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ABSTRACT 
 
Parameter estimation is an important part of computational systems biology – especially in 
studies on biological networks. Numerous stochastic search methods have been applied in 
parameter estimation in biological networks. In this paper, a constrained stochastic space search 
(CSSS) method for parameter estimation is proposed and evaluated for estimating the 
parameters of a genetic network described by differential equations. Both linear and nonlinear 
model formalisms were used for the data evaluation. The performance of the CSSS method was 
compared to the Integrated Controlled Random Search for Dynamic Systems (ICRS/DS) 
stochastic optimization algorithm. Compared to the ICRS/DS, the CSSS algorithm is faster with 
at least a 7-fold shorter convergence time. Independent replicates were run and identification 
performed. For the same initialization conditions prior to optimization, the CSSS had on average 
smaller relative mean errors than the ICRS/DS. 

Keywords: Biological network; differential equations; optimization; parameter estimation. 

 
1 Introduction 
 
There is growing interest in parameter estimation and understanding the dynamics of biological 
networks. Numerous methods have been used so far to gain insight into various aspects of 
biological networks, e.g. (probabilistic) Bayesian networks, regression methods, Boolean methods, 
and differential equations. The ordinary differential equation (ODE) formalism is a popular 
method to model biological networks [1,2,3,4,5]. This formalism is used to model the regulatory 
status of genes, hence, rendering ODEs suitable for describing gene regulation activity [6]. 
Generally, many parameters are required in ODEs to describe the dynamics and regulatory roles 
of various components of a biological network. In principle, the number of parameters increases 
with the level of details required to describe the regulatory mechanisms involved in a particular 
biological network. There is currently numerous global parameter estimation methods proposed in 
computational systems biology [7,8,9,10,11]. There are many space search methods that address 
parameter estimation problems in biological networks and the number keeps rising [12]. 

Original Research Article 



 
 
 
 
 
 
 

British Journal of Mathematics & Computer Science 4(7), 952-968, 2014 
 
 

953 
 

Although much progress has been made in developing powerful and accurate parameter 
estimation methods, such as that in [13,14], there is still need for improvement in the 
computational robustness and speed of existing methods. Many genetic network inverse modeling 
problems require robust parameter estimation routines to ensure that the parameters are obtained 
with high precision. The classical way to do this is by least squares estimation or maximum 
likelihood estimation is used [15]. Similarly, stochastic search based methods can be used – in 
which case a specified set of parameter constraints and heuristics for initializations on some 
parameters for optimization are required [7,11,14]. The optimization is based on minimization of 
goal function to fit a given model to a dataset. 
 
The challenge of accurately describing the dynamics and change in concentration of molecular 
species, e.g. messenger Ribose Nucleic Acid (mRNA) in the cell. In Computational Systems 
Biology, Bioinformatics and Biotechnology, parameter estimation remains a big challenge – 
especially in the study of biological networks. To help address this challenge, various methods 
have been proposed in literature; e.g., Englezos and Kalogerakis [16] provided insight into 
optimization methods used for parameter estimation. Currently, there are numerous approaches to 
estimating parameters from data. Fundamentally, the mathematical principles and problem 
formulation vary. Additionally, there exist differences between the most methods, for instance: (i) 
some methods are computational more expensive, (ii) variation in levels of accuracy and precision 
in prediction of state variables and/or models parameters, and (iii) the scalability to larger 
dimensional networks (or compartmental systems). Even small functional modules in networks 
require a large number of parameters to describe the underlying kinetics and regulatory 
mechanisms between the molecular units (genes and/or proteins). This large number of parameters 
is required for accurate network reconstruction irrespective of the model formalism.  
 
Here, the constrained stochastic space search (CSSS) method is proposed and its performance is 
compared to the Integrated Controlled Random Search for Dynamic Systems (ICRS/DS) which 
can be found in [17]. The ICRS/DS is a modification of the ICRS algorithm [18]. Much as the 
ICRS/DS is robust, it comes with weaknesses, e.g.: (i) it requires making heuristic guesses for the 
direction search tuning parameters, and (ii) it takes a long time to converge to an optimum 
solution, if a solution exists in the search space and the optimization tolerance level is sufficiently 
stringent. The CSSS method addresses these issues by using a technique of variance scaling on the 
parameters during optimization. The performances of these methods were validated on two test 
case networks through in silico experiments and optimization.  
 
Other stochastic search algorithms such as the Genetic Algorithms and Particle (Swarm) 
Optimization have also been applied to solve parameter estimation in biochemical systems (see 
Bosezzi et al. [19] and Yang et al. [20]. Unlike the CSSS method, many of the stochastic 
algorithms in literature are quite complex and require curation of initial parameter values prior to 
optimization. Extensive insight into the performance of commonly used algorithms for parameter 
estimation in Systems Biology is found in the work of Ashyraliyev et al. [21]. The CSSS 
algorithm aims to get the best parameter estimates by optimizing the sum of squared errors (SSE) 
goal function. Just like the ICRS/DS, the CSSS algorithm requires pre-specification of constraints 
on the parameter for initialization. The parameter precision and accuracy levels were found to be 
influenced by network topology and the existence of a feedback and/or feed-forward loop. For 
instance, the existence of edges (which represents the regulatory strength between a target gene 
and its transcription factor) in a network being significantly stronger than others may cause a 
drastic shift in the system condition number - ultimately affecting how accurately parameter are 
estimated. 



 

2 Methods 
 
2.1 Network Representation
 
Consider a genetic network system that is represented by the differential equation
 �� � ���, �;Ω	;        � � ���, 	
where � � ���, … , ���� ∈ ����
Here �� � ����, … , ����� ∈ ����
points; the matrix of measured data is 
Gaussian measurement error term and ��∙	 captures the network dynamics and 
can be obtained by transcriptomics experiments.
 
2.1.1 Linear representation 
 
Let us consider the linear system representation:
 X� � �� � �� 

Here, A is the network connectivity matrix with 
activation, repression, auto-regulation (which is also often referred to as self
feedback. The network is triggered using an external perturbation function:
 ��!	 � ��0	�1 �$ � %&'	⁄ � 
$  and )  are nonnegative constants and 
compound. The nature of ��!	 
concentrations of an inducing compound is consumed 

Fig. 1. A synthetic genetic network. The sharp headed 
respectively represent activation and repression of transcription. The nodes represent genes 
and * is the perturbation (input) signal, which can be nutrient uptake, glucose uptake etc 

depending the
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Consider a system of ODEs represented with the connectivity matrix constructed from the 
network in Fig. 1. The fully connected matrix A ∈ ���� that corresponds to this network has a 
total of -. � 36 parameters. However, not all the parameters need to be considered given that 
sparseness is a common attribute of biological networks [24,25]. Let A�Ω	  denote the 
parameterized connectivity matrix which, in this case, is a sparse network with 16 parameters – 
including the input vector coefficient ��. The diagonal entries 1�� in (4) are the auto–regulation 
effects. The parameterized connectivity matrix is 
 

A�Ω	 �
2
33
4

−1�� 00 −1..16� 017� 0
00−1660

0 1�8 01.7 0 0−167 0 0−177 0 018� 0 0 0 −188 0−19� 19. 0 0 198 −199:
;;
<

  (4) 

 
and the input vector  
 � � ���, 0,0,0,0,0��  (5) 
 
The network is triggered by the signaling function in (3)as an external perturbation, therefore, 
enhancing the gene activities. For the ease of notations, let the parameter from (4) are represented 
by:  
 = � �1��, 1�8, 1.., … , 199, ����  (6) 

 
Several sets with different parameter values were assigned to the connectivity matrix to enable 
synthetic data generation. The initial parameters are depicted as: 
 

=�>	 � ?1���>	, 1�8�>	, 1..�>	, … , 199�>	, ���>	@�
  (7) 

 
The vector dimension A+BC=�>	D � B depends on the number of unknown parameters. 
 
2.1.2 Boundary constraints on parameters 
 
The restrictions imposed on the lower (L) and upper (U) parameter bounds are: 
 

Ω� � E1�FG ≤ 1�F ≤ 1�FI   for all   +, O��G ≤ �� ≤ ��I
P  (8) 

 
These constraints ensure that nonrealistic parameter values are avoided [26,27]. Once the model 
structure is known and the constraints on the parameters in (8) specified, then optimization of the 
goal function is initiated. The parameter values are updated during optimization until convergence 
at some optimal goal function value is obtained.  
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2.2 Nonlinear Network Representation 
 
Consider the nonlinear model representation of a genetic network of three genes as in [28]. With a 
slight change of notation, the model is given by 
 

ΓQRS�Ω�	 �
TUV
UW

XYZX' � [�\ ��]^Z_Y_ − [�X��
XY`X' � [.\ ^`ZYZ�]^`ZYZ − [.X�.

XY_X' � [6\ ^_ZYZ�]^_ZYZ
^_`Y`�]^_`Y` − [6X�6

P  (9) 

 
The term ��  represents the state for gene +. The equations in (9) describe a simple regulatory 
network in which gene 3 (�6) represses transcription of gene 1 (��), gene 1 activates transcription 
of gene 2 (�.), gene 1 (��) and gene 2 (�.) collectively activate gene 3 (�6). A popular form of 
function used in modeling biological networks is the Hill function [29,30]. The parameter vector 
for this nonlinear system (nls) representation is given by 
 =QRS � �[�\, [�6, [�X , [.\, [.�, [.X , [6\, [6�, [6., [6X�� (10) 

 
In (9), the mRNA degradation is modeled as a first-order reaction and is represented by the 
constants [�X , [.X and [6X; The terms [�\, [.\ and [6\ are the synthesis parameters and [�F is the 
effective affinity constant for gene O activating +. The expression for the measured system outputs 
are as described in subsection 2.1. The constraints on the parameters in (9) were specified as: 
 
Ω�,QRS � [�FG ≤ [�F < [�FI  (11) 

 
The dots in the parameter subscripts in (11) denote the corresponding indices in (10). This 

restriction and the initial guess =QRS�>	 were used for the optimization. 
 
2.3 Data Generation and Parameter Estimation 
 
The synthetic data was generated prior to parameter estimation. A comparison of the “true” and 
the estimated parameters was done. In the simulation, measurement noise was added to the data. 
The expression for gene + at time ! is ���!	 � ���!	 � ��!	, where � � b‖��‖� is the relative data 
measurement error, b is the measurement noise. A value of b � 0.05 was considered at sampling 
moments in the in silico data simulations. The notation ‖∙‖� represents the City Block Distance in 
the f� space. The SSE goal function is expressed as 
 gCΩh �D � arg B+- jk�lC!|Ωh �Dk�C!|Ωh �Dn   for + � 1, . . . , - (12) 

 
where k�C!|Ωh �D � ��opS�!	 − ��qSrC!|Ωh �D  is the residual vector, and ��qSrC!|Ωh �D  is the estimated 
expression for gene + conditioned on the parameter space. 
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2.4 Performance Evaluation 
 
A precision measure, relative errors were used on the individual parameters. The expression for 
computing the relative error on a parameter is given by 
 sqttot,u � |=urtvq − =wu| |=urtvq|⁄   (13) 

 
where =urtvq and =wu represent the considerably “true” and estimated parameter values, respectively. 
Overall, two goodness-of-fit measures on parameter estimates were used, namely: the goal 
function and the relative error in parameter estimates. The mean and standard deviations of the 
relative errors in the vector =w are given by (14) and (15), respectively. 
 x̂z{||}| � �~ ∑ sqttot,u�=w	~u��   (14) 

 

��z{||}| � � �~�� ∑ Csqttot,u�=w	 − xz{||}|D.~u��   (15) 

 
Here �  is the number of independent identifications performed. Twenty different in silico 
experiments were performed (i.e. � � 20). Firstly, performing different experiments involved 
making a nonnegative change �=u  in the parameter vector (i.e. set =u ≔ =u ± �=u ) and then 
simulating the data – this was repeated � times. Secondly, independent identifications were 
performed using both the CSSS and ICRS/DS methods. In each in silico experiment, a random 
number of parameters was kept constant while the others were varied around at most 20% of their 
starting values – this was repeated � times. The above different cases in data simulation and 
identification help to specify reliability of the optimization methods with respect to =w. Low values 
of x̅z{||}| are associated with a good performance, and low values of the mean relative standard 
errors ��z{||}|  represent a high consistency in estimating = . To assess the performance of the 
method over the parameter space, the average values, x̅z{||}|were computed using 
 x̂lor�R � �� ∑ x̂z{||}|,��̂��   (16) 

 
This statistic is an unbiased estimator since x̅lor�R ≈ 0 . Similarly, the total variations in the 
estimate ��lor�R were calculated using the expression  
 

��lor�R � � ���� ∑ j��z{||}|,� − EC��z{||}|D^n.�̂��   (17) 

 
The mean standard deviation was calculated from 
 ���q�Q � �� ∑ ��z{||}|,��̂��   (18) 

 
where E�∙	 is the expectation operator. Equation (16) and (18) provide additional information on 
the accuracy and consistency of the computed parameter estimates. A small confidence bound in 
(18) indicates replicable experiments with respect to the identification method used. The closer 
(16) gets to zero, the better the identification. 
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2.5 CSSS Algorithm Pseudo-code 
 
The specifications of the subsequent steps in the CSSS algorithm are given in Table 1. The 
implementation and systems identification was done in MATLAB version 7.4.0. Setting an 
infinitesimal tolerance value �� � 1% − 5  (a relative deviation in goal functions) reduces the 
likelihood of the optimization getting stuck at a local minimum. This low tolerance value ensures 
that the error in the goal function is negligible, hence, increasing the accuracy in parameter 
estimation. 
 

Table 1. Pseudo-code for the CSSS algorithm. Here �, �, � are the iteration indices, �: 
number of successful iterations satisfying the specified criterion, �: a definite integral 

domain, ‖∙‖� : the city block distance (or �� norm), ��∙	 : is the expectation operator. ���	 – 
initial value of goal function, ������, ⋯ , �¡������	 and ������, ⋯ , �¡�����¢£	 are the vectors of mRNA 
measurements (or model output for individual genes) during iteration and upon convergence, 

respectively. The superscripts “L” and “U” in ¤¥ and ¤¦ represent the lower and upper 
bounds, respectively. The other variables and parameters are as defined elsewhere in the 
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2.6 Pre-conditioner Verification 
 
The condition number, just like correlation coefficients, can be used to explain any anomalies in 
parameter estimates. If the condition number is large (i.e. deviates significantly from the value 1), 
then the gene expression values have similar time trajectories. This is an attribute that may lead to 
biased parameter estimates. Let the measured gene expression (mRNA levels) data be ����, then 
the condition number for this matrix is defined as §��	 ≔ ‖�‖‖���‖if ������ is a nonsingular 
matrix. If � is a non-square matrix, then the analogous definition for the condition number is: 
 §����	 ≔ §��.	 � ‖��l�	‖‖����	��‖  (19) 

 

3Results and Discussions 
 
3.1 Model Goodness-of-fit to Data 
 
On performing the identification, the results for the linear, the non-linear both for the CSSS and 
ICRD/DS methods all showed good model fits to the data. See, for instance Fig. 2, which 
concerns results of the CSSS method for the non-linear case which involves three genes and a 
total of 10 parameters to be estimated. Individual data points such as those in Fig. 2 represent 
averaged data values from duplicates, triplicates or more measurements – depending on the costs. 
The condition number for the linear and nonlinear network cases was found to be in the order of 
magnitude §�∙	 � 1.7% � 4 and §QRS�∙	 � 1.2% � 4, respectively. This order of magnitude in this 
number may compromise the accuracy of parameter estimates. It should be noted that by invoking 
a network by a single trigger most of the gene transcription profiles turn out to be correlated. 
 
3.2 Identification from the Linear Model Formalism 
 
Parameter estimation with the CSSS and ICRS/DS algorithms is done for a 20 sets of parameters 
for the linear model formalism. The SSE (or goal function value) using the ICRS/DS algorithm 

was found to be gª«¬/¯�°±	 � 0.0191 , and g«�°±	 � 0.0170  for the CSSS method. These values 
indicate the lowest achievable goal function resulting from the optimization. It basically shows a 

marginally better performance for CSSS compared to ICR/DS (i.e. g«�°±	 < gª«¬/¯�°±	
). Table 2 

provides an example of the parameter estimates and the true parameters of one of the sets. For 
both methods there is a deviation from the true values. The main reason is that a large number of 
parameters are estimated from a dataset with correlated response variables resulting in a high 
condition number. Identification with reduced system dimension (e.g. with gene 5 and 6 knocked 
out) shows that the CSSS method still yields results with lower variances on the relative errors. 
The overall relative error rates for the reduced system (with 9 parameters) were also lowered. 
 
Fig. 3 gives the mean relative error (MRE) for each parameter as estimated by both methods. 
Overall, the MRE for the CSSS method (x̅lor�R � 0.4072) is below that of the ICRS/DS (x̅lor�R �0.6001). Moreover, an important property of the CSSS method is that the MRE for an individual 
parameter is nearly constant while the MRE for the ICRS/DS shows a large variation (compare 
corresponding error bars). In other words the CSSS method is consistent in its results. The lower 
variation is a result of the variance scaling in step 11 of the algorithm. To estimate =in the linear 
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model set up, parameter estimation a choice of =u�>	 ∈ ³−1, �1´  was made. Hereby, −1  was 
chosen for the auto-regulation effects, −1 for the repressing and �1 for the activating effects of 
the transcription factors to a particular target gene. With this choice of initial parameter, the CSSS 
algorithm needs a significantly lower amount of iterations to achieve the convergence than 
ICRS/DS (Fig. 3). If the initial parameters were not chosen according the above strategy, the 
convergence rate of both algorithms slightly worsens, but the performance of both algorithms 
remain invariantly comparable with CSSS marginally outperforming the ICRS/DS. 
 

 
Fig. 2. Model fit to data using the CSSS method to the nonlinear example in section 2.2. The 
data points are indicated by points and the model fit by lines (measurement noise µ � �. �¶, · � �� data points and sampling step size of ∆¹ � �. ¶ units). 
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Table 2. Parameter estimates obtained by using the CSSS and ICRS/DS algorithm. 
Estimations were done using time course data from the linear network formalism 

(subsection 2.1) with measurement noise level of µ � �. �¶ and · � º� data points 
 ¤»¼� “true” value ICRS/DS CSSS ¤w »¼�,½�¢£	  ¤w »¼�,½�¢£	  1�� 1�8 1.. 1.7 16� 166 167 17� 177 18� 188 19� 19. 198 199 �� 

2.0 
1.0 
2.1 
1.2 
2.5 
2.6 
1.6 
1.4 
2.9 
1.2 
1.1 
1.0 
2.6 
2.1 
2.1 
1.0 

0.6922 
0.1398 
2.0944 
1.1965 
2.7175 
2.8466 
1.7097 
1.1515 
2.3845 
1.2235 
1.1193 
0.2683 
2.4020 
0.9770 
1.5236 
0.5854 

1.6589 
0.6760 
1.6817 
0.9581 
1.0710 
1.1614 
0.6087 
0.6307 
1.2947 
0.9866 
0.8993 
0.3777 
1.1511 
1.6007 
1.7599 
1.0011 

 

 
Fig. 3. Mean relative error (MRE) for the linear model formalism by the ICRS/DS and CSSS 

method, respectively. Analysis was done using dataset in which µ � �. �¶. The error bars 
are the standard deviations (¾w¿�ÀÀÁÀ,Â) to the MRE on parameter ¤Â 

 
3.3 Identification from the Nonlinear Model Formalism 
 
The ODE nonlinear model formalism is known to be prone to having correlated parameters. This 
is problematic for network identification since it leads to reduced accuracy and precision in 
parameter estimates. Parameters were estimated for 20 different datasets. For the two methods 
being compared, the SSE values for the goal functions using the nonlinear identification problem 

were gª«¬/¯�°±	 � 0.0017 and g«�°±	 � 0.0014. The parameters estimated for one of the datasets are 
shown in Table 3. Despite the correlation between parameters, for all these sets the parameters 
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estimated are much closer to the true values compared to the linear model formalism (see also 
error estimates in Fig.5). As expected, for the linear case with reduced number of parameters, 
better parameter estimates were observed. 
 
Fig. 4 gives the MRE for the individual parameters. The average MRE for the CSSS is 0.1670 
with a deviation of 1.4% − 4 and for the ICRS/DS method 0.2274 with a deviation of 1.5% − 3. 
Again the CSSS is more consistent in finding the parameters. In contrast to the linear case no rules 
could be applied for the parameters initial guess, therefore initial values were randomly chosen 
from the interval �0,5�. 
 

Table 3. Parameter estimates obtained by using the CSSS and ICRS/DS algorithm. The 
estimations were performed using with data having measurement noise µ � �. �¶, · � �� 

data points and sampling step size of ∆¹ � �. ¶ units 
 ¤»¼� “true” value ICRS/DS CSSS ¤w »¼�,½�¢£	  ¤w »¼�,½�¢£	  [�\ [�6 [�X [.\ [.� [.X [6\ [6� [6. [6X 

2.0 
2.0 
1.0 
2.0 
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Fig. 4. Plot of goal function convergence values using the CSSS and ICRS/DS algorithms. 

The figure axis narrowed for easy visibility – the final successful iteration number at which 
the goal function converges is about 150 and 900 for the ICRS/DS and CSSS, respectively 

0 10 20 30 40 50 60
0

100

200

300

400

500

600

Number of successful iterations

J 
( ω

 )

 

 

J ( ω ) ; ICRS/DS
J ( ω ) ; CSSS



 
 
 
 
 
 
 

British Journal of Mathematics & Computer Science 4(7), 952-968, 2014 
 
 

963 
 

 
Fig. 5. Mean relative error (MRE) for the non-linear model formalism by the ICRS/DS and 
CSSS method, respectively. Analysis using data with a µ � �. �¶noise level. The error bars 

are the standard deviations (¾w¿�ÀÀÁÀ,Â) to the MRE on parameter ¤Â 

 
Fig. 6. Comparison of relative deviations in goal functions ÃÄÅ�Æ to convergence time for the 

CSSS algorithm versus with the ICRS/DS algorithm for the linear model formalism 
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by checking if =�ℓ	 and g�ℓ	 satisfies the conditions in steps 12 and 17, respectively (Table 1). A 
distinguishing feature of stochastic optimization methods is that much computational time is 
wasted on unsuccessful iterations. Compared to the ICRS/DS; steps 12 and 17 in the CSSS 
method ensure that the number of unsuccessful iterations is reduced. 

 
Fig. 7. Comparison of relative deviations in goal function ÃÄÅ�Æ to convergence time for the 
CSSS algorithm versus with the ICRS/DS algorithm for the non-linear model formalism 

 

 
Fig. 8. Mean relative error (MRE) for the linear model formalism by respectively the 

ICRS/DS and CSSS method, analysis with the noise-free dataset in which µ � �. �. The 
error bars are the standard deviations (¾w¿�ÀÀÁÀ,Â) to the MRE on parameter ¤Â 
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deviations on the parameters are again lower for identification with the CSSS as compared to the 
ICRS/DS method. Therefore, irrespective of the measurement noise level in the dataset, the CSSS 
method is consistent and reliable in the parameter estimates – as seen from the low mean relative 
error and standard deviation values. This analysis indicates that the errors in the parameters are 
not caused by the noise level (Fig. 8) but are associated with the high condition number. 
 
Using the CSSS method, the averaged relative errors on the estimated parameters were less than 
those obtained using the ICRS/DS method (Figs. 3 and 4). The CSSS method achieves the best 
accuracy results and is faster in convergence. The advantage of using the CSSS method over the 
ICRS/DS method is that the CSSS method does not require heuristic tuning of the parameters. In 
step 6: Table 1, the variance of the parameters is estimated and the minimum deviation from the 
two terms is used for updating the next parameter estimate. Scaling the variance term �. by the 
iteration index ℓ � 1 (step 11: Table 1) ensures that the variance decreases during optimization, 
leading to faster convergence (Figs. 6 and 7). This increased speed of convergence is associated 
with less function rejection during the space search in the optimization process. In the presence of 
correlated parameters in a model, the likelihood of obtaining good parameter estimates is reduced 
because a change in one parameter value proportionally causes a shift in the other parameter 
value – this is a challenge in systems identification. In essence, applying a method to a parameter 
estimation problem for larger network dimensions may yield a model with good fits to the data, 
but with fading degrees of parameter accuracy. Quicker convergence and better parameter 
estimates can be achieved by good parameter initialization since this increases the likelihood of 
obtaining optimal solutions [31]. This statement seems relevant for the ICRS/DS method, but this 
work shows that with the fast converging CSSS algorithm the initial choice is not that important.  
 

4. Conclusions 
 
The results presented in this paper are based on two stochastic optimization methods addressing 
the parameter identification problem from time course datasets. The findings indicate that the 
performance of the CSSS is better than that of the ICRS/DS. The CSSS method shows lower 
variation on relative error on the parameter estimates. The mean relative errors on the parameters 
are also lower for the results obtained using the CSSS method as opposed to those obtained from 
the ICRS/DS method. The CSSS method can be used for parameter estimation in small sized 
networks. The CSSS method is computationally efficient and out-performs the ICRS/DS in the 
convergence speed. The performance of the proposed optimization method for both the linear and 
nonlinear model representation was better than that of the ICRS/DS. Achieving accurate 
parameter identification remains one that is crucial to address, especially with growing interests 
from understanding larger biological networks, thereby, up-scaling the challenge. However, by 
decomposing networks into sub-units, it is easier to estimate the parameters with much better 
precision. 
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