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Abstract

Aims: This paper presents a design for a custom Application-Specific-Integrated-Circuit (ASIC)
VLSI continuous time recurrent neural network computer suitable for use in Evolvable
Hardware (EH) applications.

Study Design: Extensive testing of a fabricated device will be used to demonstrate that the
designed and fabricated neural chip possesses excellent behavioral congruence to the differential
equation and ASIC hardware forms of neural networks programmed into the chip.

Place and Duration of Study: Department of Computer Science and Engineering, Wright State
University, between 2009 and 2012.

Methodology: The presented ASIC neural chip has been designed with specific concentration
on the CMOS sub-threshold design concepts. This CMOS sub-threshold design forms the basis
for underlying neural computation and also the current-mode Digital-to-Analog Converter
(DAC) that can be used to program neuron configurations. The proposed designed has been
developed to be immune to any faults introduced thru fabrication, at least to the extent that is
non-detrimental to underlying neural behavior.

Results: Ten separate intrinsic CTRNN learning runs were conducted on the fabricated chips.
Each test was conducted on a separate fabricated chip to assess intrinsic to extrinsic
transferability across individual instantiations of the device. Further, as mentioned earlier, a
secondary set of tests were conducted that involved performing intrinsic match analysis for 15
(separate) extrinsically learnt CTRNN configurations to test extrinsic to intrinsic transferability.
Based on the comparison metrics computed between the simulated and the fabricated chip, it has
been demonstrated that the observed worst case average mismatch across all computed outputs
of the four neuron CTRNNS is about seven percent on amplitude with near perfect matching for
slope and frequency.

Conclusion: Extensive testing of a fabricated device has been used to demonstrate that the
analog computer possesses excellent behavioral congruence to the differential equation and
ASIC hardware forms of neural networks are programmed into the chip. The major advantage of
choosing the proposed CTRNNs chip for EH applications is that one can easily transition
between model and circuit form no matter how the circuit was evolved. In this paper, we
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demonstrated quite clearly that the barrier is either non-existent or very slight by having
designed, fabricated, and tested an actual VLSI chip in the application that one would expect to
be most difficult -- evolution in hardware and modeling in differential equation form.

Keywords: Evolvable hardware; neural computation; analog VLSI; neuromorphic engineering.
1 Introduction

The authors have previously observed that much work with neural networks is conducted via
computer simulation on digital computers and that, even when implemented in hardware, most opt
for digital methods [1]. This choice is often made for the same reasons it is made in desktop
computation-digital methods allow for more simple programmability and straightforward control
computational precision and accuracy. On the other hand, digital implementations of many neural
computation algorithms are orders of magnitude larger in physical size than analog counterparts
when implemented using VLSI methods. For the control of Micro-Electro-Mechanical Systems
(MEMS) and other size and power limited robotic systems, the larger sizes and higher component
counts of digital implementations may simply not be acceptable. A future requiring a return to
analog computation may not be far off. It would be, at the least, ironic to control a MEMS device
with a circuit orders of magnitude larger than it. Insect-sized robot prototypes on millimeter scales
have been produced [2]. Construction of a controller that can fit inside a robot small enough to fit
between the pins of standard surface mount chip may require cutting of power and size of onboard
control computers by any means necessary.

In this paper, we will present a design and implementation of an Application-Specific-Integrated-
Circuit (ASIC) analog neural computer that can be used to embody Continuous Time Recurrent
Neural Networks (CTRNNs). The chip has been fabricated and we will present extensive
empirical comparisons of simulated and VLSI versions of a number of programmed CTRNNSs.
Such testing is absolutely critical, as placement errors and material impurities on the silicon can
introduce significant deviations between theoretical and hardware versions of a CTRNN. Any
VLSI ASIC design offered for practical use must be robust against such problems. We will begin
with a discussion of CTRNNSs as they might be used as a component of a continuously adapting
control system under severe space and power constraints. An example application will be
provided, although it is assumed that there are others. Following, we will detail the design of the
VLSI device and provide experimental validation of its proper operation using previously
developed behavioral benchmarks [1]. The paper will conclude with a discussion of the
implications of this work to other research efforts.

2. CTRNN Evolvable Hardware

2.1 Overview

Evolvable Hardware (EH) [3] is an emerging sub-specialty of Evolutionary Computation (EC) in
which one employs an evolutionary algorithm [4,5,6] to evolve the configuration of a
reconfigurable hardware substrate. Within the evolvable hardware community, the
intrinsic/extrinsic dichotomy refers to whether the evolution occurs with the real hardware in the
loop (intrinsic) or with a computer simulation of the hardware in the loop (extrinsic). An ideal
EAH solution would show no preference for either side of the dichotomy. Solutions evolved
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extrinsically should be transferable to real hardware with no difficulty. Likewise, solutions
evolved intrinsically should be transferable into a mathematical form that can be both rigorously
analyzed and taken as a complete and accurate description of what the evolved hardware actually
does. If one were evolving digital circuits, this transfer across the intrinsic/extrinsic barrier is not
difficult. The problem can, however, be complex when dealing with analog systems. If an intrinsic
EAH device evolves to use non-modeled properties of its substrate (e.g. takes advantage of
surface defects on a specific chip or a transient response of a specific, unique component in a
system), there is little hope of conducting a full analysis of the evolved system via a generic
system model. In this section, we will briefly discuss CTRNN based EA; for what it might be
used; and the unique challenges the intrinsic/extrinsic barrier might present.

2.2 Continuous Time Recurrent Neural Networks (CTRNN)

CTRNNs are networks of Hopfield continuous model neurons [7,8] with unconstrained
connection weight matrices. Each neuron’s activity is governed by the differential equation:

dyi S
o :—y,.+jz:l:wﬁ0'(y/. + ‘9./')+ s.L(1) (1

where yl. is the state of neuron i, Tl. is time constant of neuron i , w ji is the strength of the

connection from the j " o the " neuron, @ is a bias term, o(x)=1/(1+¢ ") is the standard
logistic activation function, and 1 (¢) represents a weighted sensory input with strength Si The set
1

of parameters corresponding to a neuron, including the synaptic weights ( W), the time constant

(7 ) and the bias (@) is called as an individual neuron configuration and a collection of these

individual neuron configurations for a given network is called as a network configuration or a
CTRNN configuration.

2.3 The MiniPop Evolutionary Algorithm

The miniPop Evolutionary Algorithm was developed specifically for evolving CTRNN network
configurations [9] and has itself been designed for compact, low-power ASICs implementation
[10]. Although this paper focuses on the hardware design of the analog neural computation
components of the composed system, it is important to note that an appropriate and efficient
ASICs version of the learning algorithm has already been developed. More details are available in
the provided references.

2.4 The Ctrnn-EH for Control

The Continuous Time Recurrent Neural Network Evolvable Hardware (CTRNN-EH) is the
synthesis of the above two components. An analog CTRNN is wired into a system to be
controlled by tying one or more of its neurons to device effectors and one or more of its external
inputs to device sensors. The MiniPop learning algorithm receives performance scores on the
quality of the controlled system's operation and continually adjusts the CTRNNs configuration to
improve performance. In practical application, one might use a CTRNN-EH device to learn a
control law from scratch [11,12] or as an assistive component inside a traditionally designed
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controller [12]. In either case, it is likely that one would mix extrinsic evolution against a model
might be used to create candidate controllers that are fine-tuned intrinsically. Further, one might
convert intrinsically evolved controllers into an extrinsic/simulated form for formal analysis.
Either of these two practical tasks becomes highly problematic if the analog hardware and the
extrinsic simulations did not describe the same underlying neural model.

3 Analog CTRNN Design

3.1 Overview

This section will explain the analog VLSI CTRNN design with specific concentration on the
CMOS sub-threshold design concepts underlying neural computation and a current-mode Digital-
to-Analog Converter (DAC) that can be used to program neuron configurations. It will begin with
a discussion of the implementation at a conceptual level also shared by the design presented in this
paper's earlier appearing companion [1]. It will then move on to discussion of specific analog
VLSI implementations of each conceptual block and how they are combined to create an entire
neuron. Apart from the obvious size and implementation technology differences, the main
distinction between this and previous work is the use of current, as opposed to voltage, to
represent neuron activations. Test results from an actual implementation of a multi-neuron device
will be presented following the design discussion.

3.2 Analog CTRNN - Conceptual Design

Conceptually, one can envision a hardware neuron as a cascade of three types of circuit blocks as
shown in Fig. 1. The Fig refers to a "neuron i" that is one of a set of neurons numbered from 1...N.
Neural inputs (in this case, all inputs are the outputs of neurons in the network, although there is
no reason one could not treat external sensory inputs similarly) are ran through multiplier blocks
labeled "input weights" in Fig. 1 to produce weighted input values. These weighted values are
then summed, in the case of a CTRNN, summing is equivalent to running the summed weighted
inputs through a low-pass filter with a programmed time constant associated with the neuron. In
Fig. 1, the summation process is represented by the "temporal summation" block. The summed,
filtered output (yi) is passed through a sigmoidal squashing function that can be biased by a bias
constant also associated with the neuron. This conceptual decomposition is neither new nor
unique, many analog CTRNN implementations that use something like it are in the literature and
the knowledge to build the neural computation aspects of this circuit are well-known and
somewhat standardized [13,14]. Less standardized and significantly more problematic is the
design of circuitry that provides for effective and efficient programmable neuron configurations
(settings of weights, time constants, and biases).

3.3 CMOS Analog Neuron Module Designs

The hardware developed here will use electrical current values to encode the strength of neural
outputs. The first stage of a CTRNN neuron consists of a collection of multipliers which,
henceforth, will be referred to as "synapses". In this implementation, a synapse is an analog
multiplied with programmed weights. A simple Operational Trans-conductance Amplifier (OTA)
is employed as that multiplier Fig. 2, left hand side. The OTA has the following input-output
relationship:
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Fig. 1. Conceptual Hardware CTRNN Modules

Where I, is the current in the drain of transistor ,, V,, is the gate voltage on the transistor N, and
V..r is the gate voltage on transistor ;. It can be seen that the output differential current is a
constant times the input current that flows through transistor N,. The output curve of the OTA
circuit is a hyperbolic tangent as described by equation 2. Depending on how one biases the
transistors, one can operate that circuit as an approximation of a linear amplifier by restricting
inputs into the approximately linear range of the device, or one can operate it as an approximation
of a sigmoid function by using the whole available range of the device. The only effective
difference between the left and right sides of Fig. 2 would be in what range of outputs are used.

In the synapse implementation, a weight is stored as a voltage on the gate of transistor N,.
Transistors N, and N, are operated in the sub-threshold region while N, is operated in saturation
region. A voltage applied on the gate of N, causes a current to flow in its drain. Transistor N; of
the OTA based synapse holds the reference voltage that is supplied by a bias circuit which will be
discussed later. The voltages on N,, which are neuron weights range from -16 to +16. These raw
weight values are mapped to transistor gate voltage values using the following mapping:

Wy

v, =2, tanhl[]

w

max (3)
Where V,, is the gate programming voltage, 27V, is a constant with a value 120mV and w,,,is 16.
Because the OTA output is a differential current, a differential to single-ended convert was
designed from PMOS transistors. One OTA/single-tail converter exists for each neural output and
accepts one digital value between -16 and +16 as a scaling weight. The DAC that drives the
weight transistor gate for each unit will be discussed below.

The next stage is the temporal summer. The weighted inputs are summed via a wired junction and

the summed current is passed to a leaky integrator (low pass filter). The VLSI implementation of
the wired junction is trivial and the implementation of the integrator is standard. In this chip, we
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chose to move the capacitors determining the integrator time constants off chip to keep our
fabrication costs low. Integrators can be built on-chip using gm-C filters [15] or via upcoming
advances in thin film capacitors. The final stage in the analog neural computation circuitry is the
logistic sigmoid stage. The implementation of this circuitry is architecturally identical to that of
the basic synapse Fig. 2. However, while the synapse circuitry was operated in the linear region
of the tanh() curve, the sigmoid circuitry does not have such constraints. The right hand side of
Fig. 2 shows the circuitry for the sigmoidal squashing function. In this use, the devices operation
is determined by the differential voltage on the gates of Nyand N;. The drain current on N, is set
constant by on-chip bias circuitry. The gate voltages V,,.and V,. are driven by neuron bias and
leaky integrator outputs respectively. The purpose of the bias term ( 0 ) in a CTRNN is to shift
the

curve along its x-axis to make activation less or more difficult. This can be achieved in the OTA
as indicated.

+Vaa - +Via Via

Weight j i Vost+
e, N, N

%f Ef

N,
}_i Vs }_l Ve
Simple Synapse Simple Sigmoid

Fig. 2. Basic OTA Synapse and Sigmoid
3.4 CMOS Analog Neuron Programming Circuitry

From the preceding discussion, it is clear that the neuron parameters are stored as charges on gates
of transistors. For storing these parameters, some sort of analog memory is desired. Another
similar CTRNN implementation [14] programmed the CTRNN by applying external voltages to
the appropriate transistor gates. This is not feasible for large numbers of neurons and, in any case,
one needs to move weight and parameter storage on-chip to best interface with digital VLSI
devices. Our implementation stores neural parameters using analog memory cells associated with
each relevant gate. Specialized Digital-to-Analog (DAC) converters are provided to transform
digitally encoded neural parameter values to values to be stored in those analog cells. A modified
synapse circuit with analog sample-and-hold cells [16] is shown in Fig. 3.

Each memory cell employs the same architecture. Because weights and biases are stored on gates
of OTAs, the performance of the CTRNN will be sensitive to the errors introduced by the leakage
and injection charges of the memory cells. To counter this, a differential memory scheme is
employed where the second differential voltage of an OTA is also connected to a memory cell.
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The same control signals drive the memory cells on either side of an OTA. This way, the errors
due to a memory cell are rejected by the OTA. It can be observed that the capacitor stores the
input voltage when both the row and column select lines are high. The programming cells are
arranged into an array of two rows and three columns. Three bit address lines are used to select a
memory cell for programming. When a memory cell is chosen, the row and column select lines
corresponding to it are high. The S/H capacitor is charged to the input voltage value. After the
sample time, the one of the select lines goes low depending on what cell is being programmed
next. This turns the switch transistor off. At the same time, the dummy transistor with its source
and drain shorted turns on. The dummy transistors purpose is to minimize the charge injection and
clock feed through effects [16, 17, 18, 19, 20]. It should be noted that because of leakage effects,
the charge on the capacitor has to be periodically refreshed by an external refresh circuitry.

Row Select
Col. Select

Fig. 3. Modified synapse with Analog Memory

The multiplexing DAC employed to convert digitally stored neural parameters into bias currents
Fig. 4 to charge the analog storage cells is a current steering DAC that uses binary weighted
PMOS current mirrors. It can be seen that, the drains of the PMOS transistors are routed through a
simple switch circuit. This switch circuit consists of two minimum sized PMOS transistors whose
gates are controlled by the binary input code. For instance, transistors P;, and P;sare controlled by
the MSB of the digital input. If the MSB is 1, the drain current of P; is routed to the net /+, which
represents the cumulative current due to high bits. Similarly, /- represents the cumulative current
due to low bits. A digital code with the MSB high and rest of the bits low will result in equal
current in /+ and /- nets. The reference circuit shown in Fig. 4 is used to convert this current into
equivalent programming voltage. In effect, the analog memory cells are charged "bit-by-bit" as
subsequent binary digits of a digitally stored parameter value are read and presented to the analog
memory to contribute their scaled bit of charge to the storage capacitors.
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Fig. 4. Binary Weighted PMOS DAC

3.5 Fabricated Analog CMOS Device

A four-neuron test chip Fig. 5 was fabricated via the MOSIS service with a 0.6 micron CMOS
technology. The chip can be programmed to implement any four-neuron CTRNN with eight bits
of precision on all programmable neural parameters. Neuron weights and biases are stored on
chip and communicated to the analog neurons via the techniques described above. Refresh
circuitry for the analog memory cells is likewise on-chip. As mentioned earlier, in this test
implementation, time constants are determined by off-chip RC networks which are programmable
through digital potentiometers and choice of a capacitance of fixed value. It should be noted that
several methods, already mentioned, exist by which one may move the time constant circuitry to
back to the chip. The fabricated device requires a regulated dual-voltage power supply of +/-3.3
volts.

MOSIS
TE8Z-AQ

Fig. 5. Fabricated VLSI CTRNN Chip
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4 Intrinsic and Extrinsic Hardware Evaluation

4.1 Overview

As mentioned earlier, the barrier between intrinsic and extrinsic analog EAH devices can be
somewhat vexing. Configurations evolved in simulation (intrinsically) may not behave uniformly
across specific chips due to transistor level variations in sub-threshold behavior. Likewise,
configurations evolved in hardware may learn to take advantage of features specific to the chip on
which they evolved and not be amenable to modeling by the differential equations defining a
CTRNN. The transferability of configurations across the

"intrinsic/extrinsic" barrier was primarily tested directly by evolving CTRNNSs intrinsically on the
chip and testing the match between hardware and simulated behaviors of the evolved
configurations. This is considered the most difficult test of intrinsic to extrinsic transferability, as
the intrinsic hardware form of the device is much more likely to contain uncharacterized features
that an EA would exploit to satisfy the EA objective function -- but are not directly modeled in the
CTRNN differential equations. Even though the ability to achieve this level of transferability
implies extrinsic to intrinsic transferability as a side effect, a secondary set of tests were
performed to verify the claim. This secondary set of tests involved evolving CTRNNs
extrinsically on the simulated CTRNNs and verifying the neuron functional match of those
configurations against different CTRNN chips. This section describes the test setup, the evaluation
metrics, and the observed performance data used in these experiments.

4.2 Experimental Setup

A general intrinsic evolution and extrinsic verification experimental setup proposed previously [1]
and shown in Fig. 6 has been employed to conduct experiments on the CTRNN chips. This
experimental setup consisted of a desktop computer running a simple evolutionary algorithm
(ryCGA) [21], a custom carrier card that could convert CTRNN configuration reading, writing,
execution commands made via a serial port to corresponding chip level signals, a CTRNN chip to
be tested, and a National Instruments data acquisition card to monitor the CTRNN chip's analog
outputs. The desktop computer ran the EA with the objective function. The ryCGA evolved
connections weights and biases with time constants left constant and set to values that would
ensure that any resulting signals were observable by our data collection equipment. CTRNN
configuration values were evolved with eight bits of precision. For a four-neuron fully-connected
CTRNN, this resulted in a 160 bit genome to represent four biases and sixteen neuron connection
weights. The ryCGA employed a simulated population size of 1024 and a mutation rate of 0.03.
CTRNN chips were evolved to be oscillatory, with no other restrictions on the waveforms. After
evolution was complete, each resulting configuration was exercised and all neural outputs from
the chip recorded. Also recorded were the final CTRNN configurations learned. These were
translated into differential equation form and constituted an extrinsic model of each evolved
CTRNN chip configuration.

Getting into the details of the setup in operational mode for intrinsic evolution (as depicted in the
schematic view of the above mentioned experimental setup shown in Fig. 6, the evolved CTRNN
configurations in each evaluation cycle are communicated to the microcontroller via a serial port
on the desktop computer. The microcontroller board’s flash memory is loaded with a custom code
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of 1K bytes used for reading the neuron parameters via the serial port and to handle the low-level
communication required to appropriately program the current DACs on the chip. The
microcontroller code also contains the necessary logic to switch between the memory locations on
the chips, corresponding to distinct neural parameters in a given network configuration. The logic
is programmed with an appropriate programming refresh rate to maintain the parameter values in
the memory location from discharging. The complete logic implementation as well as the low-
level communication in the microcontroller employs only one 7-bit uni-directional port. A general
purpose 8051-prototyping microcontroller board is employed in the experimental setup to aid the
process of CTRNN configuration communication. Further, the host computer has a national
instruments DAQ card PCI6024E installed on it along with a SCB-68 breakout box to interface
the analog signal from the chip neuron output to the fitness evaluation function of the ryCGA.
Based on the analog specifications of the neuron signal, the NI PCI6024E is configured with an
update rate of 50K samples per second and allowable input voltage range of Vmin to Vmax volts.
Where Vmax and Vmin are the respective maximum and minimum neuron output voltage level for
the chip. The NI PCI6024E converts the analog value of the signal to an equivalent digital value
with a 12-bit resolution. The complete analog signal is reconstructed using standard DAQ libraries
and the error-fitness value is allotted to the signal based on its oscillatory behavior observed in a
window size of one second. The signal with non-oscillatory behavior (a constant voltage in the
range of Vmin volts to Vmax volts) is penalized with high error value and the signal with at least
three oscillations is rewarded with a minimum error value. Consequently, the rycGA used a
minimizing error score strategy to evolve the next configuration in successive cycles.

Host
Serial Port Computer
Card in Host Running EA
Computer Engine
8051 ~
Prototype . , NIDAQ
Board ~ Cards in
Host
Computer
low-level communication
of individual neuron settings
differential mode
analog neural
outputs
CTRNN
vLSI SCB-68
Chip Breakout
Box

raw analog l

ncural outputs

Fig. 6. A Schematic view of the Experimental Setup
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It can be perceived from the above operational process of the experimental setup that the same
setup, without the EA module, can be employed for extrinsic verification tests in which the
CTRNN configurations evolved in simulation can be transferred onto the chip for the appropriate
neuron signal captures for match analysis.

4.3 Evaluation Metrics

A After evolution tests, it was required to compare the match between intrinsically evolved
CTRNN outputs and those generated by a simulated model of the same. Three quantitative time
series comparison metrics were developed to assist in comparing neural output time series. For
purposes of comparison, hardware generated time series were normalized into the range of [1] to
match the range expressed by the differential equation form of the CTRNN. Time bases (time
constants) were likewise normalized into a range customarily used in the DFQ form. Note that
either scaling can be changed without affecting the relative shapes of the produced time series.
Since frequency and amplitude of the outputs can be scaled by choices of base neuron time
constant capacitors and output amplification on the neural outputs, respectively, we are largely
concerned that the sub-threshold time series shapes are consistent across the extrinsic/intrinsic
barrier. The metrics employed are defined as follows:

Shape Metrics: The shape metrics compare the shape of the signal generated in hardware to the
corresponding signal in simulation. Two shape metrics were employed:

(a) Magnitude Metric (Metric AI): The magnitude metric (4/) measures the correlation for the
magnitude (at any given instant) of the normalized hardware signal with respect to its
corresponding simulated signal. This is obtained simply by superimposing the normalized
hardware signal with its corresponding time scaled simulated signal and computing a magnitude
root mean square error (ME,,,;) over one complete period of oscillation as below:

“4)

Where Ms;andMh; are the magnitudes of the signal at a given instance j in simulation and
hardware respectively and N is the number of data samples present in one period of oscillation for
a given signal in the configuration. For a given configuration the individual magnitude errors is
computed for every neuron output and a statistical average of those individual errors is taken as a
final magnitude metric.

(b) Slope Metric (Metric A2): The slope metric (42) computes a correlation for the slope (at any
given instance) of the hardware signal with respect to its corresponding simulated signal. This is
obtained by determining the continuously varying slopes of the signal in hardware and in
simulation followed by computing a slope root mean square error (SE,,;) over these slopes for
one complete period of oscillation as below:

N -1
> (Ss, - Sh )’
SE . =1L ®)
N 1
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Where Ss; - Ms;.;- Ms(slope at j instance in simulation);Sh; - Mh,,;- Mhyslope at j instance in
hardware) and N is number of data samples present in one period of oscillation for the given
signal in the configuration. For a given configuration the individual slope errors is computed for
every neuron

Frequency Metric (Metric F1): The frequency metric provides a correlation of the frequency
measured in the hardware signal with respect to its corresponding simulated signal. This is
obtained by computing the number of oscillations in a hardware signal and simulated signal over a
specified time period and then finding a correlation percentage F o o, based on the number of
oscillations is computed as below:

F,

corre%

=(1—(Ns— Nh)/ Ns }*100 ©
Where Ns and Nh are the number of oscillations of the signal found in simulation and hardware
respectively over a specified time period. The time period for comparison was selected as twenty
times the time period of the CTRNN oscillations.

The correlation metrics (41 and 42) provide an accuracy measure of the hardware CTRNN within
a given time period of the oscillation and the frequency metric (F/) provides a measure of
reliability as it is computed over multiple oscillation periods in accordance with its simulation
counterpart. A 100% exactness of the frequency metric for the oscillatory configuration ensures
sustained oscillations without damping or saturation of the signals.

4.4 Results

Primarily, ten separate intrinsic CTRNN learning runs were conducted. Each test was conducted
on a separate fabricated chip to assess intrinsic to extrinsic transferability across individual
instantiations of the device. Further, as mentioned earlier, a secondary set of tests were conducted
that involved performing intrinsic match analysis for 15 (separate) extrinsically learnt CTRNN
configurations to test extrinsic to intrinsic transferability. Tables 1 and 2 show the match scores
for the actual hardware and the differential equation simulation of corresponding configurations
for the two set of tests respectively. Note that the frequency matches are very accurate, and that
shape matches are no worse than 0.07 where zero represents a perfect match. We can roughly
interpret the data to mean that the observed worst case average mismatch across all four outputs of
the four neuron CTRNNSs is about seven percent on amplitude with near perfect matching for
slope and frequency.

Table 1. Similarity Metrics for Intrinsic to Extrinsis Transferability

Intrinsically Evolved Shape Metric (A1) Shape Metric (A2) Frequency Metric
Configurations (F1)

1 0.061525 0.001794 100%
2 0.046385 0.000757 100%
3 0.049258 0.001055 100%
4 0.010660 0.000409 100%
5 0.017883 0.000699 100%
6 0.022671 0.000622 100%
7 0.074733 0.001264 100%
8 0.052230 0.001310 100%
9 0.035571 0.001036 100%
10 0.000114 0.000001 100%
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Table 2. Similarity Metrics for Extrinsic To Intrinsic Transferability

Extrinsically Evolved Shape Metric Shape Metric Frequency Metric
Configurations (A1) (A2) (F1)

1 0.055541 0.000573 100%
2 0.052368 0.000464 100%
3 0.039745 0.000332 100%
4 0.009938 0.000101 100%
5 0.029539 0.000424 100%
6 0.031327 0.000423 100%
7 0.053304 0.000702 100%
8 0.021997 0.000306 100%
9 0.021283 0.000205 100%
10 0.056274 0.000501 100%
11 0.026603 0.000256 100%
12 0.069343 0.000627 100%
13 0.046738 0.000431 100%
14 0.030781 0.000461 100%
15 0.030889 0.000432 100%

5 Conclusions and Discussion

Evolution of circuit configurations directly in hardware is a simple matter when dealing with
digital systems. In those cases, the evolved net lists can be retrieved from the hardware, converted
into Boolean equations and studied and analyzed using any and all available tools. The situation is
much more difficult when one is evolving configurations for VLSI analog circuits. In such
situations, it is possible - if not likely - that the evolutionary algorithm employed to learn circuit
parameters will exploit features unique to the specific piece of silicon embodying the
reconfigurable hardware. In such cases, the EA may have

Done its job by providing an optimized device, but it becomes impossible to extract and analyze
the solution specifically because it used device features that are not modeled properly in whatever
analysis tools are available. In many application areas, the inability to characterize and understand
a proposed solution is simply not acceptable.

The authors proposed the use of CTRNNs as a substrate for evolving analog circuit device
controllers specifically because they are amenable to analysis at the level of their differential
equation form, but are also amenable to small size, low-power, and implementation in VLSI. The
major advantage of choosing CTRNNSs is that one can easily make the transition between model
and circuit form no matter how the circuit was evolved. In this paper, we demonstrated quite
clearly that the barrier is either non-existent or very slight by having designed, fabricated, and
tested an actual VLSI chip in the application that one would expect to be most difficult --
evolution in hardware and modeling in differential equation form.

Aside from assurance that one can pierce the boundary between intrinsic and extrinsically evolved
CTRNNSs in VLSI, the major contribution of this paper is the design of the modified synapse and
it’s associated PMOS current-based DAC. Although analog CTRNN neurons have been in the
literature for many years, convenient and accurate programming of parameters can still be a
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difficult issue. In our case, charge injection and clock leak through effects were major concerns,
as was the ability to maintain analog parameter memory that was sufficiently precise and accurate
for practical CTRNN configuration programming. Based on the tests presented, we are confident
that these concerns have been addressed and that CTRNNs can be considered safe for use in
intrinsically configured control devices.
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