa et al

16 kHz8 kHz4 kHz2 kHz
10

-10

0

0 1Time [ms] 0 1Time [ms]0 1Time [ms] 0 1Time [ms] 0 1Time [ms]

Mic Proposed Mic Proposed Mic Proposed Mic Proposed

Mic Proposed Mic Proposed Mic Proposed Mic Proposed

20 μs

40 μs

0 μs 10

-10

120

90

[rad]

[dB]

[Pa]

a

b

c

Mic

Mic

Proposed

Figure 5. Experimental results. (a) Temporal waveforms extracted from reconstructed field and measured using microphone at
(x, y, z)= (0, 0, 0.3). (b) Instantaneous pressure fields measured using scanning microphone and obtained by the proposed method. (c) Power
and phase maps at acoustic frequencies. Microphone results of (b) and (c) are horizontally flipped for ease of comparison.

τ determines the number of singular values used for estimat-
ing the coefficient vector of the solution. When τ is extremely
large, the reconstructed sound field cannot represent the ori-
ginal field; meanwhile, the measurement noise violates the
reconstructed results when τ is extremely small. These para-
meters should be determined based on the measured data and
conditions.

4. Experiments

4.1. Setup

A proof-of-concept experiment verifying the feasibility of the
proposed method was conducted. The sound fields reconstruc-
ted using the proposed method were compared with those
measured using scanning a quarter-inch microphone. A rota-
tionally symmetric loudspeaker (FOSTEX FT48D) was used
as the axisymmetric sound source. The input signals of the
loudspeaker were sinusoidal waves of frequencies 2, 4, 8, and
16 kHz. We confirmed that the angular deviations of the radi-
ated sound pressure level were less than 1 dB for those fre-
quencies. Sound absorption materials were used to cover the
walls, ceiling, and floor of the experimental room to reducing
reflected sounds, which may hinder the axisymmetry of the
sound field.

The cross-sectional view of the experimental configuration
is illustrated in figure 4, and the details of the measurement
conditions are listed in table 1. The center of the diaphragm
was defined as the origin of the coordinate. Because the

sound fields were symmetric with respect to the z-axis, only
the positive region of the y-axis was used. A rectangular
area measuring 60 mm × 50 mm within the laser beam
was used as data for the reconstruction, as depicted by the
dashed lines. The image resolution of the rectangular area
was 87 × 72, indicating that the interval between adjacent
pixels was 0.7 mm. A quarter-inch free-field microphone was
scanned over the same area at the x= 0 plane with a scan-
ning step of 5 mm using a 2D traverse unit. The reconstruction
parameters, M= 5 and τ = 10−3, were determined manually.
The reconstruction area was the same that from the micro-
phone measurement: (0, 0, 0.25) ⩽ (x, y, z) ⩽ (0, 0.06, 0.3).
The acquisition timings of the camera and microphone sig-
nal were aligned with respect to the input sinusoidal wave,
whereas their sampling clocks were not synchronized. The
high-speed camera captured 500 images with a frame rate of
50 000; the measurement duration of the PPSI was 10 ms. The
microphone scanning required approximately 10 min.

The environmental factors in the measurement room were
as follows. The temperature, humidity, and static pressure
were 23.4 ◦C, 33.7%, and 100 010 Pa, respectively. The speed
of sound, cs, was 345.6 m s−1. The static refractive index, n0,
was calculated as 1.000 266 using Ciddor’s equations [37].
The specific heat ratio, γ, was 1.40. Therefore, the environ-
mental coefficient, 2kl (n0 − 1)/(γp0), was 0.045 rad/Pa.

4.2. Results

Figure 5 shows the experimental results. The reconstructed
waveforms at (x, y, z)= (0, 0, 0.3) plotted in figure 5(a) agree
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well with the waveforms measured using the microphone at
the same position except for 2 kHz. The measured and recon-
structed instantaneous sound fields are shown in figure 5(b).
The intervals of the depicted images are 20 µs, within which
sound propagates approximately 6.9 mm. The spatiotemporal
profiles of both fields are consistent for 4, 8, and 16 kHz. These
results confirmed the validity of the proposedmethod for those
frequencies.

The power and phase maps of the measured and recon-
structed fields are shown in figure 5(c). Owing to the low
spatial resolution of the microphone scanning, the phase
maps obtained from the microphone measurements are not
smooth, whereas the proposed method is able to reconstruct
the smooth curvatures of the phase discontinuities. As shown
in figure 5(c), the reconstructed power maps exhibit periodic
patterns correlated to their instantaneous fields. The period of
the power fluctuation is half the acoustic wavelength. Such
periodic fluctuations may appear when the propagating sound
wave and non-propagating vibration are superimposed at the
same frequency. The non-propagating vibration at the acous-
tic frequency can imply a pseudo signal that is associated with
the mechanical vibration of optical components caused by the
sound wave incident on them. The pseudo signal is an inevit-
able side effect of the optical sound measurement because it is
caused by the sound to be measured. For our experiments, the
pseudo signal imposed a limited effect on the visualization of
the instantaneous fields; however, it should be addressed when
absolute pressure values are important. Tightly fixing optical
components and physically separating the acoustic field and
optical instruments should reduce this effect. In addition, the
pseudo signal may be eliminated by a spatiotemporal filtering
method that extracts signals satisfying the Helmholtz equation
from noisy data because the pseudo signal does not obey the
Helmholtz equation [5, 38, 39].

5. Discussions and conclusions

The infeasibility of the reconstruction of the 2 kHz sound
field was due to its long wavelength. As indicated by the field
measured using the microphone, the 2 kHz sound wave was
almost in-phase within the measurement area. This means that
the acoustic phase differences between adjacent pixels were
small; the reconstruction might suffer significantly by small
measurement noise. The ratios of the acoustic wavelengths
(λs = 2πcs/ωs) to the length of the measurement area along
the z-axis (0.05 m) were 0.29, 0.58, 1.16, and 2.31 for 2, 4, 8,
and 16 kHz, respectively. For 2 kHz, only less than one-third
of the acoustic wavelength was captured by each image. The
reconstructed field of 4 kHz indicated a small discrepancy, as
shown in the phase map (bottom of figure 5(c)), where each
image comprised approximately a half period of the sound
wave. These results suggest that the lowest frequency limit
depends on the ratio between the acoustic wavelength and
measurement area. Therefore, to apply this method for lower
frequencies, the measurement area must be expanded. The
highest frequency is currently limited by the frame rate of the
camera.

In summary, the proof-of-concept experiment confirmed
that the sound fields radiated by the circularly symmetric
loudspeaker with a sound pressure of approximately 5 Pa and
frequencies of 4, 8, and 16 kHz were successively reconstruc-
ted; this is the first demonstration of the scan and rotation-
free reconstruction of 3D sound fields in the human hearing
range. Because each measurement required only 10 ms, the
proposed method will be highly beneficial when a rapid eval-
uation is important, such as in transducer design, fabrication
processes, and testing of individual transducers for large-scale
array systems. Future studies should include the optimization
of the estimation parameters and expansion of the frequency
limits.
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