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ABSTRACT 

This study is motivated by a need to effectively determine the difference between a system fault and normal system 
operation under parametric uncertainty using eigenstructure analysis. This involves computational robustness of eigen-
vectors in linear state space systems dependent upon uncertain parameters. The work involves the development of prac-
tical algorithms which provide for computable robustness measures on the achievable set of eigenvectors associated 
with certain state space matrix constructions. To make connections to a class of systems for which eigenvalue and 
characteristic root robustness are well understood, the work begins by focusing on companion form matrices associated 
with a polynomial whose coefficients lie in specified intervals. The work uses an extension of the well known theories 
of Kharitonov that provides computational efficient tests for containment of the roots of the polynomial (and eigenval-
ues of the companion matrices) in “desirable” regions, such as the left half of the complex plane. 
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1. Background 

This body of work extends the concept of fault detection 
to a condition on the robustness of eigenvectors to mod-
eled parametric uncertainty. This can be thought of as a 
problem of finding the space of eigenvectors relative to 
the space of system parameters. We consider a set of 
linear functions formulated as linear matrix equations. 
Many systems can be described as having a nominal or 
expected parametric structure. However, no physical 
system can be realistically described with only certain 
parameters. In fact, one may realistically describe a sys-
tem as having parameters that fall within some interval. 
For any real or complex interval, this becomes a daunting 
task to generate mappings from the system parameters to 
eigenvectors. Much work has been accomplished in the 
area of complexity analysis to analyze this very structure 
to categorize it as an NP-hard problem. See [1] and [2] to 
get a flavor. Smith in [1] uses perturbation theory and 
H-infinity analysis methods to generate eigenvalue re-
gions of diagonal system matrices with uncertainty. Alt 
and Jabbari in [2] utilize Lyapunov techniques to guar-
antee system matrix eigenvalues are contained within a 
bounded region. Other works related to the design or 
analysis of matrix eigenstructures including [3] and [4] 
consider both eigenvalues and eigenvectors but have ap-
proaches based on the structure of the eigenvalue space. 

A more recent comprehensive treatise regarding the 
“Smoothness of Eigenprojections and Eigenvectors” ap-
pears in Chapter 4 of [5]. We consider direct robustness 
metrics on the eigenvector space. We approach this prob-
lem through the use basic linear systems theory starting 
with the well-known equation relating eigenvalues and 
eigenvectors, 

AV V                    (1) 

where   is a diagonal matrix of eigenvalues. Eigen-
vector robustness is a relatively recent area of explora-
tion with the bulk of the existing related literature in the 
area of eigenstructure assignment and stability under 
parametric uncertainty; see [6] and [7]. Kato [8] consid-
ers perturbations in eigenspace and provides a functional 
relationship between eigenvalue perturbations (suffi-
ciently small) and corresponding eigenvectors but this 
functional relationship requires the computation of a ma-
trix inverse and definite integral. The following sections 
detail the study of achievable sets of eigenvectors which 
are associated with sets of uncertain matrices, examining 
special features in various matrix constructions. We fo-
cus on matrix constructions based on interval polynomi-
als. We seek a new result which provides for a robustness 
measure on eigenvector variation over sets of matrices, 
but does not require matrix integration, extensive Monte 
Carlo and other sampling methods determine the set of 
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achievable of eigenvectors. We will use  conj   to de-
note complex conjugation and Tx  to denote the trans-
pose of x where x is a matrix or vector quantity. 

2. Preliminaries 

Before the major contributions of the paper are detialed, 
we introduce some needed concepts. 

2.1. Interval Polynomials 

Our construction for this problem begins with a set of 
uncertain matrices generated from an interval polynomial 
with the following form: 

2x 0 1 2 nP x      nx  

The i  parameters are interval parameters which 
make up an interval vector  , where 

1, .l h n         

We also define a center vector of the interval parame-
ters, 

 

n 

1
.

2
c l h    

For the specific numeric simulations and examples to 
follow in this paper, we choose . This allows non- 
trivial examples to be generated. 

5

2.2. Companion Form Matrices 

The companion form matrices are a standard construction 
associated with a polynomial equation. See [9] for detials. 
From the previously introduced interval polynomial, a 
standard construction yields the companion form matrix 

PM . For example with  one obtains 5n 

0 31 2 4

5 5 5 5 5

0 1 0

1

0

0 0 0

0 0 0 1 0

0 0 0 0 1
PM

 

0

0

  
    

 
  
 
    
 
  

n

 
 
 

 

2.3. Kharitonov Polynomials and Associated 
Companion Matrices 

The Kharitonov polynomials are four specially con-
structed fixed polynomials associated with an interval 
polynomial which can be used to guarantee root stability 
results over the set of interval parameters using only the 
four functions. This celebrated result yields a test for 
stability in which the number of polynomials is fixed and 
does not depend on n. For example, we list the four 
Kharitonov polynomials for the interval polynomial 

structure of interest. The interested reader is referred to 
[10] for a more complete description. 

2
1 0 1 2

l l h l
nK x x x         

2
2 0 1 2

h h l h
n

nK x x x         

2
3 0 1 2

l l l l
n

nK x x x         

2
4 0 1 2

l h h h
n

nK x x x         

Also, for completeness, we illustrate the companion 
form of the four Kharitonov matrices. 

Kharitonov matrix corresponding to 1K . 

1

0 31 2 4

5 5 5 5 5

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1
K

l hl h l

l l l l l

M

   
    

 
 
 
 

  
 
     
  

 

Kharitonov matrix corresponding to 2K . 

2

0 31 2 4

5 5 5 5 5

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1
K

h lh l h

h h h h h

M

   
    

 
 
 
 

  
 
     
  

 

Kharitonov matrix corresponding to 3K . 

3

0 31 2 4

5 5 5 5 5

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1
K

h hl l h

l l l l l

M

   
    

 
 
 
 

  
 
     
  

 

Kharitonov matrix corresponding to 4K . 

4

0 31 2 4

5 5 5 5 5

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1
K

l lh h l

h h h h h

M

   
    

 
 
 
 

  
 
     
  

 

3. Eigenvector Containment Cones 

Referring to (1), we can find  by solving for the roots 
of the characteristic equation of A. Our focus is on the 
eigenvector set, but it is obvious that the eigenvalue set is 


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linked to the eigenvector set through Equation (1). We 
first need to introduce the construction of eigenvector 
paths between any two Kharitonov companion form ma-
trices, iK  and jK , where i j . We construct these 
paths through a linear interpolation of the two Khari-
tonov matrices. We denote these paths as a collection of 
eigenvectors,  where ij

0



  

1,2,3

 
    

: 1

,1 ; , , 4 ;

ji KKij Z M M 



3

4

0 0 0

0

0

0 0 0

;Z

i j i j

    

  

Z





1

     (2) 

with 

2

5

1 2

0

0 0 0 0

0 0 0 ,

0 0 0

0

.nZ Z Z Z






 
 
 
 
 
 
  

 







 

 
 

We wish to show that under certain constraints (later 
defined as having property  ) a specific continuous 
eigenvalue path generated through an interval path of the 
interval polynomial corresponds to a unique eigenvector 
path. This will allow us to relate eigenvalue path bounds 
to eigenvector path bounds. 

Proposition 1: Given a positive interval polynomial, P, 
and associated companion form matrix, A, with corre-
sponding eigenvector matrix (V) and eigenvalue matrix 
( ) containing distinct non-zero eigenvalues over the 
interval of P, any real or complex eigenvalue path has an 
associated unique real or complex eigenvector path. 

Proof of Proposition 1: 
We first introduce some machinery for the proof. 
Implicit Function Theorem [11]: Let  be 

open and let  be continuously differentiable. 
Let  be such that 

   
: 

 

f
 


 0 0,x y

 0 0, 0 and ,
f

x y
y0 0y 0.f x




   

Then there is an open interval , such that 

0

I 
x I , and there is a function : I 

 ,x x
 which is 

continuously differentiable, such that   , for 
all  0 0,x I x  y , and such that  xf x  , 0 , for 
all x I . 

We will use the matrix version of the Implicit Function 
Theorem where the matrix of function equations, F , is 
defined with the following conditions: 

      0 0, ,V 0 and det , 0.
,

F
V

V



 

   
F A     

We also introduce a diagonalization procedure from 
Delchamps [12] to use in the formulation of constraint 

equations. Writing a complex  eigenvector, , as 
a function of two real vectors,  and , 

1n
r
kv

r i

kv
i
kv

,k k kv v i v    

we build an orthogonal eigenvector matrix, , where P

1 1 2 2 1
r i r i r r r

l l nP v v v v v v v              

and 1 ˆP P   . Here, ̂  is a diagonal matrix of ei-
genvalues of  with imaginary eigenvalue pairs ap-
pearing as 


2 2  blocks with the real part on the diago-

nal and imaginary parts on the off-diagonal (positive 
imaginary part on the super-diagonal and negative imagi- 
nary part on the sub-diagonal). This is the same mapping 
as developed from the Schur factorization with well de-
fined mapping P. 

Given the Implicit Function Theorem, we construct a 
set of constraint equations from (1), 

  , , 0F A V    

where 

  
  
  
  




T
row row

T
row row

1
, ,

Im 0

Re 0

Im 0

Re 1 0

ˆ 0; 1, 2, , and

ˆnumbered rows of Λ with negative

imaginary eigenvalue terms

j j

j j

k j k j

A V V

A V V

conj V V

F conj V V

P P j n

k







   

   

  

   


  

 






 

1 2 1 2, , , , , ,r r rn i i inV v v v i v v v .          

These constraint equations constrain the solution of ei- 
genvectors such that row 0jV j   and constrain the form 
of complex eigenvalues of  to complex conjugate 
pairs. The dimension of F is . 
We write the partial derivative matrix M as follows, 


  2 22 2 2 2n n n n   

 

 

1 1
0 0 0 0 0

2

1 1

, , , , , , ,

1 1 1
1 1 2

1 1

2
1

1

2 2

1
1

, , , , , ,
r rn i in r

r rn i in

v v v v

r r r
n

r

n n

r

F
M

v v v v

F F F

v v v

F

v

F

v

0
i 









   
    
 
   
 
 
 
 

  

 
 

 







 

and construct the components 
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 
   

   

    

  

      

2

1

1

1
1

1

1 2 1 1

1

1 2

1

2 1 3

1

1

1

1

11 22

1 0 0

0 1 0

0 0 1

0

0

0

, ,

r

r

n
r

r

r
n n

r

n n

r

n n

r

r

n
r

r
n

r r
n

F

v

A I

F

v

F

v

A I
F

V
A I

diag A I A I

M M





    

 

 

 

   





 

 



 
 

   
 

 
     

  










  
 
 

  
   

   

 




 







 

 

where 11M  and 22M  are block elements of M . To 
complete M  we write 

11 12 13 14

21 22 23 24

31 32

41 42 43 44

0 0

M M M M

M M M M
M

M M

M M M M

 
 



 





 

where 

 12 21 1 2diag , , ,i i i
nM M I I          I  

 1 2
13 312 diag , , ,r r rnM M v v v          

 1 2
14 diag , , ,i i inM v v v     

 1 2
24 diag , , ,r r rnM v v      v  

 1 2
23 322 diag , , ,i i inM M v v v          

 1

2

3

41

1

2

2

0 2

0 0 2

0

0

0 0

r

r

r

i

i

v

v

v

M

v

v













 













 

 
 

42 T1

T2

0 0

0 0

0 0 0

0

0 0

0 0

r

i

M
v

v

 
 
 
 
 
   
 
 
 
 
  

 

 





 

 

43

1 0

0 1

0 0 1

0 0

0 0 0

0 0

M

 
  
 
 

  
 
 
 
 
 

 

 

 

 

44

0 0

0 0

0 0 0

1 0

0 1 0

0 0

M

 
 
 
 
 

  
 
 

 
 
 

 

 

 

We seek the determinant of M. We define the deter-
minant of M as a block matrix computation where 

     T 1det det detM A D C A   B  and 

13 1411 12

23 2421 22

31 32T

43 4441 42

, ,

0 0
,

M MM M
A B

M MM M

M M
C D

M MM M

  
    
   

  
    
   

 

0

0













 

We take advantage of the diagonal structure of the 
sub-matrices of M to compute 1A  and the determinants. 
Extensive matrix computation is required and is not in-
cluded here, however the result shows det 0M   under 
the conditions of distinct non-zero eigenvalues over the 
domain of eigenvalue space. The proposition is proved. 
We now define property  . 

Property  : An interval matrix, A, with property   
is one having all eigenvalues of A distinct and non-zero 
over the interval parameter domain of the interval matrix. 

This implies that a specific continuous eigenvalue path 
generated through an interval path of the interval poly-
nomial corresponds to a single unique eigenvector path. 
We will attempt to utilize the Kharitonov companion 
form matrices to generate boundary points for these ei-
genvector paths. Once a boundary is defined, we can 
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generate a containment eigenvector cone. A proposition 
is stated below. 

Proposition 2: Given a positive interval polynomial, P, 
with property , the smallest normed cone containing 
the four eigenvectors along a single connected path as- 
sociated with a single eigenvalue path and generated 
from the Kharitonov companion form matrices 



 iK  is 
a containment cone for the entire path of eigenvectors 
formed from the linear interpolation of matrices between 
any two iK  and jK . 

The vectors in the set  define a continuous path 
through n-dimensional space. Similarly, one could con-
struct eigenvalue paths using the same interpolated ma-
trices. These would be the corresponding eigenvalue 
paths where the  eigenvalue path corresponds to the 

 eigenvector set. Assuming no two eigenvalue paths 
intersect, we can easily build isolated paths by solving 
(2). If any of the real eigenvalue paths intersect with the 
imaginary axis, two things will necessarily occur. The 
eigenvalue structure will change since two eigenvalues 
will become imaginary and a corresponding change in 
the eigenvector matrix will occur. This was found to in-
troduce computational difficulty in tracking eigenvalue/ 
eigenvector pair paths due to the change in structure of 
the eigenvalue/eigenvector pairs. In an attempt to side 
step this computational difficulty, for some simulations, 
we restricted our cases of interest to those in which no 
eigenvalue paths cross the imaginary axis. We further 
restricted the polynomial parameter intervals to strictly 
positive intervals to ensure that the degree of P was un-
changed over the parameter intervals. This will be dis-
cussed further in the sequel. Now we have defined the 
construction of the eigenvector paths, it remains to ad-
dress the construction of the smallest containing cone for 
the eigenvectors of the four Kharitonov companion form 
matrices. We first need a metric for the size of a cone in 
n-dimensional space. We define an angular distance 
measure, 



thk

 1 2,

ij
k

AD v v , between any two normalized n- 
dimensional vectors,  and , which provides the 
basis of that metric. 

1v 2v

      T1 2 1 1 2 1 2, cos ;AD v v conj v v v v   1  

Three methods were considered to find the containing 
cone for the four Kharitonov companion form matrix 
eigenvectors. These are detailed in the following sec-
tions. 

3.1. Angle Bisector Method 

The first approach we considered was to find the bisector 
of all two vector combinations of the four Kharitonov 
eigenvectors, determine the largest angular distance 
measure, AD , between these six bisectors, , and 
their eigenvector pairs and construct a cone, , cen-

tered at the bisector 

iB

ABMC

B  corresponding to AD  with 
the cone boundary defined by the following 
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The bisectors, i , for any pair of eigenvectors can be 
found be rescaling one of the vectors such that the 
projection of the other vector onto it is purely real. The 
eigenvectors in general are complex. In this way a real 
bisector can be found. Considering any two vectors  
and  we can find the bisector by first rescaling , 
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3.2. Optimized Centering Vector Method 

With this method we construct a gradient based search 
method which seeks a “Centering” vector having the 
same angular distance measure from all four Kharitonov 
eigenvectors. Given a collection of i eigenvectors iv   
Rn from iKM  we wish to solve the following max-min 
problem, 
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This optimization problem attempts to minimize the 
maximum angular distance measures between the opti-
mal centering vector and all other Kharitonov eigenvec-
tors. We seek to accomplish this with a gradient based 
algorithm which moves  “close” to v  in norm over 
a finite number of iterations. The algorithm is detailed 
below: 

cv 

1) Initialize  at  and . cv 1̂v 1k 

2)    
T c
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3)    
 

c
c

c

v i
v i

v i
 . 

4) Find the  which satisfies . k  mink kd
5) 1i i  . 
6) Repeat step 2. 
The algorithm does tend to converge to a normed cone 

if not a single vector since there does not necessarily 
exist a single vector solution, e.g. two or more Khari-
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tonov eigenvectors are co-planar. A check of this result 
which yields a heuristic argument supporting its effec-
tiveness is to measure  where   T cv 

 :v v v    and 
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If  T cv   results in a quantity close to 1 then the 
two vectors are nearly aligned. This also yields credence 
to using eigenvectors generated from Kharitonov com-
panion matrices as extremal eigenvectors. 

3.3. First Order Perturbation Based Normed 
Cone Method 

This method involves the application of a first order 
Taylor series approximation to the nominal companion 
form matrix defined earlier. This derives a sensitivity 
result for the uncertain parameters in the interval poly-
nomial from which the companion form matrix was 
written. The derivation in this section follows from the 
matrix eigenvalue sensitivity results of Eisenstat and Ip-
sen [13]. Also see [14] for a similar companion matrix 
eigenvector perturbation construct. We define the inter-
val companion matrix  with  as  5n 
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We can simplify the notation somewhat by writing 
,
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d
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We can compute d


 by finding i  and solving 
the following, 

  d max max , .  l h
i i

i
  




Now we can write the normed perturbation of , , 
as 

1v np
1v

np
1 1 1dv v v


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Similarly, we can write equations for all i  to define 
the first order perturbation for any eigenvector in . 
Now that we have a vector representing a normed per-
turbation from the nominal  we can build a normed  

v


1v

cone with angular radius     T np1
1 1cos v v  . 

The derivation of the method of first order perturba-
tions can be checked by comparing it to a known linear 
perturbation in the parameter space of . The error 
between the known linear perturbation eigenvector and 
that which is generated from the first order perturbation 
method should be proportional to the squared infinity 
norm of the perturbation vector. The following relation 
holds if the first order approximation is correct as 



0  , 
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Through simulations, this was demonstrated to be true. 
We provide an example result based on the following 
matrix and perturbation configuration, 
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0 0 1 0 0 0 0 0 0 0
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0 0 0 0 1 0 0 0 0 0

5 5 5 5 5 1 1 1 1 1
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Using the configuration above, Figure 1 was gener- 
ated. Note that the curves suggest increasing quadratic 
forms with respect to the perturbation scaling .  p

4. Results and Comparisons of Methods 

First, we show an example of an interval companion ma-
trix eigenvector continuous path construction using the 
four Kharitonov companion matrices as detailed in the 
beginning of the summary report. Since the example has 
dimension , we show a plot of the metric of inter-  5n 
 

 

Figure 1. Plots of the normed perturbation squared,  npv
2

1
, 

and the scaled normed error between the known linear 
perturbation eigenvector and the eigenvector from the first 
order perturbation method. 

est along the path. Only one eigenvector path is utilized 
although for the full extent of the methods described, all 
n eigenvector paths would need to be incorporated. The 
plot is shown in Figure 2. In this example, the position 
of the Kharitonov eigenvectors, every 2000-th iteration, 
yields a locally large value for the metric. This would 
allow for the use of the Kharitonov eigenvectors as the 
basis for finding a containment cone. 

In Figure 3 we show an example of an interval com-
panion matrix which, through the use of the metric along 
a continuous eigenvector path, has eigenvectors with a 
larger metric value than that at the Kharitonov eigenvec-
tors. In this case the Kharitonov eigenvectors are not 
sufficient to define the path containment cone. This will 
be addressed as a restriction to the interval space which 
will be detailed in the following sections. 

The first method does not guarantee containment of all 
four Kharitonov eigenvectors. This is shown graphically 
below. The four Kharitonov eigenvectors are scaled to 
project into the plane, Q, of the page and appear as points 
 1 2 3 4, , ,v v v v  in the plane. A cone is formed around B  
which is shown as a circle in the cone cross-section in 
plane Q. By definition, the cone must contain at least two 
of the Kharitonov eigenvectors. Since the projection of 
the cone in plane Q, shown as the circle in the diagram, 
does not contain all the Kharitonov eigenvectors, the 
eigenvector continuous path cannot be contained by the 
circle. This implies that the cone is not a containment 
cone. 
 

 
 

The second method is an iterative approach so taking 
the number of iterations out to infinity yields the follow-
ing if the method converges to a single vector: 

   
T

1 ˆ, max cos
i

i
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v v v v
 
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 
    

A normed cone can now also be constructed with an 
angular radius using the above formula. If the method 
does not converge, which could happen in the case of the 
non-existence of an equi-angularly distant centering vec-
tor, the method will converge in   steps to a normed 
ball centered at v

  with radius  containing a vector 
such that 

r

   ,v B r v


   

with  ,B r O  defined as 

   , :nB r x y y x r    .  
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Figure 2. This figure shows an overlay of three curves. The 
first is AD* computed along a portion of one of the possible 
Ωij paths. The second and third curves are horizontal lines 
indicating AD* computed for the eigenvectors at the path 
boundaries. Path contained. 
 

 

Figure 3. Overlay of AD* at path boundaries and over a 
portion of a possible Ωij path. Path not contained. 
 

Numerical experience with the second method sug-
gests it does yield convergence to a normed ball centered 
at the optimal centering vector within a finite number of 
steps. The normed ball also appears to be very close to 
the eigenvector derived from the nominal matrix . An 
example is shown in Figure 4. 



The third method provides a large over-bound on the 
containment cone radius. This is due to the use of in-
duced infinity norms on the perturbation matrices. The 
angular radius from the third method can be compared to 
the angular radius generated from the second method. In 
all example cases generated, the Taylor series approxi-
mation based normed cone has a larger angular radius 
than that produced from the second method. The third 
method is conservative. In all numerical examples ex-  

 

Figure 4. Plot of normed distance between vi and vC for 

 i 1, 2, 3, 4  using the iterative method of Section 3.2. 

 
amined, the eigenvector path is contained in both cones 
when all three of the following events do not occur. 

1) Somewhere along the path, two or more out of the n 
eigenvectors cross paths and the path tracking algorithm 
gets lost. This could be addressed by considering all 
paths when constructing the cone. 

2) One or more eigenvalues associated with the eigen-
vectors cross the imaginary plane. This changes the 
structure of the eigenvectors and causes discontinuities in 
the path. The change in structure occurs because having 
real intervals in the parameter space forces imaginary 
eigenvalues to appear in pairs. One eigenvalue crossing 
the imaginary plane would induce two complex eigen-
values. In conjunction, a similar structure change occurs 
in the eigenvector set. 

3) A zero crossing occurs in one or more dimensions 
of the parameter interval space. This also changes the 
structure of the eigenvector set. 

All three events can be addressed such that they do not 
occur if the infinity norm of the perturbation is kept 
much smaller than the minimal element of the center 
vector,   , and the parameters are restricted to strictly 
positive intervals. With these conditions in all numerical 
examples examined, the path is always contained by the 
containment cone generated from either method two or 
three. 

5. A Sufficient Condition for Containment 
Cones 

A monotonic result can be shown for the angular distance 
metric of interest assuming a restriction to either all posi-
tive or all negative eigenvalues. This would then support 
a containment result based on a normed cone. The 
monotonic result comes from the vector projection prop-
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erty of the metric. The metric is monotonic in i . An 
extension of the work of Kharitonov provides an extre-
mal eigenvalue result that can be extended to the eigen-
vector space and hence, the metric. 

To complete this picture, one needs to show that the 
conditions discussed earlier to enable success of the 
simulations can be better defined. For that we utilize the 
contributions of [9] on perturbations of eigenvalues and 
eigenvectors. Given a matrix  as previously defined, 
with distinct eigenvalues, we can find the Jordan canoni-
cal form, 



1 ,H H   

where the columns of  are the eigenvectors of  
and  a diagonal of the eigenvalues of . We further 
define 

 
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,i i   as the normalized right and left hand 
eigenvectors respectively and is  such that 
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The parameter is  is also the cosine of the angle be-
tween these eigenvectors. Recall the Kharitonov com-
panion matrices have linear variation in elements of the 
last row only. This implies that the linear path between 
any two of these matrices can be written as 1 2    
with  0,1   since  
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The following is an example using 1
1

KM  and n = 5. 
The quantity 

0 31 2 4

5 5 5 5 5

0 1 0 0 0
0

0 0 1 0 0
0

0 0 0 1 0

0 0 0 0 1
0

l hl h l

l l l l l



    
    


  
  
  
  
 
        













1

 

where 2K K
n nM M    is a vector of constants depend-

ent on the last rows of 1KM  and 2KM . Now, incorpo-
rating the Jordan canonical form introduced above, from 
[9] we write 
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cient condition for the isolation of the eigenvalues, i , 
over the path connecting the two Kharitonov companion 
matrices is shown in the following relation. For all 
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Given that the eigenvalue set at each Kharitonov 
companion matrix is sufficiently distributed, the above 
condition is satisfied and the eigenvalues will be isolated 
along the eigenvector pathways. We describe the family 
of polynomials with isolated roots such that the above 
condition is satisfied as having the property . We need 
one additional result from [10] chapter 9, namely the 
Stronger Root Version of the Edge Theorem. Given a 
family of polynomials , Barmish 
defines the root set of  as the following 



Q  , :p q q  


    : , 0 for somez p z q q Q       

Stronger Root Version of the Edge Theorem [10]: 
Given a polytope of polynomials  with invariant de-
gree, it follows that 



    .         

We have, therefore, that the boundary of the root set or 
the extrema of the root set are contained within the edges 
of the family of polynomial polytopes. This result can be 
applied to the problem at hand by considering the eigen-
value set of the Kharitonov companion matrices as the 
root set of the family of Kharitonov polynomials. The 
edges of the family are the pathways between Kharitonov 
polynomials, and hence, Kharitonov companion matrices. 
This implies that the extremal eigenvalue set for the 
Kharitonov companion matrices lie along the edges or 
pathways between Kharitonov companion matrices. We 
can further say that the extremal eigenvalue sets are de-
rived from the four Kharitonov companion matrices 
based on the Kharitonov Rectangle [10] construction. 
Now we complete this section with an illustrative exam-
ple. 
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Numerical Example of the Sufficiency Condition 
for the Isolation of Eigenvalues 

Given that we can write the linear path between any two 
Kharitonov companion form matrices 1A  and 2A  of 
dimension  with 0 1  as 3n  k 

 1 2 ,1A k A A    

we build a constraint with 1A  and  2 1 A A  having 
the following characteristic polynomials 

3 2

3 2

9 23 15 0

9.03 23.1803 15.2309 0.

s s s

s s s

   

   
 

Now computing the constraint quantities we find that 
the three ranges of eigenvalues for 1A  and  2 1A A  
respectively are 

     0.2, 0.1753 , 0.4096, 0.3333 , 1, 0.9175 .       

The intersection of these three ranges is the empty set. 
Therefore, 1A  and 2A  represent two matrices with 
eigenvalues that do not intersect along the path between 
them. This same test could be applied to the six combi-
nations of Kharitonov companion form matrices to test 
whether all eigenvalue ranges are sufficiently distributed 
over all paths between matrices. 

6. Proof of Proposition 2 

The proof follows primarily from the results of the pre-
vious section, the specialized structure of the metric of 
interest and the eigenvectors generated from the Kharo-
tonov companion matrices. For this proof we need to 
show that the four Kharitonov companion matrices gen-
erate extremal eigenvector sets in terms of the metric of 
interest. This follows from having extremal eigenvalue 
sets since the eigenvectors are in the form 
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and extremal eigenvalue sets generate extremal quantities 

   T1 2   with all real half-plane roots. We have the  

additional property of half-plane roots since the family of 
polynomials of interest are restricted to positive intervals. 
Now with extremal eigenvalue sets generated from the 
four Kharitonov companion matrices, we see that these 
sets lead to the extremal eigenvector metric 

      T1 2 1 1 2 1 2, cos ;AD v v conj v v v v  

or 

 
   T1 2

1 2 1

1 2
, cos

conj v v
AD v v

v v


  
  

 
 

.

x

 

It follows that the angular distance of a given eigen-
vector, constructed from the companion form family of 
polynomials, P, from a pre-defined centering vector has a 
normed bound less than the angular distance of at least 
one eigenvector constructed from the companion form of 
the four Kharitonov matrices. Furthermore, this implies a 
minimum norm containment cone can be constructed 
around the eigenvectors constructed from the companion 
form of the four Kharitonov matrices. This set of eigen-
vectors contains all eigenvectors, and hence any path of 
eigenvectors, constructed from the companion form fam-
ily of polynomials, P. This completes the proof. 

7. Summary and Discussion 

In this paper we have developed some tools and a ro-
bustness result methodology through which may build a 
containment cone for the eigenvector space of a com-
panion form matrix associated with an interval polyno-
mial. This method involved strong use of the well know 
Kharitonov polynomials which allowed for a computa-
tionally inexpensive technique for a broad class of inter-
val polynomials. It is true that computational accuracy is 
limited when converting from a polynoimial form to a 
companion form. Edelman and Murakami [15] address 
this issue objectively by suggesting that one bound the 
variation in polynomial parameter space by a scaling of 
the norm of the associated companion matrix, i.e. given 

2
0 1 2

n
nP x x         

then one should require 

   T1 1 1 1 .h c PO M       

where  O   signifies a small multiple of machine pre-
cision. This clearly restricts the utility of the results of 
this paper however it invites a challenge to consider spe-
cific polynomial forms which may ease this requirement. 
That is the subject of future work. 
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