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Abstract

A numerical computer model based on the dual reciprocitydary element method (DRBEM)
is extended to study the generalized thermo elastonsgs of functionally graded anisotropic
rotating plates. In the case of plane deformation, a gmediorrector implicit-explicit time
integration algorithm was developed and implemented for ugethe DRBEM to obtain th
solution for the displacement and temperature fields inctmeext of the Green and Lindsay
theory. Numerical results that demonstrate the validitythe proposed method are also
presented in the tables.

Keywords: Thermo elasticity; rotation; functionally deal material; anisotropic; dual reciprocity
boundary element method.

1 Introduction

In recent years, the dynamical problem of thermo elagtior an anisotropic material becomes
more important due to its many applications in modern aeronaastsonautics, earthquake
engineering, soil dynamics, mining engineering, plasma péysiclear reactors and high-energy
particle accelerators for instance. Biot [1] introdudesldlassical coupled thermo-elasticity theory
(CCTE) to overcome the first shortcoming in the classit&rmo-elasticity theory (CTE)

introduced by Duhamel [2] and Neuman [3] where it predictspglvenomena not compatible with
physical observations. First, the equation of heat conductithiootheory does not contain any
elastic terms. Second, the heat equation is of a paratyple; predicting infinite speeds of

propagation for heat waves. Most of the approaches that catrie overcome the unacceptable
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prediction of the classical theory are based on the genetion of relaxing the heat flux in the
classical Fourier heat conduction equation, thereby intiodue non-Fourier effect. One of the
simplest forms of this equation is due to the work of Lord &hdlman [4] who introduced
extended thermo-elasticity theory (ETE) with one reliaxatime by constructing a new law of
heat conduction to replace the classical Fourier's law. [@hiscontains the heat flux vector as
well as its time derivative. It contains also new camsthat acts as relaxation time. Since the heat
equation of this theory is of the wave-type, it automdsicahsures finite speeds of propagation
for heat and elastic waves. Green and Lindsay [5] inclualeégmperature rate among the
constitutive variables to develop a temperature-rate-depetitdermo-elasticity theory (TRDTE)
that does not violate the classical Fourier's law e&thconduction when the body under
consideration has a center of symmetry; this theory @iedicts a finite speed of heat propagation
and is known as the theory of thermo elasticity with nelaxation times. According to these
theories, heat propagation should be viewed as a wave mpbeoa rather than diffusion one.
Relevant theoretical developments on the subject weree hgdGreen and Naghdi [6,7] they
developed three models for generalized thermo elasticithioofiogeneous isotropic materials
which are labeled as model I, Il and Ill. The naturettefse theories are such that when the
respective theories are linearized, model | in Green and Ngghtbrresponds to the CTE theory
based on Fourier's law, whereas the linearized versiomodél 1l and 1l theories are of different
nature. The entropy flux vector in model Il and Il (i.8hermo-elasticity without energy
dissipation (TEWOED) and Thermo-elasticity with energysigiation (TEWED)) models are
determined in terms of potential that also determinesssitrit is hard to find the analytical
solution of a problem in a general case, therefore an tanonumber of engineering and
mathematical papers devoted to the numerical solution hadedtthe overall behavior of such
materials [8-27].

Functionally graded materials (FGMs) are made of a nextwith arbitrary composition of two
different materials, and the volume fraction of eadtamal changes continuously and gradually.
The FGMs concept is applicable to many industrial fieldshsas aerospace, nuclear energy,
chemical plant, electronics, biomaterials and so on. WoykSKouras et al. [28], Mojdehi et al.
[29], Loghman et al. [30] and Mirzaei and Dehghan [31] are exasniplvolving functionally
graded materials.

One of the most frequently used techniques for convetliagdomain integral into a boundary
one is the so-called dual reciprocity boundary element ade{PRBEM). This method was
initially developed by Nardini and Brebbia [32] in the teott of two-dimensional (2D) elasto
dynamics and has been extended to deal with a varietgraflems wherein the domain
integral may account for linear-nonlinear static-dyrareffects. A more extensive historical
review and applications of dual reciprocity boundary elemsthod may be found in Brebbia et
al. [33], Wrobel and Brebbia [34], Partridge and Brebl38],[ Partridge and Wrobel [36] and
Fahmy [37-40].

The main objective of this paper is to study the generaliredno elasticity problems in a
rotating anisotropic functionally graded plate in the contexhefGreen and Lindsay theory. A
predictor-corrector implicit-explicit time integratiorigarithm was developed and implemented
for use with the dual reciprocity boundary element methddBBM) to obtain the solution for
the temperature and displacement fields. The accuraithyegiroposed method was examined and
confirmed by comparing the obtained results with those knofordae
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2. Formulation of the Problem

Consider a Cartesian coordinates system Oxyz as shownginlFiWe shall consider a
functionally graded anisotropic plate rotating about it vaitbonstant angular velocity. The plate
occupies the region R={(x,y,z):0<x<sy,0<y<_p,0<z<_a} with graded material properties in the
thickness direction.

x

=

B

Fig. 1. The coordinate system of the plate

In this paper, the material is functionally graded althg Ox direction. Thus, the governing
equations of generalized thermo-elasticity in the contexttedo Green and Lindsay theory can be
written in the following form:

Oab,p — p(x + 1)mw2xa = p(x + 1)mﬁar (€]
Oap = (x + 1)m[Cabfguf,g - ﬁab (T - TO + TIT)]r (2)
kapTap = BapTottap + pclx + 1)m[T + TZT]- (3)

whereay,, is the mechanical stress tensgy,is the displacement, is the temperatur&,, ., and
B.p are respectively, the constant elastic moduli and steesgerature coefficients of the
anisotropic mediumgw is the uniform angular velocityk,, are the thermal conductivity
coefficients satisfying the symmetry relatidny, = k,, and the strict inequalityk,,)? —
ki1k,, < 0 holds at all points in the medium,is the densityg is the specific heat capacityjs
the time,r; andt, are mechanical relaxation times.

1012



British Journal of Mathematics & Computer Scien€é)41010-1026, 2014

3. Numerical | mplementation

Making use of (2), we can write (1) as follows

Lgbuf = pua - (DaT + ADalfuf - pa)zxa) = fgb, (4)
where
L, =D Doy = C S0 A
gb = Yabf ax,’ abf = Labfgé € = axg' BT

a ] ] .
Do = ~Ban (5o + 301 + 11 (55 + M) 7). fop = pila = (DaT + ADas g = pw®x,).

The field equations can now be written in operator forfobews
Lgbuf = fgbl (5)

LapT = fabl (6)

where the operatois,;, andf,, are defined in equation (4), and the operaiggsandf,, are
defined as follows

Ly, = 0 9 7
ab — abaxaaxbr ( )
fab = PC(x + 1)m[T + TZT] + .BabTOua,b- €)

Using the weighted residual method (WRM), the difféedrequation (5) is transformed into an
integral equation

[ s = fo iz dr =0, ©)
R

Now, we choose the fundamental solutigp as weighting function as follows

Lgpugs = —6446(x, ). (10)
The corresponding traction field can be written as

taa = CabrgUar,gMp- (11)
The thermo elastic traction vector can be written asvial

o

=G (Cavrgrg = Ban(T — To + 1,T) )1y (12)
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Applying integration by parts to (9) using the sifting propeft the Dirac distribution, with (10)
and (12), we can write the following elastic integraresentation formula

1 (€) = f (Uiata — Liatia + UieBasTny) dC — f fptiadR. (13)
C R

The fundamental solutioR* of the thermal operatdr,;,, defined by
LogpT" = =6(x,8). (14)

By implementing the WRM and integration by parts, théedéntial equation (6) is transformed
into the thermal reciprocity equation

j(LabTT* — Ly T*T)dR = j(q*T — qT™)dC, (15)
C

where the heat fluxes are independent of the elastitdind can be expressed as follows:
q= _kabT,bna! (16)
q = _kabT,;;na- (17)

By the use of sifting property, we obtain from (16) thertnal integral representation formula

1© = [ @T-qrdc - [ furar (18)
C R

The integral representation formulae of elastic and thefields (13) and (18) can be combined
to form a single equation as follows

L;::((g)] J’ taa uaaﬁabnb] [uu] [uga []dc J[uda _T* fgb]dR' (19

It is convenient to use the contracted notation to intredyeneralized thermo elastic vectors and
tensors, which contain corresponding elastic and theramng&lbles as follows:

_fuq a=A=1,2,3;

UA_{T A=4, (20)
_(tg a=A4A=1,2,3;

TA_{q A =4, (21)
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*

u, d=D=1,23a=A4=1,23;
yr. =10 d=D=1,2,3;A=4;
ba 0 D=4a=4=1,273;

—T* D=4A=4,

tiy, d=D=123a=4=1,23;
Fo = —ii; d=D=1,2,3;A=4;
ba™) o D=4a=A4=1,273;

—q* D=4A=4,

~k *
Ug = udaﬁafnf-

The thermo elastic representation formula (19) can beewiiitt contracted notation as:

UD(f) = j(UBATA - TDAUA)dC - J UpaSadR,
c R

The vectoiS, can be written in the split form as follows

Sy =S)+ S+ St +5ST+ 58T+ 5%+ 8%,

Where
S0 = {pwzxa a=A4=123;
4700 A=4,
. —D A=1,2,3;F =4;
Si = 04pUp With - 04r = {0 ‘ otherwise
Sit = —=(Das + ADgyf)UUg
. (1 a=A=123f=F=1,23;
with U = {0 otherwise,

1 A=4,F =4
0 otherwise,

SI'= —pc(x + 1)™8,pUp with 8, = {
ST =—pc(x + D™ 1,645 U,
SAu = _T0A51jﬁngUF'

p A=1,23F=1,23;

i i i -
Si = FUp with 7—"—{0 A=4f=F=4

(22)

(23)

(24)

(25)

(26)

27)

(28)

(29)

(30)

BD

(32)

(33)

The thermo elastic representation formula (19) can alseritten in matrix form as follows:
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(5,1 = [P %] 4 [2aT] 4 [~(Por + (;\Dalf)uf]

+(pc(x +1)™) [2] —pclx + )™, [2] —-T, [ﬁab(l)la,b] + [Pga] (34)

Our task now is to implement the DRBEM. To transforra ttomain integral in (25) to the
boundary, we approximate the source vesfan the domain as usual by a series of given tensor

functionsf,’, and unknown coefficients,

N
Sux ) fivad, (35)
q=1

According to the DRBEM, the surface of the solid has taliseredited into boundary elements.
In order to make the implementation easy to compute, weNysollocation points on the

boundaryC and anothelV; in the interior ofR so that the total number of interpolation points is

Thus, the thermo elastic representation formula (25) canibdemin the following form

N e 7 P W (R T - P
Upled = 1\Upalg —ipaly @b — 7 | Upnalay QL @y 1=28)

J |

C g=1lg

By applying the WRM to the following inhomogeneous elaatid thermal equations:
I 8 = f¥ 277
“ge™fn  Jan’ (=7)
0 — 9

LEbT' = Jgje (EEj

where the weighting functions are chosen to be theiekastl thermal fundamental solutiou$,

andT *. Then the elastic and thermal representation formulaeianilar to those of Fahmy [41]
within the context of the uncoupled theory and are givdolbsvs

W () = [ (uhatl, — st} de — [ wiafidd (39)
Tq(f:l=f(q3Tq—qu3)dC—f FoT*dR. (40)
i R

The dual representation formulae of elastic and thermalsfiehn be combined to form a single
equation as follows

Ugy (&) = j (UpaT. —T5aUL, )dC — f Upafd dR, (41)
e R
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with the substitution of (41) into (36), the dual reciprpaiepresentation formula of coupled
thermo elasticity can be expressed as follows

iRy = 10(1s 7 _F* 171 \dr
Rl PN r\_“'.’,ﬂ‘.ﬂ “nAaATAaAreE
g
N [ - "\_
L I - = I [
Ly g (Fy L+ LT 2 — [ T2 A Tat, 420
* / 1 TLDAE RS0 r ATLAA T AN TLATAN ST T !’"-‘\" LA
= J f
=1 c ;

o
Ul (&) | :
DN LY q x a q 3
+Z (—_ J (ToaUly = UpauTiy)dC |af. (49)
=1 c /

According to the steps described in Fahmy [42], the dugbnatty boundary integral equation
(42) can be written in the following system of equations

{ii—nt =({U —np)a. (44)

It is important to note the difference between the matr{casdf: whereas{ contains the
fundamental solutiod’y;, the matrix{ contains the modified fundamental tendgj with the
coupling term.

The technique was proposed by Partridge et al. [43] can éeded to treat the convective terms,
then the generalized displacemeldis and velocitied/; are approximated by a series of tensor
functionsfF'f.:, and unknown coefficien'qra:.i-;T andﬁ;f

i
Ug ® Z ff?':- [:x-j?’gf (45)
g=1
Fa')
Up % ) f5007. (46)
=1
The gradients of the generalized displacement and velauitpe approximated as follows
Jw'-
U, Z £2 G, (47)
g=1
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s

E
-1
==,
pI—

These approximations are substituted into equations (28) and t@Zapproximate the
corresponding source terms as follows

TN T oa PR
S5:= 72 53 v, L)
= E FRLF - ) -
=1
N
= -

cd . _mp _ N\ potg-—4d = N
A T T igMfg® F Fan Fpo =y

|

g=1

where

Ty e .
5.0 =580 - (51)
AD AF¥Fp g (=4
u g N
s = g F9 (52
Al ArFELg A e

The same point collocation procedure described in Gall pt4] can be applied to (35), (45) and
(46). This leads to the following system of equations

§=Ja, U=y o=J'y. (53)

Similarly, the application of the point collocation prdoee to the source terms equations (29),
(30), (31), (33), (49) and (50) leads to the following systésgoations

§% = —(Day + 2D,y JUU; (54)
With 6= {3 a=A —D:h:riﬂ;— F=123;

5T = pelx + 1)™6,:U, (55)

ST = —co(x 4+ 1)™1,8,.U, (56)

S* =AU, (57)

§T =37y, 58)

S = —T,B,, B (59)

Solving the system (53) far, ¥ and¥ yields

1018



British Journal of Mathematics & Computer Scien€é)41010-1026, 2014

a=J]1§, y=J"u, §F= ], (60)

Now, the coefficientsx can be expressed in terms of nodal values of the unknowmaackspénts

U, velocitiesl/ and accelerationt as follows:

a=]($°+ BT~ (Day +AD,)UlU
+pe(x + 1) ™8,r — ToB;,eBY U+ [4— pelx + 1)™1,8,:]U)  (61)

where 4 andB” are assembled using the sub-matrifEd andw 4 respectively. Substituting
from Eq. (61) into Eq. (44), we obtain

MU +TU + KU = Q. (62)
in which M, I', K and @ are independent of time and are defined by

v=p-C0), M=V[d - cp(x +1)"1,5,;),
I'=V[pe(x + 1)™8,r — ToB;,eBY 1],
K ={+V[B)'™ + (Dos + ADoy)U]. @ =17 + V5", (63)

wherel’, M,I" andK represent the volume, mass, damping and stiffness matiésggctively;
U, U,U and  represent the acceleration, velocity, displacement atermal force vectors,

respectively. The initial value problem consists of figlithe functionl/ = U{t) satisfying
equation (62) and the initial conditiodd(0) = U,, U(0) = V; where Uy, V; are given
vectors of initial data. Then, from Eqg. (62), we can compheinitial acceleration vectd#; as
follows

MW, =Q, - TV, —KU,. (64)
An implicit-explicit time integration algorithm of Hughest al. [45, 46], was developed and

implemented for use with the DRBEM. This algorithm cetssiof satisfying the following
equations

Mﬂnﬂ + Ffﬂn+1 + PE'ﬁn+1 + Hfun+1 + KEE‘F?:H =04, ['55]
Upsy = Uuy +va120,,, (66)
JT-."'rn+1 = Tn+1 + aﬂrﬂn—l’ (67)

Where
—~ . AT?
Upyr = Upyy +ATU, + (I_ETJTUW (68)
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Uypey = U, + (1— a)adl, (69)

in which the implicit and explicit parts are respeeljvdenoted by the superscrigtandE. Also,

we used the quantitieﬁn“ and Unﬂ to denote the predictor values aHg .y and f_'-l’nﬂ to
denote the corrector values [45,46]. It is easy to rageghat the equations (66)-(69) correspond
to the New mark formulas [47].

At each time-step, equations (65)-(69), constitute an algeprablem in terms of the unknown

U, +41. The first step in the code starts by forming and factotiegeffective mass

M* =M +yArC’ + yAT? KL (70)
The time steghT must be constant to run this step. As the time-4tefs changed, the first step
should be repeated at each new step. The second stdprim tesidual force

Qner = Quag —C'Upay —CBUpuy —K'Upyy — KU 4. (71)

Note that in the implicit partl{* is always non-symmetric. Howeve¥ * still possesses the usual
"band-profile" structure associated with the connectivity ttf DRBEM mesh and has a

symmetric profile. So the third step is to soﬂsﬁ‘ﬂnﬂ — @}, 44 using a Crout elimination
algorithm [48] which fully exploits that structure in thatr@es outside the profile are neither
stored nor operated upon. The fourth step is to use prediotrector equations (66) and (67) to
obtain the corrector displacement and velocity vectorpeively.

The stability analysis of the algorithm under consideratias been discussed in detail in Hughes
and Liu [45] and the stability conditions have also been dérim the same reference, therefore
does not strictly apply to the considered problem.

4. Numerical Results and Discussion

Following Rasolofosaon and Zinszner [49] monoclinic North Sea sam&lseservoir rock was
chosen as an anisotropic material and physical data éokoaes:

Elasticity tensor

(17.77 378 376 024  —028 0.03]
1378 1945 413 0 0 113
_1376 413 2179 0 0 038
Cabrg =| ™' 0 0 830 066 0 |°Pa 72)
0 0 0 066 762 0
l 003 1.13 038 0 o 777

Mechanical temperature coefficient
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0.001 0.02 0 .
B, = [ 0.02 0.006 0 ]-10 N/Km? (73)
0 0 0.05

Tensor of thermal conductivity is

1 01 02
kab=[0.1 1.1 0.15|W/(mK) (74)
02 0.15 09

Mass densityp = 2216 kg/m* and heat capaciy= 0.1 J/(kg K), H -10000000 Oersted,
p =05 Gauss/Oerstedt =2, h =2, At =0.0001. The numerical values of the

temperature and displacement are obtained by discretizinghdhadary into 120 elements
(Nh = 120) and choosing 60 well spaced out collocation pcﬁn’bf§ = 60) in the interior of

the solution domain; refer to the recent work of Fahn@yg5].

The initial and boundary conditions considered in the calculaticns

att =0 Uy =u,=1u=u,=0T=0 (75)
atx =0 T l=0 (76)
atx =y P02 =0 (77)
aty =0 %:%:o,%:o (78)
aty=p  F2=22-02=0 (79)

The present work should be applicable to any dynamic coupledno-elastic deformation
problem.

Table 1 shows the variation of the temperaflirethe displacements, andu, and thermal
stresses, ;, 6,, ando,, with timeT. We can conclude from this table that the displacenmamds

thermal stresses increase with increadinmt the temperaturE decreases with increasiitg In
the special case under consideration. These results obtathetie DRBEM have been written in
the Table 1, the validity of the proposed method was exahdnd confirmed by comparing the
obtained results with those obtained in Table 2 using the Meshteal Petrov-Galerkin (MLPG)
method of Hosseini et al. [54]. It can be seen from thedegahat the DRBEM results are in
excellent agreement with the results obtained by MLP @&oade
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Table 1. Variation of the temperature, displacements and thermal stresseswith time for
DRBEM method

t T uy uy O12 O3z

O11
0.0 1.00000000 0.58526374 -0.92736451 0.01835267 38289256 -0.84246839
0.1 0.93267812 0.59273412 -0.88172634 0.02792831 49709565 -0.81183587
0.2 0.85873214 0.60912654 -0.83745678 0.03562739 58985832 -0.79927563
0.3 0.74683215 0.61738452 -0.80426135 0.04325876 61385738 -0.78173456
0.4 0.65829354 0.62839485 -0.76835241 0.05183746 68307255 -0.77726564
0.5 0.55796382 0.63448572 -0.71829304 0.05819423 70768468 -0.74385233
0.€ 0.4573891 0.6473421 -0.6294845 0.0636824 0.7919735 0.7149359
0.7 0.3680234 0.6583921 -0.5927834 0.0682714 0.8382629 -0.6859232
0.8 0.2793895 0.6678439 -0.4646278 0.0741826 0.8819916 0.6572645
0.9 0.19236783 0.67532931 -0.38972514 0.08015241 91108372 -0.63274434
1.0 0.10468787 0.68941532 -0.27984316 0.09245678 94907143 -0.60374345

Table 2. Variation of the temperature, displacements and ther mal stresseswith time for
MLPG method

t T uy uy 011 O12 O3z

0.0 1.00000000 0.20145966 -0.12276344 0.03156020 01287355 -0.99567837
0.1 0.98233790 0.28689764  -0.11268489 0.03945695 03702344 -0.90234586
0.2 0.87539672 0.34689233 -0.10364890 0.04307954 05985630 -0.89164562
0.3 0.76324129 0.39349765 -0.09297541 0.04829340 07385795 -0.81203454
0.4 0.69123421 0.43983571 -0.08098254 0.05308651 09308322 -0.77834562
0.5 0.58348450 0.46134897 -0.07923467 0.06249841 11762134 -0.67549232
0.6 0.49743094 0.48345669 -0.06048672 0.06943206 29107253 -0.58432590
0.7 0.3456283 0.4947864 -0.0508641 0.0729765 0.3582935 0.4567832

0.€ 0.2948375 0.5042545 -0.0492578 0.0798531 0.4919357 -0.3795845

0.€ 0.1249863 0.5186566 -0.0380195 0.0865542 0.5819843 0.2689743

1.0 0.03456903 0.52634525 -0.02343597 0.09122364 64904561 -0.19872344

5. Conclusion

A computerized numerical model based on the DRBEM is extendetutty thegeneralized
thermo elastic responses of functionally graded anisotnmgéting plates. In the case of plane
deformation,an implicit-explicit time integration algorithm was develdpend implemented for
use with the DRBEM to obtain the solutionthe context of th&reen and Lindsatheory The
DRBEM results are in excellent agreement with the residtained by MLPG method.
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