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ABSTRACT

Parameter estimation is an important part of computatisgstems biology — especially |n
studies on biological networks. Numerous stochastic search dsethe/e been applied |n
parameter estimation in biological networks. In this papeonstrained stochastic space search
(CSSS) method for parameter estimation is proposed aatbaged for estimating the
parameters of a genetic network described by differeatjahtions. Both linear and nonlingar
model formalisms were used for the data evaluation. En@nmance of the CSSS method was
compared to the Integrated Controlled Random Search forarbign Systems (ICRS/DS)
stochastic optimization algorithm. Compared to the ICRSIBS CSSS algorithm is faster with
at least a 7-fold shorter convergence time. Independentatgd were run and identificatign
performed. For the same initialization conditions prior torogation, the CSSS had on averdge
smaller relative mean errors than the ICRS/DS.

Keywords: Biological network; differential equations; optimiaat parameter estimation.

1 Introduction

There is growing interest in parameter estimation and stateting the dynamics of biological
networks. Numerous methods have been used so far to gaghtimsto various aspects of
biological networks, e.g. (probabilistic) Bayesian network&gression methods, Boolean methods,
and differential equations. The ordinary differential amume (ODE) formalism is a popular
method to model biological networks [1,2,3,4,5]. This fornmalis used to model the regulatory
status of genes, hence, rendering ODEs suitable for Hegrrgene regulation activity [6].
Generally, many parameters are required in ODESs to #desttte dynamics and regulatory roles
of various components of a biological network. In principhe, htumber of parameters increases
with the level of details required to describe the reageyamechanisms involved in a particular
biological network. There is currently numerous global patanmestimation methods proposed in
computational systems biology [7,8,9,10,11]. There areymspace search methods that address
parameter estimation problems in biological networks and timbeukeeps rising [12].
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Although much progress has been made in developing powerful ecutate parameter
estimation methods, such as that in [13,14], there is s&#d for improvement in the
computational robustness and speed of existing methods. déareyic network inverse modeling
problems require robust parameter estimation routines toeetisairthe parameters are obtained
with high precision. The classical way to do this is bytlesgiares estimation or maximum
likelihood estimation is used [15]. Similarly, stochasiearch based methods can be used — in
which case a specified set of parameter constraintshandstics for initializations on some
parameters for optimization are required [7,11,14]. Thaxopétion is based on minimization of
goal function to fit a given model to a dataset.

The challenge of accurately describing the dynamics aadgehin concentration of molecular
species, e.g. messenger Ribose Nucleic Acid (mMRNA) incdile In Computational Systems
Biology, Bioinformatics and Biotechnology, parameter reation remains a big challenge —
especially in the study of biological networks. To helgrads this challenge, various methods
have been proposed in literature; e.g., Englezos and é&falkig [16] provided insight into
optimization methods used for parameter estimation. Clyrehére are numerous approaches to
estimating parameters from data. Fundamentally, the maticaingrinciples and problem
formulation vary. Additionally, there exist differencesveeen the most methods, for instance: (i)
some methods are computational more expensive, (ii) Mariet levels of accuracy and precision
in prediction of state variables and/or models parameterd (iii) the scalability to larger
dimensional networks (or compartmental systems). Evenl $omadtional modules in networks
require a large number of parameters to describe the umderietics and regulatory
mechanisms between the molecular units (genes and/or profiis)arge number of parameters
is required for accurate network reconstruction irrespecfitke model formalism.

Here, the constrained stochastic space search (CSSS) netragpposed and its performance is
compared to the Integrated Controlled Random Search fornbignaystems (ICRS/DS) which
can be found in [17]. The ICRS/DS is a modification of 8RS algorithm [18]. Much as the
ICRS/DS is robust, it comes with weaknesses, e.gt: i@puires making heuristic guesses for the
direction search tuning parameters, and (ii) it takes a long to converge to an optimum
solution, if a solution exists in the search space and thmiaption tolerance level is sufficiently
stringent. The CSSS method addresses these issues by testhgique of variance scaling on the
parameters during optimization. The performances of thethaus were validated on two test
case networks through silico experiments and optimization.

Other stochastic search algorithms such as the Gendgorithms and Particle (Swarm)
Optimization have also been applied to solve parameter déstirmia biochemical systems (see
Bosezzi et al. [19] and Yang et al. [20]. Unlike the CSS&had, many of the stochastic
algorithms in literature are quite complex and require muraif initial parameter values prior to
optimization. Extensive insight into the performance of coniynased algorithms for parameter
estimation in Systems Biology is found in the work of wsitiyev et al. [21]. The CSSS
algorithm aims to get the best parameter estimates tiyiajng the sum of squared errors (SSE)
goal function. Just like the ICRS/DS, the CSSS algorithguires pre-specification of constraints
on the parameter for initialization. The parameter precisind accuracy levels were found to be
influenced by network topology and the existence of a feedbadlorafeed-forward loop. For
instance, the existence of edges (which represents the tgutrength between a target gene
and its transcription factor) in a network being signifibastronger than others may cause a
drastic shift in the system condition number - ultimaggfgcting how accurately parameter are
estimated.
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2 Methods

2.1 Network Representatior
Consider a genetic network system that is representéuklgifferential equatic
X=fXwQ); Y=ge @

whereX =[x, ..., x,,]T € R¥>*" represents the state of the system which details the activities
Herey; = [yi1, ..., yin]T € RV*1is the measured activity of geh@ time,N - number of time
points; the matrix of measured data Y = [yy, ..., y,]" € RV*", Q - parameter spacte -

Gaussian measurement error term u - external perturbation vector. The transition fuoia
f () captures the networdkynamics anig(-) is the output or mMRNA measurement function wt
can be obtained by transcriptomics experim

2.1.1 Linear representation

Let us consider the linear system represent:
X =AX +bu 2
Here,A is the network connectivity matrix wittypical attributes of real biological networks li

activation, repression, autegulation (which is also often referred to as -regulation) anc
feedback. The netwoiik triggered using an external perturbation func

u(®) = u(0)[1/(B + )] )

B and K are nonnegative constants au(0) is the initial concentration of the triggeri
compound. The nature af(t) is based on many physical and biological systematiich the
concentrations of an inducing compound is consu[22,23].

u

Fig. 1. A synthetic genetimetwork. The sharp headec(-) and flat headed (0|) arrows
respectively represent activation and repression of tragcription. The nodes represent gene
and u is the perturbation (input) signal, which can be nutrent uptake, glucose uptake et
depending the biological network under consideration
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Consider a system of ODEs represented with the exdgivity matrix constructed from the
network in Fig. 1. The fully connected matéxe R™*" that corresponds to this network has a
total ofn? = 36 parameters. However, not all the parameters neduktconsidered given that
sparseness is a common attribute of biological oetsv [24,25]. LetA(Q) denote the
parameterized connectivity matrix which, in thiseais a sparse network with 16 parameters —
including the input vector coefficieb. The diagonal entrie; in (4) are the auto—regulation
effects. The parameterized connectivity matrix is

—-6,; O 0 0 6,5 O
/0 =052 0 0 0 0
_| 931 0 _933 _934 0 0 |
A= p 0 0 -6, 00 )
951 0 0 0 _955 0
_661 662 0 0 665 _666
and the input vector
b = [b4,0,0,0,0,0]" 5)

The network is triggered by the signaling function(3)as an external perturbation, therefore,
enhancing the gene activities. For the ease otinoi let the parameter from (4) are represented

by:
o = [611,015, 0,5, ...,666,b1]T (6)

Several sets with different parameter values westgaed to the connectivity matrix to enable
synthetic data generation. The initial parametezsdapicted as:

T
., 699 5] )

_ [0 p(0) H(0)
w® = [911 0157, 0 66 ’

22

The vector dimensiodim(w®) = m depends on the number of unknown parameters.

2.1.2 Boundary constraints on parameters

The restrictions imposed on the lower (L) and udpdrparameter bounds are:

Qi={ L <6, <6 forall ij ®

bl < b, < b}
These constraints ensure that nonrealistic parammatees are avoided [26,27]. Once the model
structure is known and the constraints on the patars in (8) specified, then optimization of the

goal function is initiated. The parameter values gdated during optimization until convergence
at some optimal goal function value is obtained.
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2.2 Nonlinear Network Representation

Consider the nonlinear model representation ofreetie network of three genes as in [28]. With a
slight change of notation, the model is given by

( D = e —— — kg Xy

dt 1S 1tkygxs
dx; k21X
FHIS(Ql) { dt 2s 1+kpq %1 2d12 (9)
dxz _ k31x1  k3ax3
k_ = K3s - kzaxs
dat 1+k31x1 1+k32x2

The termx; represents the state for ganeThe equations in (9) describe a simple regulatory
network in which gene 3c§) represses transcription of genexl)( gene 1 activates transcription
of gene 2 £,), gene 1%;) and gene 2x,) collectively activate gene 3{). A popular form of
function used in modeling biological networks ig tHill function [29,30]. The parameter vector
for this nonlinear system (nls) representationiveig by

Wnis = [klsr k131 kldl str k21, kZdl k3sr k31r k321 k3d]T (10)

In (9), the mRNA degradation is modeled as a firster reaction and is represented by the
constantsk, 4, kp4 andks,; The termskyg, k,; andks, are the synthesis parameters apds the
effective affinity constant for geneactivatingi. The expression for the measured system outputs
are as described in subsection 2.1. The constraintise parameters in (9) were specified as:

Qi,]’llS = le} < kl] < k}]’ (11)

The dots in the parameter subscripts in (11) demin¢e corresponding indices in (10). This

restriction and the initial guesﬁgﬁ’g were used for the optimization.

2.3 Data Generation and Parameter Estimation

The synthetic data was generated prior to paranesténation. A comparison of the “true” and
the estimated parameters was done. In the simnjati@asurement noise was added to the data.
The expression for gerniaat timet isy;(t) = x;(t) + ¢;(t), wheree; = al|x;||; is the relative data
measurement errot, is the measurement noise. A valuexof 0.05 was considered at sampling
moments in thén silico data simulations. The notatidiri|, represents th€ity Block Distancen

the L, space. The SSE goal function is expressed as

J(Q;) = argmin (f?(tlﬁi)fi(tlﬁi)) fori=1,...,n (12)

where&; (¢|Q;) = y2P5(t) — y£t(¢1€Y,) is the residual vector, angs'(¢t|Q;) is the estimated
expression for geneconditioned on the parameter space.
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2.4 Performance Evaluation

A precision measure, relative errors were usedhenindividual parameters. The expression for
computing the relative error on a parameter ismgive

Rerror,l = |w%rue - &)\ll/lw;ruel (13)

wherew!™¢ and@, represent the considerably “true” and estimatedmater values, respectively.
Overall, two goodness-of-fit measures on parametdimates were used, namely: the goal
function and the relative error in parameter estmaThe mean and standard deviations of the
relative errors in the vect@ are given by (14) and (15), respectively.

~ 1 ~
‘uRerror = ; Z?:1 Rerror,l(w) (14)

A _ 1 14 ~ 2
ORerror — E 1:1(Rerr0r,l(w) - ﬂRerror) (15)

Here p is the number of independent identifications perfed. Twenty differentin silico
experiments were performed (ige= 20). Firstly, performing different experiments invely
making a nonnegative change), in the parameter vector (i.e. set= w,; + dw;) and then
simulating the data — this was repeateiimes. Secondly, independent identifications were
performed using both the CSSS and ICRS/DS metHadsachin silico experiment, a random
number of parameters was kept constant while therstwere varied around at most 20% of their
starting values — this was repeagetimes. The above different cases in data simulatiod
identification help to specify reliability of thgptmization methods with respect&b Low values

of jig,,.,. @re associated with a good performance, and Idueseof the mean relative standard
errorsdy_ . represent a high consistency in estimatingTo assess the performance of the
method over the parameter space, the average yajles were computed using

error
. 1 N
Htotal = ;chnzl HRerror k (16)

This statistic is an unbiased estimator sifgg., ~ 0. Similarly, the total variations in the
estimatedr,, Were calculated using the expression

2
A 1 A ~
OTotal = m_121’;n:1 (O-Rerror,k - E(O-Rerror)k) (17)
The mean standard deviation was calculated from
A 1 A
Omean — ;Z;cnzl ORerrork (18)

whereE(") is the expectation operator. Equation (16) and ft8vide additional information on
the accuracy and consistency of the computed paearastimates. A small confidence bound in
(18) indicates replicable experiments with resgecthe identification method used. The closer
(16) gets to zero, the better the identification.
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2.5 CSSS Algorithm Pseudo-code

The specifications of the subsequent steps in tB&SCalgorithm are given in Table 1. The
implementation and systems identification was dameVMATLAB version 7.4.0. Setting an
infinitesimal tolerance valué, = 1e — 5 (a relative deviation in goal functions) reducée t
likelihood of the optimization getting stuck ata&l minimum. This low tolerance value ensures
that the error in the goal function is negligibleence, increasing the accuracy in parameter
estimation.

Table 1. Pseudo-code for the CSSS algorithm. He#l, s are the iteration indices,r:
number of successful iterations satisfying the spéied criterion, R: a definite integral
domain, ||-||, : the city block distance (orL, norm), E(-) : is the expectation operator]©® —
initial value of goal function, [y$®, .-, y&st1® and [y, -+, y£st](® are the vectors of mMRNA
measurements (or model output for individual genesjluring iteration and upon convergence,
respectively. The superscripts “L” and “U” in w" and w" represent the lower and upper
bounds, respectively. The other variables and parasaters are as defined elsewhere in the
manuscript

Require : {w(o),J(o) r(e, |Yan)}
Ensure: I'(Q;) holds

1: 0@ T (Q); 01
s s(0)

2: J@) [ e 0 - [ e,

0,00
3: s 0
4: while {| 3.,(2,)- 3(2,)|/] I(2)]> 3.} do
5: W C ) s+l s
6: o) . min[E (w“ —w(’))z E(w(”)—wL)z}
7: l« 0
8: while s 1do
9: r« 0
10: while ( < 1) ==1do
11: W g /pr1; a0 0(0),)
12: if Ha)” - |+ Hw(}) - a)LHl < 2 Nthen
13: EL ol o)
14 : end if
15: end while
16: (@) [ 10 a,

0,00

17: it J,(Q)< J(Q) then
18: (+1c 0; 0 o )
19: end if
20: W @
21: end while
22: end while

23:  returng(®®) (9 [ ypet . ,)fs‘](cg) (+1
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2.6 Pre-conditioner Verification

The condition number, just like correlation codfitts, can be used to explain any anomalies in
parameter estimates. If the condition number igddi.e. deviates significantly from the value 1),
then the gene expression values have similar tiajectories. This is an attribute that may lead to
biased parameter estimates. Let the measured genession (MRNA levels) data Bg,.,,, then

the condition number for this matrix is definedmd®) = ||Y|[||Y ~*||if Yin=n] iS @ nonsingular
matrix. If Y is a non-square matrix, then the analogous definfor the condition number is:

k(YTY) = k(Y?) = |(Y™DIIIYTY)| (19)
3Results and Discussions

3.1 Model Goodness-of-fit to Data

On performing the identification, the results fbetlinear, the non-linear both for the CSSS and
ICRD/DS methods all showed good model fits to ttead See, for instance Fig. 2, which
concerns results of the CSSS method for the n@aticase which involves three genes and a
total of 10 parameters to be estimated. Individieth points such as those in Fig. 2 represent
averaged data values from duplicates, triplicatemare measurements — depending on the costs.
The condition number for the linear and nonlineatwork cases was found to be in the order of
magnitudex(-) = 1.7e + 4 andk,,s(-) = 1.2e + 4, respectively. This order of magnitude in this
number may compromise the accuracy of parametenasis. It should be noted that by invoking
a network by a single trigger most of the genestaption profiles turn out to be correlated.

3.2 ldentification from the Linear Model Formalism

Parameter estimation with the CSSS and ICRS/DSitigus is done for a 20 sets of parameters
for the linear model formalism. The SSE (or goaidiion value) using the ICRS/DS algorithm
was found to bql(ccg)sms =0.0191, and/$&, = 0.0170 for the CSSS method. These values
indicate the lowest achievable goal function résglfrom the optimization. It basically shows a
marginally better performance for CSSS comparedCia/DS (i.e.]écsgs)S <]I(él?g{)S/DS)' Table 2
provides an example of the parameter estimatestendrue parameters of one of the sets. For
both methods there is a deviation from the trueiesl The main reason is that a large number of
parameters are estimated from a dataset with ebteklresponse variables resulting in a high
condition number. Identification with reduced systdimension (e.g. with gene 5 and 6 knocked
out) shows that the CSSS method still yields reswith lower variances on the relative errors.
The overall relative error rates for the reducesteay (with 9 parameters) were also lowered.

Fig. 3 gives the mean relative error (MRE) for epeltameter as estimated by both methods.
Overall, the MRE for the CSSS methqd-{;,; = 0.4072) is below that of the ICRS/D$ifyta =
0.6001). Moreover, an important property of the CSSS metis that the MRE for an individual
parameter is nearly constant while the MRE for tBRS/DS shows a large variation (compare
corresponding error bars). In other words the C8®810d is consistent in its results. The lower
variation is a result of the variance scaling iepsl1 of the algorithm. To estimatén the linear
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model set up, parameter estimation a choiceol%? € {—1,+1} was made. Hereby;1 was
chosen for the auto-regulation effectd, for the repressing an#1 for the activating effects of
the transcription factors to a particular target geneh\Wiis choice of initial parameter, the CSSS
algorithm needs a significantly lower amount of itemas to achieve the convergence than
ICRS/DS (Fig. 3). If the initial parameters were nobs#n according the above strategy, the
convergence rate of both algorithms slightly worsens, theitperformance of both algorithms
remain invariantly comparable with CSSS marginally outperiiog the ICRS/DS.

Gene1

El ]
&
= @ data
> fit
0 1 2 3 4 5 6 7 8
time (a.u)
5 i
&
= e data ||
> fit
0 1 2 3 4 5 6 7 8
time (a.u)
) i
&
S @ data
=
fit
6 7 8

time (a.u)
Fig. 2. Model fit to data using the CSSS method to the nbnear example in section 2.2. The

data points are indicated by points and the model fit byihes (measurement noise. = 0.05,
N = 11 data points and sampling step size dft = 0.5 units).
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Table 2. Parameter estimates obtained by using the CS&8d ICRS/DS algorithm.
Estimations were done using time course data from the lear network formalism
(subsection 2.1) with measurement noise level af= 0.05 and N = 20 data points

Whis “true” value ICRS/DS CSSS
o) Dot
O1r 2.0 0.6922 1.6589
05 1.0 0.1398 0.6760
025 2.1 2.0944 1.6817
024 12 1.1965 0.9581
04, 25 2.7175 1.0710
Oas 2.6 2.8466 1.1614
0, 16 1.7097 0.6087
0, 1.4 1.1515 0.6307
044 2.9 2.3845 1.2947
05, 1.2 1.2235 0.9866
Oss 1.1 1.1193 0.8993
04, 1.0 0.2683 0.3777
06, 2.6 2.4020 1.1511
Ocs 2.1 0.9770 1.6007
o 2.1 1.5236 1.7599
b, 1.0 0.5854 1.0011
N _
2 E3  ICRSIDS
@
23
B i
L o
c o
o i
= o
o

@

Fig. 3. Mean relative error (MRE) for the linear model famalism by the ICRS/DS and CSSS
method, respectively. Analysis was done using datasatwhich & = 0.05. The error bars
are the standard deviations §g,,,,. ) to the MRE on parameterw,,

3.3 Identification from the Nonlinear Model Formalism

The ODE nonlinear model formalism is known to be prankaving correlated parameters. This
is problematic for network identification since it leads &mluced accuracy and precision in
parameter estimates. Parameters were estimatedfdiff2rent datasets. For the two methods
being compared, the SSE values for the goal functions usenganlinear identification problem

were]l(ccfi)s/DS =0.0017 and/(E, = 0.0014. The parameters estimated for one of the datasets are
shown in Table 3. Despite the correlation between paraspdterall these sets the parameters
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estimated are much closer to the true values compardgk thnear model formalism (see also
error estimates in Fig.5). As expected, for the linemse with reduced number of parameters,
better parameter estimates were observed.

Fig. 4 gives the MRE for the individual parameters. The aeeMBE for the CSSS is 0.1670
with a deviation ofl.4e — 4 and for the ICRS/DS method 0.2274 with a deviation.bé — 3.
Again the CSSS is more consistent in finding the paramétecsntrast to the linear case no rules
could be applied for the parameters initial guess, therafiial values were randomly chosen
from the interval0,5].

Table 3. Parameter estimates obtained by using the CS&8d ICRS/DS algorithm. The
estimations were performed using with data having measement noiseax = 0.05, N = 11
data points and sampling step size daft = 0.5 units

Wpis “true” value ICRS/DS CSSS
—(c®) —(cg)
wnclg,i wnclgi

ks 2.0 2.0221 2.2348

kys 2.0 1.4011 0.9060

kg 1.0 1.1755 1.5165

ko 2.0 1.4067 1.8152

kyq 1.0 1.8981 2.0154

Ky 1.0 1.7361 1.8558

Kaq 2.0 3.1916 2.0154

ks, 1.0 0.2739 0.9287

ks 1.0 4.0543 1.6019

K 1.0 0.8022 0.7271

3d
T T T T
I [ J(w);ICRS/DS
oo 1 [==3(w)csss | |
| | | |
| | | |
| | | |
***** k-t - —"—""%t ===+t - = - = —1
| | | |
| | | |
| | | |
77777 L - - - - - - - ___ - ____1_____4
| | | |
| | | |
| | | |
| | | |
Y
| | | |
| | | |
***** L e e |
| | | |
| | | |
| | | |
2‘0 3‘0 4‘0 5‘0 60

Number of successful iterations

Fig. 4. Plot of goal function convergence values using the CS8nd ICRS/DS algorithms.
The figure axis narrowed for easy visibility — the fnal successful iteration number at which
the goal function converges is about 150 and 900 for th€RS/DS and CSSS, respectively
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Mean relative error
0.0 02 0.4 0.8 0.8

0 ICRS/DS

B CS55

Fig. 5. Mean relative error (MRE) for the non-linear model formalism by the ICRS/DS and
CSSS method, respectively. Analysis using data withea= 0.05noise level. The error bars
are the standard deviations §g,,,, ) to the MRE on parameterw,,

6dev
€

Relative deviation in goal function ,

0.5

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0

T T T T T T
I I I I
dev.
! ! ! - 5, ICRS/DS
7777777 e [
! ! ! ! —— 5% csss
I I I I e '
”””” [ e T T a
I I I I I I
I I I | | |
******* [ e L e R
I I I I I I
I I I I I I
——————— [ B I A A S
I I I I I I
I I I I I I
,,,,,,, e e 44 ___1l__
I I I I I I
I I I I I I
L - - - _ - o L]
I I I I I I
I I I I I I
I I I | | |
Ao [ [ [
19 I I I I I I
N I I I I I I
rs-— -~~~ [ [ m oo T T T
5 I I I I I I
\ I I I I I I
T - === - 4= - + -
| I I I I I
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| TE=m L 1 I I I
0 200 400 600 800 1000 1200

CPU time (s)

Fig. 6. Comparison of relative deviations in goal functiongd¢¥ to convergence time for the
CSSS algorithm versus with the ICRS/DS algorithm for thdinear model formalism

3.4 Comparison of Algorithm Performance: ICRS/DS Vesus CSSS

To assess the performance of the convergence timebhdawo identification methods under
consideration, the optimization times to convergence wenepated. For the same model and
dataset, the CSSS algorithm converges faster tharCiR8/DS algorithm (Figs. 7 and 8). This
holds true even for a highly connected network (with= 16 parameters) used in the linear
network as opposed to the nonlinear network with only threesgéwithm = 10). During the

optimization process, an iteration run was either rejeateunsuccessful or accepted as successful
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by checking ifw® and/® satisfies the conditions in steps 12 and 17, respectivelyl¢Tl). A
distinguishing feature of stochastic optimization methadshat much computational time is
wasted on unsuccessful iterations. Compared to the ICRS@Ss 12 and 17 in the CSSS
method ensure that the number of unsuccessful iteratorsliiced.

0.5 T T T T T T
| | | |
w w w |- 5%¢%; ICRS/DS
> 0451 — - - - — - I-—====-- 4-—-—-=-=-= t-——-—-=-=-- === € H
Q | | | |
W | | | | —536\/; CSSS
-~ 04F------ I = 4 - - [E— H
c | | | | i i
o | | | | | |
= 035 -- - - —— e - - - — = 4 - — = L — = - — — — — |- - — — — = 4 -
2 | | | | | |
S | | | | | |
s o3bo o A o _ L A
© : | | | | | |
o | | | | | |
O b ___ S o o ___1__
c v | i i | | i
c | | | | | |
o | | | | | |
% O.ZI 777777 N [ [ I
R | | | | | | |
5 0154‘ I I I I I I
- OBRT o [t T T [y [ T
| | | | | |
g “. | | | | | |
% 01lF4----- === === T Tt [ (i T
] ~ | | | | | |
<] ‘\ | | | | | |
X oo0s g - — — 4= === o= === T 4+ - -
el | | | | |
[t S | | | |
0 ) T ————— ) ; , .
0 200 400 600 800 1000 1200

CPU time (s)

Fig. 7. Comparison of relative deviations in goal functiodde¥ to convergence time for the
CSSS algorithm versus with the ICRS/DS algorithm for the an-linear model formalism
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Fig. 8. Mean relative error (MRE) for the linear model formalism by respectively the
ICRS/DS and CSSS method, analysis with the noise-freatdset in whicha = 0.0. The
error bars are the standard deviations &, . ,) to the MRE on parameter w,,

An assessment on the parameter accuracy was performediweittimes the number of time

points for all the cases considered. A total of 100 gafats were used for both the linear and
nonlinear network representation problems. The results idewiate much from those observed
earlier-on in which the CSSS method was shown to be sugerthe ICRS/DS method. Relative
error analysis was performed with noise-free data andrébelts indicated that the standard
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deviations on the parameters are again lower for ideatifin with the CSSS as compared to the
ICRS/DS method. Therefore, irrespective of the measemne noise level in the dataset, the CSSS
method is consistent and reliable in the parameter estimaeseen from the low mean relative
error and standard deviation values. This analysis indithétghe errors in the parameters are
not caused by the noise level (Fig. 8) but are assdorth the high condition number.

Using the CSSS method, the averaged relative errotseoastimated parameters were less than
those obtained using the ICRS/DS method (Figs. 3 and 4)CH®S method achieves the best
accuracy results and is faster in convergence. Thanéalge of using the CSSS method over the
ICRS/DS method is that the CSSS method does not requirestieetuning of the parameters. In
step 6: Table 1, the variance of the parameters is a&stihand the minimum deviation from the
two terms is used for updating the next parameter estifBatding the variance tera? by the
iteration index! + 1 (step 11: Table 1) ensures that the variance decreaseg dptimization,
leading to faster convergence (Figs. 6 and 7). This inalegseed of convergence is associated
with less function rejection during the space search in theniation process. In the presence of
correlated parameters in a model, the likelihood of abtgigood parameter estimates is reduced
because a change in one parameter value proportionally cause#t in the other parameter
value — this is a challenge in systems identification. semse, applying a method to a parameter
estimation problem for larger network dimensions may yéeldodel with good fits to the data,
but with fading degrees of parameter accuracy. Quickewergence and better parameter
estimates can be achieved by good parameter initializatae this increases the likelihood of
obtaining optimal solutions [31]. This statement seems relevanhé ICRS/DS method, but this
work shows that with the fast converging CSSS algoritmninitial choice is not that important.

4. Conclusions

The results presented in this paper are based on two stoabatsnization methods addressing
the parameter identification problem from time course de&ta3dne findings indicate that the
performance of the CSSS is better than that of the ICRSID& CSSS method shows lower
variation on relative error on the parameter estimates.rméan relative errors on the parameters
are also lower for the results obtained using the CS&8ad as opposed to those obtained from
the ICRS/DS method. The CSSS method can be used for gtaraestimation in small sized
networks. The CSSS method is computationally efficient aut-performs the ICRS/DS in the
convergence speed. The performance of the proposed opitimingethod for both the linear and
nonlinear model representation was better than that of I@#RS/DS. Achieving accurate
parameter identification remains one that is crucialddress, especially with growing interests
from understanding larger biological networks, thereby, afireg the challenge. However, by
decomposing networks into sub-units, it is easier to estinthe parameters with much better
precision.

Competing Interests

The author declares no competing interests.

965



British Journal of Mathematics & Computer Scien€g)4952-968, 2014

References

[1]

(2]

(3]

(5]

(6]

[7]

(8]

9]

[10]

[11]

[12]

[13]

[14]

Goodwin BC. Temporal Organization In Cells; A Dynamic Tiye®f Cellular Control
Processes. Academic Press, New York; 1963.

Hartemink AJ, Gifford DK, Jaakola TS, Young RA. Combuilocation and expression
data for principled discovery of genetic regulatory networiédels. Proc. Pac. Symp.
Biocomput. 2002;7:437-449.

Zak D, Pearson RK, Vadigepalli R, Gonye G, Schwaber #8le0ll FJ. Continuous-time
identification of gene expression models. Omics. 2004;7 33&—

Savageau MA. Biochemical systems analysis: a studynaftion and design in molecular
biology. Addison Wesley Publishing Company; 1976.

Kikuchi S, Tominaga D, Arita M, Takahashi K, Tomita M. imic modeling of genetic
networks using genetic algorithm and S-system. Bioinfbica. 2003;19:643-650.

Smolen P, Baxter DA, Byrne JH. Modeling transcriptional mnin gene networks:
methods, recent results, and future directions. Bull. Mgithl. 2000;62:247-292.

Zwolak J, Tyson J, Watson L. Globally optimized parametara model of mitotic control
in frog egg extracts. IEE Proceedings Systems Biol2g§5;152:81-92.

Chaitankar VP, Perkins EJ, Gong P, Deng Y, Zhang Covelngene network inference
algorithm using predictive minimum description length rappgh. BMC Syst. Biol.
2010;4:S7.

Tsai KY, Wang FS. Evolutionary optimization with data lgoation for reverse
engineering of biological networks. Bioinformatics. 2005;21:11888;
doi:10.1093/bioinformatics/bti099

Ashyraliyev M, Jaeger J, Blom JG. Parameter estimaand determinability analysis
applied toDrosophilagap gene circuits. BMC Syst. Biol. 2008;2:83.

Polisetty PK, Voit EO, Gatzke EP. Identification oktabolic system parameters using
global optimization methods. Theoretical Biology and Med\adtelling. 2006;3:4.

Torres NV, Voit EO. Pathway analysis and optimizationmietabolic engineering. New
York, Cambridge University Press. 2002.

Espocito WR, Floudas CA. Global optimization for the gmaeter estimation of
differential-algebraic systems. Ind. Eng. Chem. Re80&9:1291-1310.

Papamichial 1, Adjiman CS. A rigorous global optimizatiogagaithm for problems with
ordinary differential equations. J. Global Optim. 20021233.

966



British Journal of Mathematics & Computer Scien€g)4952-968, 2014

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

Li Z, Osborne MR, Prvan T. Parameter estimation dfrary differential equations. IMA
J. Numer. Anal. 2005;25:264-285.

P E, N K. Applied Parameter Estimation for Chemical ikegrs. 1st Edition ed. CRC
Press: USA; 2000.

Carrasco EF, Banga JR. Dynamic optimization of batcbtoes using adaptive stochastic
algorithms. Ind. Eng. Chem. Res. 1997;36:2252-2261.

Banga JR, Casares JJ. Integrated Controlled Random Seppditation to a wastewater
treatment plant model. Inst. Chem. Eng. Symp. Ser. 1987880:1

Besozzi D, Cazzaniga P, Mauri G, Pescini D, Vannetchh Comparison of Genetic
Algorithms and Particle Swarm Optimization for Paramdistimation in Stochastic
Biochemical Systems. Lecture Notes in Computer Seie?@09;5483:116-127.

Yang F, Zhang C, Sun T. Comparison of Particle Swarmin@gtion and Genetic
Algorithm for HMM training. ICPR 2008 19th International Camfece on Pattern
Recognition IEEE Xplore Digital Library. 2008.

Ashyraliyev M, Fomekong-Nanfack Y, Kaandorp JA, Blom JS&ystems biology:
parameter estimation for biochemical models. FEBS J. 206%836-902;
doi:10.1111/j.1742-4658.2008.06844.x; 10.1111/j.1742-4658.2008.06844.x

Eungdamrong NJ, lyengar R. Modeling cell signaling netwoBksl. Cell. 2004;96:355-
62.

Omony J, de Graaff LH, van Straten G, van Boxtel AJB. &liod and analysis of the
dynamic behavior of the XInR regulon Aspergillus nigerBMC Syst. Biol. 2011;5:S14.

Hoguland M, Frigyesi A, Mitelman K. A gene fusion network human neoplasia.
Oncogene. 2006;25:2674-8.

Nacher JC, Ochiai T. Power-law distribution of gene expadtuctuations. Physics letter
A. 2008;372:6202-6206 .

Tucker W, V M. Parameter reconstruction for biochemielvorks using interval analysis.
Reliable Comput. 2006;12:389-402.

Tucker W, Kutalik Z, V M. Estimating parameters for gmlized mass action models
using constraint propagation. Math. Biosci. 2007;208:607-620.

Karleback G, Samir R. Modeling and analysis of gene regylatworks. Molecular cell
biology. 2008;9:770-780.

Hill AV. The possible effect of the aggregation of the noales of haemoglobin on its
dissociation curves. J. Physiol. 1910;40(Suppl.):4-7.

967



British Journal of Mathematics & Computer Scien€g)4952-968, 2014

[30] Polynikis A, Hogan SJ, di Bernardo M. Comparing differentEODodeling approaches of
gene regulatory networks. J. Theor. Biol. 2009;261:511-530.

[31] Averick BM, Carter RG, Moré JJ. The MINPACK-2 test deoh collection; 1991.

© 2014 Omony; This is an Open Access article digted under the terms of the Creative Commons Atiibu.icense
(http://creativecommons.org/licenses/by)3.@&hich permits unrestricted use, distribution, areproduction in any
medium, provided the original work is properly cited

Peer-review history:

The peer review history for this paper can be accessed here (Please copy paste the total link in your
browser address bar)

www.sciencedomain.org/review-history.php?iid=410&id=6&aid=3611

968



