APPLED
AIARE;E%E& Applied Artificial Intelligence

An International Journal

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/uaai20

Taylor & Francis

Taylor & Francis Group

Using Argumentation to Solve Conflicting
Situations in Users’ Preferences in Ambient
Assisted Living

C. L. Oguego, J.C. Augusto, M. Springett, M. Quinde & C. James-Reynolds

To cite this article: C. L. Oguego, J.C. Augusto, M. Springett, M. Quinde & C. James-
Reynolds (2021) Using Argumentation to Solve Conflicting Situations in Users’ Preferences
in Ambient Assisted Living, Applied Artificial Intelligence, 35:15, 2327-2369, DOI:
10.1080/08839514.2021.1966986

To link to this article: https://doi.org/10.1080/08839514.2021.1966986

@ Published online: 28 Oct 2021.

\]
CA/ Submit your article to this journal

||I| Article views: 445

A
& View related articles &'

P

(&) View Crossmark data &

CrossMark

@ Citing articles: 1 View citing articles &

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalinformation?journalCode=uaai20

https://www.tandfonline.com/action/journalInformation?journalCode=uaai20
https://www.tandfonline.com/loi/uaai20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/08839514.2021.1966986
https://doi.org/10.1080/08839514.2021.1966986
https://www.tandfonline.com/action/authorSubmission?journalCode=uaai20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=uaai20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/08839514.2021.1966986
https://www.tandfonline.com/doi/mlt/10.1080/08839514.2021.1966986
http://crossmark.crossref.org/dialog/?doi=10.1080/08839514.2021.1966986&domain=pdf&date_stamp=2021-10-28
http://crossmark.crossref.org/dialog/?doi=10.1080/08839514.2021.1966986&domain=pdf&date_stamp=2021-10-28
https://www.tandfonline.com/doi/citedby/10.1080/08839514.2021.1966986#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/08839514.2021.1966986#tabModule

APPLIED ARTIFICIAL INTELLIGENCE .
2021, VOL. 35, NO. 15, 2327-2369 Taylor & Francis

https:/doi.org/10.1080/08839514.2021.1966986 Taylor & Francis Group

W) Check for updates

Using Argumentation to Solve Conflicting Situations in
Users’ Preferences in Ambient Assisted Living

C. L. Oguego?, J.C. Augusto?, M. Springett®, M. Quinde®*<, and C. James-Reynolds?

®Research Group on Development of Intelligent Environments, Department of Computer Science,
Middlesex University London, London, UK; PInteraction Design Centre, Department of Computer
Science, Middlesex University London, London, UK; Departamento de Ingenieria Industrial y de
Sistemas, Universidad de Piura, Piura, Peru

ABSTRACT ARTICLE HISTORY
Preferences are fundamental in decision-making, so under- Received 18 October 2019
standing preference management is key in developing systems Revised 17 September 2021
that guide the choices of the users. These choices can be Accepted 22 January 2021
decided through argument(s) which are known to have various
strengths, as one argument can rely on more certain or vital
information than the other. We explored argumentation tech-
nique from a previous study, and validated its potentials by
applying to it several real-life scenarios. The exploration demon-
strates the usefulness of argumentation in handling conflicting
preferences and inconsistencies, and provides effective ways to
manage, reason and represents users’ preferences.
Using argumentation, we provide a practical implementation
of a system to manage conflicting situations, and a simple inter-
face that aids the flow of preferences from users to the system.
We illustrated using the interface, how the changes in users’
preferences can effect system output in a smart home. This
article describes the functionalities of the implemented system,
and illustrates the functions by solving some of the complexities
in users’ preferences in a real smart home. The system detects
potential conflicts, and tries solve them using a redefined pre-
cedence order among some preference criteria.
We also show how our system is capable of interacting with
external sources data. The system was used to access and use
live data of a UK supermarket chain store, through their applica-
tion programming interface (API) and provide users suggestions
on their eating habits, based on their set preference(s). The
system was used to filter-specific products from the live data,
and check the product description, before advising the user
accordingly.

Introduction

Most decision humans make are based on choice(s), even refraining from
choosing is a choice. Preferences guide our choices, so it is paramount to
understand various aspects of preference handling if attempting to develop a

TCONTACT C. L. Oguego 8 Oguegoco527@live.mdx.ac.uk @ Research Group on Development of Intelligent
Environments, Department of Computer Science, Middlesex University London, London, UK; J.C. Augustoj.augus-
to@mdx.ac.uk

© 2021 Taylor & Francis

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/08839514.2021.1966986&domain=pdf&date_stamp=2022-03-08

2328 (&) C.L OGUEGO ET AL.

system that supports users’ decisions or acts on behalf of users Brafman and
Domshlak (2009), especially in an intelligent environmentAugusto et al.
(2013). For a system to be efficient in supporting and satisfying users’ needs,
it has to know the expectations of the users. There have been other support
systems in Ambient Assisted Living (AAL) Augusto et al. (2012). Some of
them rely on sensing equipment to gather information from users and the
system uses this contextual information to help users in decision-making. An
example can be having a pressure sensor on a bed or chair to detect if a user is
lying on the bed or sitting on the chair. Another can be of having a Passive
Infrared Sensor (PIR) in the bedroom to track movement. There is currently a
range of devices that can elicit information from users. Information can also
be gathered from the outside world, for instance, information details of a
products from an on-line store. This can be useful for the system to manage
the health preference aspect of a user. However, these systems cannot handle
users’ preferences in a dynamic way, because a system that is expected to act on
behalf of humans needs to understand and respond to the preferences of users
and have the ability to resolve conflicting preferences.

Conflict can occur in preferences, for example, the desire of wanting to keep
the bedroom light “off” while asleep, can conflict with the need for the light to
be “on,” for safety reasons. Whichever reason it might be, a conclusion has to
be reached, and the conclusion needs to be decided depending on what the
user prefers more. A conclusion can also change if a new reason or fact
becomes available. The knowledge of new facts can lead to preferring a new
conclusion, or relying on a previous one, or make one consider that the
previous conclusion is no longer correct. When new information becomes
available, it might provide a better reason to maintain the previous conclusion
or new reasons to come to a different conclusion. Providing a system that has
the ability to react in such a manner, so as to balance users’ preferences, is key
in designing a successful Ambient Intelligence (AmI) system. We explored the
potential of argumentation in handling inconsistent knowledge and conflicts
in our previous work Oguego et al. (2019 b), which we will also discuss briefly
in this paper.

Argumentation in Al

The evolution of argumentation emerged as an alternative to non-monotonic
formalisms based on classical logic from the mid-1980s to present Chesfievar,
Maguitman, and Loui (2000). Modeling common sense reasoning has long
been a challenge in artificial intelligence (AI), as it mostly occurs in the face of
incomplete and potentially inconsistent information Chesfievar, Maguitman,
and Loui (2000). Several non-monotonic reasoning formalisms emerged to
match this challenge, but in this formalism, when additional information is
obtained, conclusions drawn may be later withdrawn Chesfievar, Maguitman,

APPLIED ARTIFICIAL INTELLIGENCE . 2329

and Loui (2000). Formal logics of argument emerged as one style of formaliz-
ing nonmonotonic reasoning, as argumentation systems provide a nonmono-
tonic layer to reason about justification of truth Simari and Loui (1992).

The reputation of argumentation in Al has positively increased Mahesar (2018),
which is why it has been widely used for handling inconsistent knowledge ((Simari
and Loui (1992), Amgoud and Cayrol (1998), Besnard and Hunter (2001) and
Garcia and Simari (2003)) and dealing with uncertainty in making decision(s)
(Amgoud and Cayrol (1998) and Amgoud and Prade (2009)). The features of time
and conflict-handling in argumentation systems have long been investigated in
computer science (Muiioz et al. (2011), Augusto and Simari (2001), Bandara et al.
(2006), Bentahar et al. (2010), and Muiloz and Botia (2010)). Argumentation has
been known as a way to implement and formalize defeasible reasoning Simari and
Loui (1992), allowing us to reason about a changing world where the information
available is not very reliable or incomplete.

Argumentation as a reasoning process can help in making decisions by
handling conflicting situations expressed within deliberative agents Tamani
and Croitoru (2014). The fundamental ideas behind argumentation are to
construct arguments in favor of and against each decision, evaluate the argu-
ments and apply some principle of comparing their value based on quality or
strength Amgoud, Bonnefon, and Prade (2005). The value of an argument can
be qualified as defensible, justified, or defeated as it is determined by the
importance of the rules (reasons) it contains Sartor (1994). The knowledge
of new fact(s) can also lead to another conclusion being obtained. The
obtained conclusions are justified through arguments to support their con-
sideration Simari and Loui (1992).

When conflict arises among arguments, methods or preferences criteria are
used to understand if some arguments may be preferred over others.
Establishing the preference of an argument over another or a set of arguments
over others, requires some definition of preference criteria, for example,
“Specificity” and “Persistency.” These criteria were adopted during our imple-
mentation process, combined with “User Preferences” which we introduced in
Oguego et al. (2019 b).

“Specificity” as a preference criteria is based on the argument structure, and
decisions can be made based on which argument is better informed than the
other. “Persistency” on the other hand, assumes that properties tend to keep
their truth values through time, unless there is a reason to believe otherwise.

Our previous study Oguego et al. (2019 b) used the predicates:
Change, ~(p, i) and Change ~(p, I) to indicate that a proposition p
changes its true value from being true to false at an instant i or in an interval

I, respectively. The following axioms capture these concepts:

Vp p V7 i(Holds,(p, i —1) A =Holds,(p, i)

2330 e C. L. OGUEGO ET AL.
— Change .~ (p, i))
Vpp¥z I, I (MEETS(I, I') A Holdse,(p, I) A —Holds,,(p, I')

— Change, ~(p, I')

Where “MEETS” should be considered as in (Allen (1984) and Hamblin
(1972)).

Preferences in Al

Preferences are crucial in decision-making and have been useful in areas of
artificial intelligence (AI) such as scheduling, planning, combinatorial auc-
tions, game playing, and multi-agent systems Walsh (2007). Al is not the only
discipline where preferences are of great interest; they have been studied
extensively in various disciplines including operational research, philosophy,
economy, and psychology Mahesar (2018). Preferences are fundamental for
decision-making as most areas of artificial intelligence deal with choice situa-
tion Pigozzi, Tsoukias, and Viappiani (2016). But it is important to consider
that the system should be able to understand and support decisions made by
users Goldsmith and Junker (2008).

There have been various preference handling mechanisms which exist in A,
and surveys have been conducted to identify the effectiveness of these classical
preference techniques. One of such surveys, Oguego et al. (2018a) aimed to
investigate the existing classical preference methods to know if they have the
capability to deal with conflicting situations and represent users’ preferences
over time. Our study identified and investigated some known preference
handling techniques that are closely related to the solution the research aims
to provide. However, findings show that the existing methods lack the ability
to handle the inconsistencies and complexities that exist in preferences, as
preferences are known to change over time or clash with each other. For
example, a football fan who is also a news enthusiast, may want to watch his
favorite team play at 7 pm, and there is an important news programme that
will be televised at the same 7 pm. How can the system support the user in
making this decision?

Some of the classical preference techniques in Al, Conditional Preference
Network (CP-net) for example, were restricted to manage either strict user
preferences that are known or complete Allen (2014). For instance, a student
prefers to keep the lights “off” during the day and “on” at night, as long as it is
not his/her bedtime. This means at a certain period at night, the light should
go “oft.” This can be implemented using the CP-net approach, as the user’s
desires are already known. However, when the user is preparing for an exam,
and stays up late to study, thereby falling asleep at random times during the

APPLIED ARTIFICIAL INTELLIGENCE . 2331

night, it will be difficult to apply CP-net in such case, as it is unknown when
the student actually falls asleep. The investigation also identified that the
classical preferences are not a feasible solution to produce a system that
gives users the ability to manage the complexities that comes with preference
management in Al

Furthermore, we investigated ways users’ preference can be managed in Al,
and this led to the introduction of a new ontological sort, P ref. We discussed
this notion in details and theoretically applied it using some complex scenarios
in Oguego et al. (2019 b). The P ref sort is used to specify “User Preferences,”
which is managed through a user preference mechanism (interface in our
case). This introduction also led to redefining the order of precedence between
the preference criterion as:

R={>

tspec 7 >tpers) >Upref(ul) }

> - > -

tspec Upref(a) tpers

This means arguments will first be compared with “Specificity,” before
using “Preference.” If the arguments/conflict does not led to a new conclusion,
the system will apply the notion of Persistency, which implies keeping the
same value of the property, whose value is under consideration in the outcome
of the decision process. A generic preference architecture framework was also
produced (see Figure 1) to complement other existing frameworks, which we
applied practically (Figure 2) in this paper.

The rest of this paper is as follows: Section 2 describes some case studies used
in the practical demonstration of our system. Section 3 emphasizes on the
significance of argumentation to handle inconsistent information and time.
Section 4 introduces some of the features of the implemented system and
provides some discussion on its relations with an existing reasoning system.
We further emphasized on types of computations that can be conducted with the
implemented system. Section 5 illustrates how we modeled the more abstract
argumentation languages from Oguego et al. (2019 b) into the more restricted
but practically more efficient, implementation language our system understands.
We stated some guidelines for the modeling process and clarified better by
applying an example (light case scenario). Section 6 explains the infrastructure
and equipment we used for evaluating the implemented system and also layout
of the Smart Spaces Lab where the evaluation was conducted. In Section 7, we
introduced the preference management system (interface), which was used to
influence system decision in the smart home, as we applied an informal scenario
and provided a demo to illustrate this. We also modeled multiple users” prefer-
ences, for two different users, and applied one of the modeled users’ preferences
on the rest of the scenarios in this paper. Section 8 presented additional illustra-
tions and demo, including the use of an API from a supermarket chain in the

2332 (&) C.L OGUEGO ET AL.

External World—#

Knowledge Base

Argumentation System
A:

AT

Preference Criterion

= {>tspec7 P ipers? >cpref}

tspec > (>_tpers7 >_tprefs)

User Preference Ontology

Argument Comparison

AP B
B P A
AP e B
B2 A

B
A

tpref

A>

tpref

B>

<

External World

User Preference Handling Module
B:
A:

Figure 1. Overall preference architecture.

i
User Preference Order ¢
P2 A>_ . B?
B >>tpref A ?
Ld . 1
P P1 Undecided
Hybrid - Main

Select Specification File

Click Cells for Details of Solved conflict...

Load Results/Solved Conflicts

Figure 2. Using sara’s preference ranking to solve bedroom light conflict.

APPLIED ARTIFICIAL INTELLIGENCE . 2333

United Kingdom. This is to show that our system is able to handle conflicting
practical situations and provide users with viable decisions. In addition, we
discussed the research process in general, from conducting the survey, to the
developed system in Section 9, and conclude with further work in Section 10.

Case Study Analysis (Scenarios)

The below informal scenarios were considered and used to provide a practical
demonstration of how our developed system works.

Light Case Study

Sara, an aged individual who lives alone, prefers the light to be “off” when she is
asleep at night to provide more comfort. However, she might sometimes prefer
the light “on,” so that it is safer for her to move around her room when she wakes
up in the middle of the night.

Healthy Eating Case Study

Sara also wants the system to be aware of her health circumstances, and provide
her with information on food consumption. Since she is diabetic, she wants to
know the sugar content of her food, especially her favorite grocery, cake, which
she usually buys from her local chain store in the UK (known as Tesco).

These scenarios were used to evaluate the system within and outside of a
smart home, so as to demonstrate its abilities in managing conflicting user’s
preferences. However, before evaluating, we remind readers of the theoretical
background of the implemented system. A more detailed presentation of this,
is available in Oguego et al. (2019 b).

Temporal Reasoning

Time is ubiquitous in any activity that requires intelligence, as some important
notions like action, causality, and change are related to time Vila (1994).
Artificial intelligence is an area where the concepts of time and event are
essential, as agents usually have to reason about a dynamic environment.

The temporal language £* Augusto and Simari (2001) allows association of
knowledge to either “instant” or “interval” so the development of the real-
world scenarios can be expressed. Example of “instant” can be something that
happened in a second in a system, while “interval” can be a whole minute in
that system. A sensor that triggered once, let’s say 13:04:05PM can be
described as instantaneous occurrence, but when the sensor triggers continu-
ously over a period of time, let’s say 20 seconds (13:04:05PM to 13:04:25PM), it
will be described as an extended occurrence during an interval of time.

2334 (&) C.L OGUEGO ET AL.

We define the notion of interval as a sequence of consecutive instants 7 =
{[i1, i2] €T xT| i1 < iy} so that, for example, [14 : 06 PM, 14 : 21 PM| can
be the interval where the sensor was continuously active. Auxiliary useful functions like
begin,end : T — T can be defined to obtain the beginning and ending points of an
interval: begin([i1, is]) =4 i1 and end([i1, i5]) =ar i2. Weconsidered aset
of well-known relations in the literature as those between intervals that were explored by
Hamblin Hamblin (1972) and later adopted by Allen Allen (1984).

The world can be described as a set of elements with specific properties, for
which we use the following predicate: Holds ,(p, i), Holds,; C P x 7, and
Holds,,(p, Z), Holds,, S, P x I, denoting that p is a property that is true in
the moment i or interval Z respectively. Holds,, and Holds,; are related in
the following way:

Holds,,(p, I) =4V i (In(i, I) — Holdsu(p, i))

We assumed “homogeneity” of properties over an interval, meaning that if a
property holds in an interval then it also holds in any of its subintervals. For
example, if a sensor was activated for 10 minutes in a row, it was activated in
each minute of that interval (and each second of each minute):

V7 i Vg I (Holds,,(p, I) ANIn(i, I) — Holds,(p, i))

Vs I, I (Holds,,(p, I)A I T I)— Holdse,(p, I'))

We considered “weak negation” of properties over intervals that can be
obtained directly from the negation of the previous definition:

—Holds,,(p, I) =4e,37 i (In(i, I) A ~Holds(p, i))

We also considered events as noticeable occurrences of the real world that can
influence a given situation. For example, the system sending a command to the light
causes it to light up the room. We use a predicate Occurs 4 (e, i) (Occurs,,(e, I))
to indicate that an event e has occurred in an instant i (interval I), for exam-
ple:
Occurs 4 (TurnOnLight, 6 : 00 : 05 AM),-
(Occurs , (Microwavecooling, [15 : 10 : 05,15 : 12 : 35])).

Mirroring explicit time references through instants and intervals, we
assume non-durative and durative events defined in sorts N and D,

respectively.
The following were assumed about event instances:
Occurs (e, I) =gV i (In(i, I) — —Occursy(e, i)) with

In(i, I) =g Start(i, I)V Divides(i, I)V Ends(i, I) where these three
predicates are true when an instant is at the beginning, ‘inside,” or the end of an
interval. The definition given above for Occurs,, (e, I) means the occurrence of a
specific event in an interval implies it does not occur inside the interval (this is usually

APPLIED ARTIFICIAL INTELLIGENCE . 2335

called “non-homogeneity”). We consider “weak negation” over durative events. That
is, consequently with the concept of non-homogeneity explained above, an event will
be considered to not have occurred if a fragment (even just an instant) of it has not
occurred.

We ascribed actions only to humans, as humans usually act on their free will
and perform actions, which typically cause some events to occur, which in turn
potentially change some properties of the world. We considered each human
agent a from the sort of agents A has a repertoire VW of possible actions g:
V 4 a 3y g Agent(a,g). There could be instantaneous actions Do 4 (e.g., clos-
ing the toilet door) and durative actions Do, (e.g., walking in the corridor).

Further discussion on temporal argumentation and notion of “instant” and
“interval” can be found in our previous study Oguego et al. (2019 b). The
explanations above mostly refer to the time-related representation of the
world, which we modeled later in this study to the language the implemented
system understands. We will now provide overview discussion of the imple-
mented system (“Hybrid”), and a brief discussion on a reasoning system
(MReasoner) the Hybrid system was built upon. In addition, we provided
some explanation of the specification file required by the system for execution.

Hybrid System for Real-time Decision Making

An earlier environment for our AAL system was based only on monotonic
system with some basic capabilities to reason with metric time operators called
“MReasoner” Ibarra, Augusto, and Goenaga (2014).

Our latest Hybrid System was developed to complement MReasoner
(shown in Figure 3) as a way of extending its capabilities, as the MReasoner
tool can not manage and solve conflicting situations in an intelligent environ-
ment in real time. The resulting Hybrid System can do both types of reasoning,
monotonic and non-monotonic. When no conflicts are present in the rule
base, it uses the simpler light weight MReasoner, when there are rules with
opposing conclusion, Argumentation is used. Some of the features of the
Hybrid System includes:

« Ability to select a specification file containing rules from any location on the computer

o Analyzes the selected specification file using a conflict analyzer algorithm to identify
potential conflicts.

« Displays potential conflict(s), if any, has been identified.

« Depending on whether potential conflict(s) has been detected, the Hybrid System will
pass the file to either the exiting reasoning tool (“MReasoner”) if no potential conflict is
detected, or the conflict solver tool (“Argumentation Solver”) if potential conflict(s) is
detected.

2336 (&) C.L OGUEGO ET AL.

M Specification File Editor - New File

Main Menu Start Stop

General | Database

General Configurations

Iteration Time (in miliseconds): |0

Use a maximum execution time: (O Yes (@ No

File Paths Configurations
M Specification File Path

M Results File Path
LFPUBS Output File Path

System Configurations File Path

Execution type: Simulation: Time expressed in iterations v
Use automatic stratification: @ Yes ()No
Time Configurations

Use a fixed iteration time: @vYes ()No

M Specification File Editor | Database Results | LFPUBS Rule Translations

states(a, b, ¢, d)’

is(a):
is(#a);
is(b):
is(c):
is(#d):
is(d);

holdsAt (#c ,0);
holdsAt (b ,0):

occurs(ingr(c), time);
occurs(ingr(b), time);
ssr((#a, b, #d) -> #b):
ssr((a, c, d) -> #c);

Line: 17 Column: 26

Figure 3. Reasoning system interface.

« During execution, Hybrid System has the ability to generate current results of all the
properties involved in the execution.

« Conflict(s) detected during the execution process will be solved by the argumentation
solver. The Hybrid System will display the new results on the interface, which will take
effect around the environment at run time.

o The area(s) (instant or interval) where conflict(s) were identified and solved, will be
highlighted by the Hybrid System for clarity.

« The Hybrid System also has the ability to explain how the conflict(s) were solve.
Clicking on any of the highlighting cell from the result table, will display the reason of
how the conflict was solved in the text area of the Hybrid System interface.

[lustrations of the Hybrid System at work will be provided in Section 8, were
we provide some demonstration of the system in real time, applying some real

scenarios and live data.

Reasoning System (Mreasoner)

The reasoning system (M) was developed (interface shown in Figure 3) based
on natural characteristics of reactive environments, as it has the ability to track
certain environment conditions and act upon them. M also has the capabilities
to capture states happening during time intervals. For example, if there is no
movement in the last 15 seconds, turn “oft” the lights in the room. However, M
lacks the ability to handle conflicting outcomes. For example, if someone is
doing yoga, do not turn “off” the lights.

APPLIED ARTIFICIAL INTELLIGENCE . 2337

The reasoning system (M) is a rule-based system aimed at handling simple
causality, but has been extended to handle some practical uncertainties and
complexities, especially conflicts in user preferences. We extended the M
system by using argumentation to improve the capability of detecting and
solving conflicts that occur within an intelligent environment. The argumen-
tation solver accepts the specification file from the Hybrid System containing
detected potential conflict(s). Conflicts get solved by the argumentation solver
following the order of precedence of preference criteria discussed in Section
1.2. The specification file have to be written in an exact format that is
acceptable by the Hybrid System for execution. The specification file format
and the execution types are discussed in Section 4.2.

Specification File and Execution Types

Figure 4 illustrates the specification file sample (and added some labels for
clarity) of the reasoning system. The specification file has to be in that format,
but also depends on the type of execution the reasoning system is running. The
execution types that can be simulated by the reasoning system include:

« Simulation expressed in iteration

« Simulation expressed in real time

« Simulation (execution) in real environment, with sensors and actuators

The first part of Figure 4 consists of “all the properties (states),” any
property that will be used during execution must be specified in the first
part. The second part consists of the declaration of “Independent States,”
which does not depend on other states causally. The “#” symbol (when placed
in front of a state) denotes that a property is false. An example of applying the

< “All states/propertles p
states((a, | b c, d;l

 Independent states

hoIdsAt(#c 0), — §
‘holdsAt(M In|t|aI states D
ccurs(lngr (c), time);
ccurs(ingr (b), time);

ssr ((#a, b, #d) -> #b);
ssr ((a, ¢, d) -> #c);

CEvent occourrence >

Figure 4. Specification file format sample.

2338 (&) C.L OGUEGO ET AL.

symbol can be “is(#Movement), which can be used to represent ‘no move-
ment’ detected. The next part, which is the “Initial State” (as seen in Figure 4),
signifies initializing the state. For instance, holdsAt(#Movement,0) indicate
that at the start of the iteration, the movement will be “oft” or false, this is
absence of movement is assured. The fourth part, known as “Event
Occurrence” (as shown in Figure 4), are events used to impinge the system
from the outside; it can be sensors being triggered or via human behavior
commands. All of this notation was first defined as part of the “C” language in
Galton and Augusto (2002), then the language was created by adding metric
temporal operators to “C” Ibarra, Augusto, and Goenaga (2014).

However, the event representation (occurs(ingr([#]s), t*) “s” signifies state
and “t” signifies time) can only be used depending on the type of execution
simulated by the reasoning system.

The “Simulation expressed in iteration” executes the specification file of the
reasoning system based on the number of iterations specified, and the execu-
tion will not stop until the specified iteration. The “Simulation expressed in
real-time” uses the real-time specified on the specification file, as specified
events are triggered at a specific time. For example: occurs(ingr(LightsOn), 16 :
00) means that the light should be triggered “on” at 4 pm.

The specification file format shown in Figure 4 is the format our imple-
mented system recognizes, in order to conduct the executions. However, the
theoretical argumentation language is strictly more expressive than “M” and
will need to be modeled into the specification file format (system language).
Thus, we illustrated in detail in the next section of this paper.

Translating Argumentation Language

Our previous study explored the potential of argumentation to handle conflict-
ing user preferences Oguego et al. (2019 b). The study also explores a general-
ized framework that can be applied to handle user preferences in AAL and
further provided an overall preference architecture (Figure 1) which can be used
to extend the current argumentation systems. A proposed system was illustrated
theoretically to indicate that it can handle different users with the introduction
of a personalized preference function. The illustration showed how user pre-
ferences can be handled in a realistic way in an intelligent environment.

One part of the scenario considered in the complex description discussed in
our previous study was the lighting aspect, to make sure lights are “oft” after
leaving home. In addition to the theoretical illustration of how the system
should work, we introduced the notion of P ref, (Oguego et al. (2019 b)) used
to represent “User Preferences” in our system, allowing users to specify what
part of their preferences is more important to them. This was implemented in

APPLIED ARTIFICIAL INTELLIGENCE . 2339

the form of an interface, which has been discussed and illustrated in Section 7,
as the interface allows users to select and rank/modify their preference(s) to
effect output in a smart home.

The proposed system was also implemented, which we refer to as
“Argumentation Solver,” and will be discussed and illustrated in Section 8.1,
showing its ability to handle conflicting situations in a smart home. However,
executing the Hybrid System in a smart house requires a specification file
containing arguments that are made of rules, which the smart home will use to
act accordingly. These arguments consist of rules, are required to make
decisions, as conclusions are justified through arguments to support their
consideration Augusto and Simari (2001). The argument notations in argu-
mentation will need to be translated to the language (rules) our system
(Hybrid) understands for execution. This translation will further be comple-
mented with a simple light study of keeping the lights “off” after the user leaves
home, for better explanation. However, we will illustrate in the next section
how, we modeled the argumentation theoretical language to the implementa-
tion language our system understands.

Modeling Argumentation Theoretical Language to Implementation Language
(" to M)

This section illustrates how we modeled some of the notations from the
argumentation theoretical language(£”) into the implementation language
(M). The translation of the £ to M is not an automated process yet, it has
been manually modeled by the developers of the implemented system. There
are guidelines listed below, which has been followed throughout the modeling
process. Some explanations have also been included for further clarifications.

The first step of the modeling process is the time frame of action(s) or/and
event(s) occurred, which can be at an instant or over a period of time
(interval).

o “Ip“ or “I“ or “L,“ refer to “interval 0” or “interval 1” or “interval 2” in £ .
Modeling this to the M using the time interval relation “MEETS” will become
“[begin(ly), end(Ip)]” or “[begin(I;), end(I;)]” or “[begin(l;), end(I;)],” with an
instant representing 1 unit or 1 second of time.

o [—]2 represents 2 units (2 seconds) of time (Interval).

o [—][120s.] represents 120 seconds or 2 minutes of time (Interval).

o Constraints, such as: Length (I;) > 15(mins), will be represented as [-]
[900s.] or [-]15. This indicates an action or occurrence of event taking place
over the previous 15 minutes.

2340 (&) C.L OGUEGO ET AL.

Events occurrence are triggered by sensors or actuators, actions are usually
triggered by humans, they were modeled as follows:

« Actions triggered by humans in an interval (e.g., movement detected for
20 seconds) is represented as Do,, in LT, and modeled into Do_ in the
implemented system M.

« Actions triggered by human in an instant (e.g., the light gets turned “on” at
7:00PM) is represented as Do, and modeled as Do_.

o Occurrence of event in an interval, triggered by sensor(s) or/and actuator-
(s) in £T and represented as Occurs_on; has been modeled to Occ_on in M.

o Occurrence of event in an instant, triggered by sensor(s) or/and actuator-
(s) in LT and represented as Occurs_at; has been modeled to Occ_at in M.

Other additional notations of £, which were modeled to M, which is a
superset of atemporal “C” language, are as follows, and we also include some

explanations of £ notations that were not modeled but used as they were in
the implement system (M).

« Negation in L', is represented as “—, and we modeled this to “#.” An
example of how we applied the negation is: #LivingroomLight, meaning the
living-room light is “off.”

« The holding state of a property at an instant in LT is represented as
holdsAt. We use the same notation (holdsAt) in M. An example of how this
notation can be applied is holdsAt(#LivingroomLight,0), meaning at “instant
0” (i), which is the starting point of the system, the living room light was “off.”

« For L7, the rules have a name or label ID. For example, L-R1 - L-R6
indicates Light rule 1 to Light rule 6. In M, each rule is represented as “ssr” and
refereed to as “same time rule.”

o The notion (Pref,,) introduced in Oguego et al. (2019 b), is represented as
pref in M, which signifies user preference.

The sort (Pref,,) introduced in Oguego et al. (2019 b) which was also
applied, is represented as pref in the implementation language, and signifies
“Users Preferences.”

We applied a light scenario example in Section 5.2 as regards to a user who
wants the system to switch “oft” the lights when s/he leaves home. This is to
provide a better understanding of the guidelines for translation
aforementioned.

Translating Light Scenario (Example)

The notion of interval can be defined as a sequence of consecutive instants. So to
translate temporal argument rules to the reasoning rules our system understands,
interval relations needs to be considered. For our case, we have adopted the
interval relations defined by Hamblin (1972) and popularized in Allen (1984), as

APPLIED ARTIFICIAL INTELLIGENCE . 2341

it has been known to be the most widespread way to reason and represent time in
computer science, specifically in Al Interval relations defined by Hamblin
(1972), have thirteen possible relationships, one of them is “MEETS.”

MEETS(I;, I,) is defined as: interval I; is before interval I,, but there is no
interval between them, i.e., I; ends where I, starts. Other relations can be used,
we just use MEETS for simplicity of the explanation.

Argumentation Light Scenario for Sara
Using the MEETS interval relationship, we illustrate a lighting scenario of a
user (Sara) who want the lights in her home to be switched “off,” after the
system detects that she has left home.

Table 1 shows the development of the light scenario through time. The next
set of rules are extracted from A" Oguego et al. (2019 b) to model the scenario
in the argumentation system:

MEETS(Iy, I) A MEETS(I,, I,) A MEETS(I,, I5)
Holds,,(Movement, I) A —=Holds,,(Sleeping, Iy) A
—Holds,,(OnBed, I;) A\ Holds,,(LightsOn,)

L-R1: Do,,(LeavingHome, Iy) > ---Occursq(LeftHome, begin(I;))
L-R2: Occursy (LeftHome, begin(1,)) > ---—~Holds,,(Movement I)
LR3 —Holds,,(Movement, I;) A Length(I;) >
" =15 A =Holds,,(OnBed, I,) > — — ——Holds,,(Home, I,)
L-R4: —Holds,,(Home, I,) > --- Pref,,(LightOff, L)
L-R5: Pref,, (LightOff,I,) > --- Occurs,(SystemTurnsLightOff , end(L,))
L-R6: Occursy (SystemTurnsLightOn, end(I,)) > --- =Holds,,(LightsOff, I)

Table 1. Sara lighting scenario dynamics.
MEETS(lo, Iy) A MEETS(Iy , Iy) A MEETS (I, I5)
Holds,,(Movement, ly) A —Holdso,(Sleeping,lo) A —Holdso,(OnBed, ly) A Holds,,(Home, Iy) A Holds,, (LightsOn, Ip)

Lighting Movement - Movement - Movement -
cenario
ovement
—Sleeping —Sleeping —Sleeping —Sleeping
—OnBed —0OnBed —0OnBed —0OnBed
Home Home —Home —Home
LightsOn LightsOn LightsOn —LightsOn
Transition Doo,(LeavingHome, System Inference from: Occursg(System TurnsLightOff,

Cause lo) L-R3 end(/,))
/0 I‘| IZ I3

2342 (&) C.L OGUEGO ET AL.

a ~LightsOn@QI3 b

SystemTurnsLightOff QI
|
PrefLightsOff @I,
|
—HomeQI,

LightsOn@/I3

- MovementQI, -OnBedQlI,
Length@l; > 15

LeftHome@beginl,

NotChanget ™ (LeftHomeQlI;) . -
LeavingHome@ LightsOn@I, NotChanget ™ (LightsOnQIs)

Figure 5. Argumentation trees for sara’s light scenario.

The above six rules were modeled to the rules in the specification file, which
is format the implemented system (M) understands. Figure 5 further depicts
the argumentation trees representation of the above rules, along with explana-
tion of the argument.

Argument for LightsOn@QI;: As seen from the initial facts, the lights are
assumed to be “on,” as Sara is in the room. So because of persistency, there
is a possibility that the lights will continue to remain “on.”

L.On = ({Holds,,(LightsOn, I) A notChange; ~ (LightsOn, [end(I,), end(I3)])
> ---Holds,,(LightsOn, I3) }, Holds,,(LightsOn, I3))

The argument is reflected in Figure 5b.

Argument for —LightsOnQI;: Considering an alternative explanation, given
that the system has been designed to understand when the lights are not
needed. The argument indicates that Sara is leaving home at I, and is not
home at the beginning of I;. As a result of this, no movements were detected
from then onwards. If continued for the next 15 minutes and there is no
pressure on the bed at the same time, the system has reasons to believe that
Sara is not at home at I,. When Sara is not at home, she prefers the lights “off.”
So at that moment, the system infers that it is reasonable to turn the lights
“off.” As a result, the lights are off at I3, as illustrated in the argument tree
shown in Figure 5a

L.Off = ({Do,,(LeavingHome, Iy) > — — —Occurs,,(LeftHome, I,),
Occurs,,(LeftHome, I;) > — — ——Holds,,(Movement, I,),
—Holds,,(Movement,I,) N Length(I;)15 A —Holds,,

(OnBed, I,) > — — ——Holds,,(Home, I,), —Holds,,,(Home, I,)

> — — —Pref,,(LightsOff, L), Pref,,,(LightsOff, I,)

> — — —Occurs,, (SystemTurnsLightOff , I),

Occurs,, (SystemTurnLightOff, I)

> — — —=Holds,,(LightsOn, I3) },

APPLIED ARTIFICIAL INTELLIGENCE (&) 2343
—Holds,,(LightsOn, I5)})

Table 2 further illustrates the translation of Sara’s light scenario, following
the dynamics of Table 1, applying the interval relationship (“MEETS”) and the
modeling guidelines provided in Section 5.1. The output of the modeling
process of the light scenario is in form of the specification file in Section 5.2.2.

Specification File with Converted Rules
Below depicts the specification file for the light scenario along with the
modeled rules discussed in the previous section. Other aspects of the specifica-
tion file have been explained in Section 4.2.

states(Movement, OnBed, LightsOn, Home, Do_LeavingHome,
Occ_LeftHome, SystemTurnsLightOff, prefLightOn);

is(Movement); is(#OnBed); is(OnBed); is(LightsOn); is(Home); is
(Do_LeavingHome);

holdsAt(#Movement, 0);

holdsAt(#0nBed, 0);

holdsAt(LightsOn, 0);

holdsAt(Home, 0);

holdsAt(Do_LeavingHome, 0);

holdsAt(#Occ_LeftHome, 0);

holdsAt(SystemTurnsLightOff, 0);

holdsAt(prefLightOn, 0);

ssr((Do_LeavingHome) -> Occ_LeftHome);

ssr((Occ_LeftHome) -> #Movement);

ssr(([-][900s.]#Movement A #0nBed) -> #Home);

ssr((#Home) -> #prefLightOn); ssr((#prefLightOn) ->
SystemTurnsLightOff); ssr((SystemTurnsLightOff) -> #LightsOn);

Now we will discuss and show some of the infrastructure and equipment
required for the demonstrations in a real environment.

Table 2. Converting Argumentation Rules to Reasoning System Rules.

Argumentation Rules " Specification File Rules (M)
L-R1 Do, (LeavingHome, Iy) ssr((Do_LeavingHome) — > Occ_LeftHome);
> Occursq (LeftHome, begin(l))
L-R2 Occursq (LeftHome, begin(1y)) ssr((Occ_LeftHome) — > #Movement);
> --- —Holds,, (Movement, I)
L-R3 —Holds,,(Movement, I,) A Length(l)>15 A
—Holds,n(OnBed, I;) >--- =Holds,(Home, I;) ssr(([—][900s.]#Movement A #0nBed)
— >#Home);
L-R4 —Holds,,(Home, I,) > -- Pref,, (LightOff, I;) ssr((#Home) — > #prefLightOn);
L-R5 Pref,, (LightOff 1) ssr((#prefLightOn) — > SystemTurnsLightOff);
> - Occursqt (SystemTurnsLightOff, end(1,))
L-R6 Occursqt (SystemTurnsLightOn, end(l;)) ssr((SystemTurnsLightOff) — >#tLightsOn);

> ---—Holds,, (LightsOff , I3)

2344 (&) C.L OGUEGO ET AL.

Smart-Home Infrastructure

The research utilized a Smart Spaces Lab to conduct practical demonstration
of the system. The lab is a fully functional home environment provided to
support research in AAL and specialized spaces to support research in the
areas of Virtual/Mixed/Augmented reality and group decision-making sup-
port. The Lab further consists of other physical equipment that was also
needed for the demonstration process, the physical equipment will be
explained later. Some images of the Smart Spaces Lab areas and the equipment
are found in Section 6.1 and Section 6.2 respectively.

Smart Spaces Lab

The smart space lab is located within the Middlesex University premises. It is
also known as Farm House with necessary housing facilities, giving the lab
the feel of a home. Figure 6 depicts the layout, which consists of a living
room (Figure 7), a bedroom (Figure 8), a kitchen, a bathroom, a shower
room, and two addition rooms used for conducting meetings and research.
As seen on the layout, parts of the house are wired with all types of sensors
for research purposes, but we will address a few that are specific to this
research.

More images of the smart home can be found here: http://ie.cs.mdx.ac.uk/
smart-spaces-lab/

€
e ————
:: é Motion
@ €
Not use for experiments == Door
A Energy
((;‘-y)) Repeater
L
.\¢ Multisensor
. Preasure
o
amp
i | ¥ Light switch
Not use for experiments
Server
Iy
7. shower ({(=== Vera Hub
i Proccesing
n a‘!/ D computer

Main Door

Figure 6. Layout of the smart spaces lab.

http://ie.cs.mdx.ac.uk/smart-spaces-lab/
http://ie.cs.mdx.ac.uk/smart-spaces-lab/

APPLIED ARTIFICIAL INTELLIGENCE . 2345

Figure 7. Living-room of the smart spaces lab.

Figure 8. Bedroom of the smart spaces lab.

Equipment

The smart home requires smart devices and equipment (see right side of
Figure 6) to conduct the experiments. However, for our demo we made use
of a few, which are Motion sensor(A), Reed sensor(B), Light Switch(C), Vera
Box(D) and Pressure Pad(E), as show in Figure 9.

The PIR (also known as the Motion sensor) is used to detect movement in
the areas placed around the house. The Reed sensor device is mostly attached
by doors or windows to detect if they are open or closed. The Reed device was
reconfigured along with a dance mat to produce the pressure pad (shown in
Figure e), which we used to detect pressure on the bed. We can either place the
pressure pad on the bed or on the sofa to detect if a user is occupying any of
these positions.

Figure 9c is a light switch, connected to the Vera smart box, which
communiAscates with the sensors and actuators. This can be used to carry
out the automation process without using the switch itself. Figure 9d depicts
the smart hub (Vera Box) that manages the z-wave sensors and actuators
connected to it through its own WiFi network. Vera accepts requests to query
or modify the state of the sensors/actuators. We used Vera and the reasoning
system to execute the instructions in the specification file, which will trigger
the necessary outputs in the smart home.

2346 C. L. OGUEGO ET AL.

(a). Movement Sensor

(c). Light Switch (d). Vera Box (e). Bed Pressure Pad

Figure 9. Smart devices and equipment for experiments.

The next section will illustrate our first demo using the preference mechan-
ism, with our system and an informal scenario to demonstrate how different
user’s input can immediately impact the system’s output. But first, we will
introduce our preference management tools.

Preference Management

One key aspect of our system is to provide means, which allow users to manage
their preferences easily. The system uses the managed preference(s), to reason
about the preferences of the user, and provides output that aligns better with
the services required by the user. A simple interface has been produced to help
users manage their preferences and also help to manage some of the complex-
ities in users’ preferences in a smart home. The interface consists of textual
menus for simplicity, incorporating the P ref notion introduced in Oguego et
al. (2019 b) to allow users to select and rank their preference(s) at their
convenience. Depending on how the user ranked their preference(s), the
system output will be affected.

There are other preference interface that exist for smart home, such as
“assist-robot interface” Wang, Saboune, and Saddik (2013) that works in two
modes. Portable-Mode (whesn the user is not at home), and Robot-Mode
(when the user is at home). Another is a “Virtual assistant” (Ospan et al.
(2018)), used as a control interface for smart home environments, by using
voice or text command. Complementing these interesting innovative interfaces,
we only aim to only provide a simplified interface to manage preferences in a

APPLIED ARTIFICIAL INTELLIGENCE . 2347

smart home, as most of the existing ones are not ideal for all users, especially
older adults whose technical ability tends to decline affecting their ability to
interact with complex technological advancements Ruzic et al. (2016).

Preference Management Tool (Interface)

The interface was developed to give users the ability to prioritize their pre-
ferences, gives them the freedom to modify it any time, and it will take effect
immediately. The developed interface allows existing users to easily retrieve
the profile, modify the preference ranking, and update the details. New users
can also create a new profile, which can be done on the same home page.

Figure 10 depicts a three-step process of creating a new profile, as it only
requires the user to enter and submit a name. This transfers the user to the
next page where the user can select from a list of available preferences they
want to prioritize. The third page is where the users can set priority on the
selected preference(s).

Figure 11 illustrates the modification process of preference(s) from existing
users. They only need to select their name from the drop-down list on the
home page, which will load their profile consisting of their preferences and
ranking. The user can then modify the preference(s) they want and update it,
ready to be used immediately.

RETRIEVE OR SETUP
USER(S)

SELECT YOUR
PREFERENCE(S)

PRIORITIZE SELECTED
PREFERENCE(S)

i
8
9
10 Strong

Figure 10. Simple setting up of new users’ preference.

2348 (&) C.L OGUEGO ET AL.

RETRIEVE OR SETUP
USER(S)

Select User

Leonard
Mario
Juan

Jose

MODIFY SELECTED
PREFEREN CE(S)

For User: Bobby

Health7

Security Choose ¥

Figure 11. Retrieving and modifying existing preferences.

The research further provided an overall preference management frame-
work, which consists of the preference interface that has been discussed. The
preference management framework, as shown in Figure 12, depicts the flow of
the system. This starts from the user creating their profile or modifying the
ranking of their existing preference(s) using the preference interface, and
saved in the preference database. The system then uses the saved users’
preferences to provide the user the required service(s) or output. The system
can also use the users’ preferences ranking to solve any conflicting situation
detected during the process.

gume ntatio n

External world System
Sensors, Internet etc.|

Argument

Comparison
Preference (Conflict)
Criteria

[Users’ Preference
User Prefernce Order
Ranking (preference DB)

4
Y

Figure 12. Overall preference management system.

APPLIED ARTIFICIAL INTELLIGENCE . 2349

Further illustration (demo) has been provided using the brief scenario in
Section 7.2, to show how the changes in users preference ranking (using the
preference interface), can dynamically change in real-time the system beha-
vior, whilst the system is still running.

Using User’s Preferences to Affect System Output

As a guiding scenario, let us consider a user, Bobby, expects the lighting
scenario to adapt to varying circumstances. Below is the informal scenario,
which expresses how the user can prioritize their preference of “Comfort” over
“Light” and vice versa.

Bobby, an aged individual who lives alone, prefers the light to be “off” when he
is asleep at night to provide more comfort. However, he might sometimes prefer
the light to be “on,” as it is safer for him to move around when he wakes up
during the night.

The first sentence of the scenario indicates that Bobby wants the system to
turn the bedroom light “off” when he is asleep as he prefers the comfort over
keeping the light “on.” In this case, Bobby has decided to rank his “Comfort”
higher (probably 6) than “Light” (probably 4). When the system executes the
rules (found below), which states that if Bobby is on bed for 30 seconds
([30s.|BedPadPressure) and there is no movement in the bedroom
(#BedRoomMotion), the system will switch “off” the
light (#BedRoomLight).

ssr(([-][30s.]BedPadPressure A #BedRoomMotion A prefComfort) ->
#BedRoomLight);

ssr(([-][30s.]BedPadPressure A #BedRoomMotion A prefLight) ->
BedRoomLight);

The second sentence in the description explains that Bobby might some-
times prefer the light “on” for safety reasons when he wakes up during the
night. Let’s assume Bobby decides to change his preference and ranks “Light”
higher (6) than “Comfort” (5). When he goes back to bed, after 30 seconds or
more of being on the bed, the system will still continue to keep the lights “on,”
as he has now indicated that he prefers “Light” over “Comfort.”

The link Oguego et al. (2019 b) consists of two separate video demos,
showing how the home reacts toward Bobby’s situation, as the system reacts
to his preference changes (preferring “Light” over “Comfort” and vice
versa).

Figure 13 indicates how we modeled part of Bobby’s scenario (from Figure
12), when he decided to keep the light “on” while he is asleep, so it is safer for
him to move around when he wakes up during the night. As seen from Figure
13, Bobby modifies his preferences ranking to prefer “Light” over “Comfort.”

2350 (&) C.L OGUEGO ET AL.

Service(s)
L

A,-guluentatio n
System
Argument
Comparison

Preference
Criteria
(tspec > tprefs > tpers) Users’ Preference
Order
Heglth
Safety
User Prefernce
Ranking

Figure 13. Modeled bobby’s situation of keeping the light “on.”

The ranking order is saved in the database, and shown on the bottom right of
the figure. Since Bobby ranked the “Light” higher than “Comfort,” the system
provides Bobby the service of keeping the light “on.”

Furthermore, this research modeled the preferences of different users, that
have different preference desires. Section 7.3 discuss how two different users
with opposite desires can be modeled using the developed preference manage-
ment mechanism.

Modeling Different Users Preferences

This section models the preferences of two different users. One of the user
(Sara), cares more about her health situation compared to other aspects of her
preferences, while her son Joe fancies his pleasure and fun more.

In addition to Sara’s preferences on handling light automatically (as seen in
Section 2), she also wants the system to be aware of her health circumstances,
and provide her with information on food consumption (if it contains sugar,
since she is diabetic), especially for her favorite product (“Cake”) which she
buys from a grocery store.

If we assume Sara’s “Health” (assigned 9) is more important than “Safety”
(assigned 7) and “Safety” is more important than “Pleasure,” “Light,” and
“Fun” (with all having an equal level of importance assigned 5) but are more
important than “Comfort” (assigned 4). Then, using the notion introduced in
Section 3 of our previous study Oguego et al. (2019 b), we can represent Sara’s
preference in our system as follows:

Prefsara = { finance, comfort, safety,
health, fun, pleasure}

APPLIED ARTIFICIAL INTELLIGENCE . 2351

O(Prefsara) = { (9, health),
(7, safety),
ES,pleasure), (5, Light), (5, fun),

4, comfort)}

Meanwhile, Sara has a teenage son, Joe, who cares about pleasure and fun
above everything else. Joe also prefers his comfort over health, safety, and light.

We also assumed that Joe on the other hand, prefers “Fun” and “Pleasure”
(assigned 7) above “Comfort” (assigned 5), and “Comfort” above “Health,”
“Safety,” and “Light” (equal level of importance; 3). Using the same notion
introduced in Oguego et al. (2019 b), we can represent his preference ranking
as follows:

Prefioe = { comfort, light, safety,
health, fun, pleasure}

O(Prefyoe) ={ (7,fun), (7, pleasure),
(5, comfort),
(3, health), (3, safety), (3, light) }

The preference representation of Sara shown in Figure 14, while Joe's
preference representation is shown in Figure 15. However, Sara's representa-

tion will be used in the next section to illustrate how our system works when
conflict(s) arises

Hef?lth
Safety

Plea@un

Comfort

Figure 14. Sara’s preference ranking.

Fun Pleasure

Comfort

Health Safety Light

Figure 15. Joe's preference ranking.

2352 (&) C.L OGUEGO ET AL.

Illustrations and Demos of Scenarios

The implemented system (Hybrid Main), which comprises of a reasoning
system and the argumentation resolver, is used to demonstrate how the system
works, applying the scenarios mentioned in Section 2. The demo is in three
categories. The first demonstration was on the Hybrid System, which shows
the overall working of the application. This includes selecting a specification
file that contains rule(s), which the system compiles, and check for potential
conflict(s). Secondly, a light scenario to illustrate the working of the argumen-
tation system, using preference criteria initially discussed and applied in this
precedence order: o = { =, =, =, F With = > >

Lastly, the integration of a large chain store’s API, as we use the system to
access their data and search for a specific type of product (“Cake” in this case).
This illustrates the flexibility of our research in terms of the sources of data and
the type of contexts being considered.

Hybrid System lllustration

Figure 16 depicted the interface of the Hybrid System, which is used to load a
specification file. The specification file contains a set of rules, which should be
selected using the “Select Specification File” button. Depending on whether
the rules in the Specification file contains potential conflict(s) or not, the
system will activate/enable either the “MReasoner” button or the
“Argumentation Solver” button.

Launching the Hybrid system will disable both the “MReasoner” and
“Argumentation Resolver” buttons, as shown in Figure 16. The specification
file will need to be selected (which can be selected from any location on the
computer) as shown in Figure 17. When the specification file is selected, the
compiler (referred to as conflict analyzer) compiles the file for potential

& Open ﬂ
Look In: ‘[j hybrid "‘ E
=3 SEArch [} comeHome&GoingToSleep.txt [
[BedroomLight-conflict.txt, [conflicts.txt 0
<« Il] [»
File Name: [BedroomLight-conflict txt |
"""" Files of Type: |l Files [~
|

‘ Load Results/Solved Conflicts ‘

T

Figure 16. Hybrid interface.

APPLIED ARTIFICIAL INTELLIGENCE . 2353

| Select Specification File |

idPassibleConflict [detected_time [conflictName

Click Cells for Details of Solved conflict...
MReasoner Argumentation Solver

Load Results/Solved Conflicts

Figure 17. Browsing to select specification file.

conflicts. If no conflict is detected, the “MReasoner” button is enabled (allow-
ing the system to run the specification file without the involvement of the
conflict analyzer) and the “Argumentation Solver” button stays disabled as
shown in Figure 18. If potential conflict(s) is/are detected, the “Argumentation
Solver” button is enabled and the potential conflict(s) is displayed in the text
area as shown in Figure 19. The system can now run the file and solve any
actual conflict from the potential ones.

Figure 19 shows three potential conflicts that were detected after the
specification file (“BedroomLight-conflict.txt”) was selected, but only the
detected conflict(s) among them was solved during execution. Meanwhile, to

Select Specification File

idPossibleConflict detected_time conflictName
1 2019-06-18 18:41:31.0 BedRoomLight
2 2019-06-18 18:41:31.0 LivingRoomLight
3 2019-06-18 18:41:31.0 ToiletLight

Click Cells for Details of Solved conflict.

Argumentation Solver

Load Results/Solved Conflicts

Figure 18. The MReasoner button is enabled as 'NO' potential conflict is detected.

2354 C. L. OGUEGO ET AL.

Select Specification File

idPossibleConflict detected_time conflictName
1 2019-09-02 12:19:05.0 LivingRoomLight
2 2019-09-02 12:19:05.0 ToiletLight
3 2019-09-02 12:19:05.0 BedRoomLight

This detected conflict was solved using User Preferences
MReasoner Argumentation Solver

Load Results/Solved Conflicts

iter... | system_t...| Living... | LivingR... | ToileiLi... | ToiletM...| BedRoomLight | BedRoomMotion | BigPad...| prefLi...| prefC...
18 |1567423... |false false false false false true false true true =
19 1567423... [false false false false false true false true true =
20 [1567423.. [false false false false false true false true true

21 [1567423.. [false false false false false true false true true

22 1567423... [false false false false false true false true true

23 [1567423.. [false false false false false I\ [false false true true

24 |1567423.. [false false false false false Jralse false true true

25 [1567423.. [false false false false false false false true true

26 [1567423.. [false false false false false false false true true

27 1567423... [false false false false false false false true true

28 [1567423.. [false false false false false false false true true

29 [1567423.. [false false false false false false false true true

30 [1567423.. [false false false false false false false true true

31 [1567423.. [false false false false false false false true true |
2 [15A7427 lfalse [false falsa falsa falsn falsa [falsa true ltrie =

Figure 19. The argumentation solver button is enabled as potential conflict is detected.

check for conflict(s), the compiler only compiles the last part of the specifica-
tion file that consists of the rules. Below are the rules that were compiled in this
case:

ssr((<->[12:00:00-18:00:00]BedRoomMotion A BigPadlIdle) ->
BedRoomLight);

ssr((LivingRoomMotion) -> LivingRoomLight);

ssr((#LivingRoomMotion) -> #LivingRoomLight);

ssr((ToiletMotion) -> ToiletLight);

ssr((#ToiletMotion) -> #ToiletLight);

ssr(([-][30s.]#BigPadldle A #BedRoomMotion 4 prefLight) ->
BedRoomLight);

ssr(([-][30s.]#BigPadldle A #BedRoomMotion A prefComfort) ->
#BedRoomLight);

The three potential conflicts from the above rules are related to conclusions
involving: BedRoomLight, LivingRoomLight and ToiletLight. However,
LivingRoomLight and ToiletLight are only potential conflicting, as the conse-
quence opposes each other. Here, the property BedRoomLight, has been detected
as a conflict, as both rules states that if the pressure pad is “not” idle for
30 seconds (|—|[30s.]#BigPadldle) and no movement detected in the bedroom
(#BedRoomMotion), then the bedroom light being either “on” or “off,” will be

APPLIED ARTIFICIAL INTELLIGENCE . 2355

MODIFY SELECTED
PREFERENCE(S)

For User: Sara
Health 3 "/
Heating 3 v

Security Choose ¥

Safety 7
Pleasure 5 %
Fun Choose ¥

News 7 M
Football 6 %

SUBMIT RESET

Figure 20. Interface showing that the user prioritized comfort over light.

decided based on the preference ranking of the user. If the user ranks “Comfort”
(prefComfort) higher than “Light” (prefLight), then the bedroom light goes “off”
(#BedRoomLight) else, the bedroom light stays “on” (BedRoomLight).

The scenario was executed in the real environment, as the events are
triggered with either sensors and/or actuators. Figure 20 indicates that the
user has set his/her priority to prefer “Comfort” over “Light,” in this case. This
means that when the conflict is detected, the system first tries to resolve the
argument with “Specificity,” which will not be possible, as both rules are
equally specific. The system will then try to resolve the argument using
“Preference,” and from Figure 20, “Comfort” has higher priority over
“Light.” So #BedRoomlLight wins the argument, and the system switches “off”
the bedroom light when the user is on the bed for more than 30 seconds and
no movement is detected in the bedroom.

The Hybrid interface also has the ability to populate the results of the
properties value, and also pinpoint the exact instant or interval the conflict(s)
were identified and solved. The Hybrid system also provides the details of how
the conflict(s) was/were solved. During or after execution the results are
display using the "Load Results/Solved Conflicts” button. Figure 21 shows

2356 C. L. OGUEGO ET AL.

i External World

Argumentation System

Bedroom Light Argument

R NN

Light “on” Light “off”

Preference Criterion Argument Comparison

R = {m s Tiperer rorer] || A Prroee B As Ble

B » A tpref
Sara > o 0
Q >—tspec > (>tprefs7 >tpers) A »tpres B B >> r A
B »tpers A epref

User Preference Ontology $

User Preference Handling Module

i
Sara’s Preference Order
Heﬁilth
Safety
i B >>tpref A

. PleaSWn Ld
i Light
L

Figure 21 Hybrid system highlighting the columns where conflict was detected and solved.

results which are loaded on the below text area of the Hybrid interface, and the
highlighting identifies the areas where conflicts were detected and solved
immediately.

Furthermore, clicking on any of the highlighted cells, additional informa-
tion on how the conflict was solved at that instant will be provided. Since
BedRoomLight was the conflicting state/property, and the argument was
solved using “user preference,” the system highlights the conflicting cells
within the BedRoomLight column. When any of the cell is clicked, the reason

APPLIED ARTIFICIAL INTELLIGENCE . 2357

how the argument (BedRoomLight) was solved, gets displayed in the middle
text-area of the Hybrid interface, as shown in Figure 21. If any other area (with
no highlighting) is clicked, the text area will display “No conflict detected”

We further applied this argument (BedRoomLight) to our preference archi-
tecture (shown in Figure 1) which we introduced in our previous work Oguego
et al. (2019 b), to illustrate how our produced system functions internally.
Figure 2 shows how the argument was fully applied to the preference archi-
tecture, and how the bedroom light conflict was solved using the preference
ranking (in Figure 20) of the user (Sara).

As shown in Figure 2, compared to the overall preference architecture in
Figure 1, the “External world” where information comes into the system from
the outside, was replaced by the equipment in the bedroom. The equipment
consists of the movement sensor, which detects if the user is present in the
bedroom or not. The pressure pad (known as BigPadldle), placed underneath
the mattress, detects that the user has been on the bed continuously for the
past 30 seconds ([—][30s.|#BigPadldle), and the light switch automatically
goes “on” or “off” depending on Sara’s preference ranking.

Since the system could not decide whether to keep the bedroom light
“on” or “off,” a conflict resolution process had to take place. From Figure
2, the system considers the arguments as in “A” (Bedroom Light “on”) or
in “B” (Bedroom Light “off’) as shown in the top right side of the
architecture. The system then runs the check using Specificity (as shown
in “Argument Comparison”) and from the rules “A” is not more specific
than “B” (A B) and vice versa (BiecA). The system then moves to the
next preference criterion, which according to the order of precedence, is
“user preferences.” The system then runs another check, in the “User
Preference Handling Module,” where the system checks the database to
access the user (Sara) preference ranking order, for “Comfort” an
“Light.” From the bottom left side of the figure (Figure 2), it shows that
Sara ranked “Comfort” higher than “Light,” also shown on her preference
profile in Figure 20. The profile indicates that Sara ranked “Comfort — 7”

o

32 @ select * from sensors.resolvedconflicts;
<
| ResultGrid | EH 4% Fiter Rows: Edt: g4 Eb b | exportimport: By S | Wrep Coll Contents TR
Toiettight Toil BedRoomlight
S —= pontioht

=

idResolvedConflict iteration resolved_time Li BigPadldle preflight prefComfort solved_reason
1 0 19-07-11 O L. B .

1 2019-07-11 15:21:40 LM Y 0 Y
= 1 20190711 15:21:41 T8 o 0 o
3 2) 0 L]
4 3 ol 0 wy
5 4 2019-07-11 15:21:45 . 0 L]
6 5 2019-07-11 15:21:47 oy 0 .
7 6 2019-07-11 15:21:48 o 0 K
s 7 o) 0 o
s s o 0 sl
i & oy 0 = | User preferences |
1 10 e 0 e
2 11 Izl 0 sl
13 12 oy 0 ey | user preferences |
14 13 L 0 oy
15 14 L n s bt j<or broforonce

Figure 22. Database showing how the conflict was solved using the preference criterion, “User
Preferences”

2358 (&) C.L OGUEGO ET AL.

(argument “B”) and “Light - 6” (argument “A”), which will allow the
system to turn the bedroom light “off,” thereby solving the conflict with
“B” winning the argument using user’s preferences (B> A).

Figure 22 further depicts the database records, and the last column indicat-
ing the reason (“User Preferences”) the system applied in solving the bedroom
light conflict.

The following link (Oguego (2019a)) contains a video demonstration of the
Bedroom conflict scenario, as a supporting evidence of the explanation and
illustration made in this section. We have also provide the data set result of the
experiment, to indicate details of the full output of the validation process.

This research further conducted a supplementary demonstration in Section
8.2, to show that our system is able to detect and solve all three preference
criteria earlier discussed.

Solving Conflicts Using Three Preference Criteria (Specificity, User Preferences,
and Persistency)

A specification file was written to trigger potential conflicts in all three areas of
the preferences criteria, as the intention was to illustrate that our system is
capable enough to detect conflicts at any time, even at the same interval and
solve them using any of the preference criteria. Below is the specification file
with the rules, which consist of three potential conflicts in relation to the
preference criteria:

states(BedroomMotion, BedRoomLight, ShowerMotion,
ShowerRoomLight, ToiletMotion, ToiletLight, CorridorMotion,
CorridorLight, BigPadldle, prefComfort, prefLight);

is(CorridorMotion); is(ShowerMotion); is(BigPadldle); is(ToiletMotion);
is(BedroomMotion); is(prefComfort); is(prefLight);

holdsAt(#CorridorMotion, 0);

holdsAt(#CorridorLight, 0);

holdsAt(#BedRoomLight, 0);

holdsAt(#BedroomMotion, 0);

holdsAt(BigPadldle, 0);

holdsAt(#ToiletLight, 0);

holdsAt(#ToiletMotion, 0);

holdsAt(#ShowerRoomLight, 0);

holdsAt(#ShowerMotion, 0);

a . .
CorridorLight@15 b —CorridorLight@T

Corr '1(101?1\'1@%}“@[1 CorridorMotion@I; PrefComfort@I,

Figure 23. Argument tree for corridor-light “on” or “off.”

APPLIED ARTIFICIAL INTELLIGENCE . 2359

BedRoomLight@I, —BedRoomLight@I,

BedroomMotion@]; BigPadldle@I; BigPadldle@r,

Figure 24. Argument for bedroom-light.

a :
—ShowerRoomLight@I5 ShowerRoomLight@I,

ShowerMotion@1I; CorridorMotion@I;

Figure 25. Argument for shower room-light.

holdsAt(prefComfort, 0);

holdsAt(prefLight, 0);

ssr((CorridorMotion /A prefLight) -> CorridorLight);

ssr((CorridorMotion A prefComfort) -> #CorridorLight);

ssr((BedroomMotion /A BigPadldle) -> BedRoomLight);

ssr((BedroomMotion) -> #BedRoomLight);

ssr((ToiletMotion) -> ToiletLight);

ssr((ShowerMotion) -> ShowerRoomLight);

ssr((CorridorMotion) -> #ShowerRoomlLight);

The rules were created to check for the “User Preference” aspect of conflict,
as the term prefLight and prefComfort indicate the preference aspect, which
triggers either the corridor light “on” (CorridorLight) or the corridor light “oft”
(#CorridorLight). The rules also checked for the “Specificity” aspect of the
conflict, as the potential conflict of bedroom light is determined based on
which of the arguments (“BedRoomlLight” or “#BedRoomLight”) is more

‘ Select Specification File

idPossibleConflict detected_time conflictName
1 2019-06-18 18:57:45.0 CorridorLight
2 2019-06-18 18:57:45.0 BedRoomLight
B 2019-06-18 18:57:45.0 ShowerRoomLight

Click Cells for Details of Solved conflict...

Argumentation Solver

Load Results/Solved Conflicts

Figure 26. Identified potential conflicts for sara.

2360 (&) C.L OGUEGO ET AL.

specific or informed. The system also checked for “Persistency” notion, to
know if the property (state) keeps the true value over time when there is no
reason for the property to change its value, unless there is/are reason(s) to
believe otherwise.

We applied Sara’s preference ranking order (discussed in Section 7.3, Figure
14) for the demonstration of this scenario. Meanwhile, Figure 23,24,25 illus-
trates the argument of all three potential conflicts in argumentation tree form,
using the “MEETS” interval relation initially discussed.

When the system is in execution, it processes the specification file and
checks for potential conflict(s). From the rules, the potential conflicts are
CorridorLight, BedRoomLight, and ShowerRoomLight and are stored in the
potential conflict table, and display on the Hybrid Interface (shown in Figure
26). Each time a new specification file is processed, it erases the previous
record(s) in the potential conflict table and saves the current potential conflict-
(s) identified (if any, otherwise the potential conflict table will remain empty).

The first potential conflict (CorridorLight) is an actual conflict, as the
system does not know whether to turn “on” or turn “off” the corridor
light. However, this depends on which of the preferences (“Light” or
“Comfort”) has higher priority. For this scenario, Sara’s preference ranking
order shown Figure 14 was adopted, asprefLight was assigned the value 6 and
preComfort was assigned the value 4. The corridor light was turned “on” as
CorridorLight won the argument based on prefLight having higher priority
over preComfort.

The second potential conflict (bedroom light) was decided based on
“Specificity,” so BedRoomLight won the argument over #BedRoomLight. This
is because the argument (BedRoomLight) had additional information
(“BedroomMotion”) that should supports the argument of turning the
light “on.”

The argument representation tree of the “Bedroom Light” (as shown in Fig.
24A and 24B), further explains why argument “A” wins the argument based on
specificity, with tree “A” having additional information than tree “B.”
“BedroomMotion” is a motion sensor (Figure 9A) which is used to detect
movement around the bedroom, along with the pressure pad being idle
(BigPadldle, shown in Figure 9E), will keep the light “on.”

The current value for the shower room light persists which is
#ShowerRoomLight, meaning that the shower room light remains “off.”
Since both “Specificity” and “User Preferences” cannot solve the conflict, the
property (“Shower-room Light”) retains the previous value of keeping the light
“oft,” unless there is an inference of new information into the system. The
previous value in this case is “off” (holdsAt(#ShowerRoom — Light,0);) as
shown in the specification file. This signifies that the value of the “Shower-
Room Light” property at the starting point or initial state, was “off.”

APPLIED ARTIFICIAL INTELLIGENCE (&) 2361
Note, all rules follows the order of precedence (. > = . > ™) iD
trying to solve any conflict, regardless of how the specification file is written.
This means any detected conflict first tries to be solved using “Specificity” and
if it cannot be solved, the system then tries to use “User Preferences.” If the
conflict cannot be solved using “User Preferences” (maybe because the
Preference properties are equally ranked), it then continues to keep the
property’s true value (“Persistency”).

Select Specification File
idPossibleConflict detected_time conflictName
1 2019-09-16 14:42:17.0 CorridorLight
2 2019-09-16 14:42:17.0 BedRoomLight
3 12019-09-16 14:42:17.0 'ShowerRoomLight
This detected conflict was solved using Persistency
MReasoner Argumentation Solver

Load Results/Solved Conflicts
iteration | syste... | BedRo...| BedRo...| Showe...| ShowerRoomLight | Toilet..| Toilet...| Corri... | Corri...| BigP... | pref.. |prefi...
255 156864...|true true true true true [true [false [true |true [rue [true |
256 156864...true true true true true ltrue false |true [true true [true
257 156864...|true true true true true [true [false [true |true [true [true
258 156864...|true true true true true [true [false |[true |true jtrue |true
259 156864...|true true true true true [true [false [true |true [rue [true
260 156864...|true true true false N true ftrue [rue true |true [true |true
261 156864...|true true true false el true [true ftrue [true |true ftrue [true
262 156864...|true true true false true ftrue [true true |true [rue |true
263 156864...|true true true false true [true ftrue [true |true [true [true
264 156864...|true true true false true [true ftrue [true |true ftrue [true
265 156864...[false |[true false [false true [true ftrue [true |true [true [true
266 156864.. [false [true false [false true [true ftrue [true |true [true [true
267 156864...[false ltrue false false true ltrue true true |true true [true
268 156864...[false [true false [false true [true ftrue [true |true [true [true S
260 15RRAA_lfalse ltrue false lfalea true ltrue e ltrus Boe ltrue e 1Y

"o

Figure 27. Hybrid system showing all three detected and solved of conflicts; “specificity,” “user
preferences” and “persistency.”

32 ® select * from sensors.solvedconflicts;

sultGrid | [4% Fiter Rows: |edt: @B B Eh | eporyimport: B {81 | wrep Coll Content: T8 | Fetch rows: & 590 a
idResolve iteration resolved_time i i ight TolletMotion Toiletlight CorridorMotion Corridorlight BigPadidle prefComfort preflight solved_reason #
85 255 2019-09-16 14:47:18 5 - - [= - AT a ificit

86 2% 2019-09-16

87 257 201909-16 14:47:20

88 258 2019-09-16 14:47:21

88 259 2019-09-16 14:47:23

%0 259 2019-09-16 14:47:23 B =
91 259 2019-09-16 14:47:23 = =
92 260 2019-09-16 14:47:24 =
93 260 20190916 14:47:24 [2 -
94 %0 201909-16 -
95 %1 201909-16 14: = .
% %61 20190916 144 _ E
57 261 2019-09-16 14:47:26 =
% %2 20190916 144 -
99 %2 201909-16 14: - -
100 %2 20190916 -
101 263 20190916 C R

02 263 201909-16 14:47:29 .

103 263 201909-16 14:4

104 264 20190916 ferences
105 %5 201909-16 1447:
106 266 201909-16 14:47:32 _ — B B

Figure 28. Database showing all three types of conflicts; “specificity,” “preference” and
“persistency.”

2362 (&) C.L OGUEGO ET AL.

Figure 27 shows the intervals (highlighted) where conflicts were detected and
solved for this scenario. As seen from the screenshot, selecting a column from
the bedroom light row, the reason (“Specificity”) used in solving the conflict is
displayed in the middle text area. The figure also illustrates that conflicts were
solved on other properties (“Shower-room Light and Corridor Light”) as well,
which were solved with persistency and user preferences, respectively.

Figure 28 illustrate some of the the database log of the solved conflict. The
“iteration” column states the exact iterations where the conflicts were detected
and solved, the properties columns (Bedroom Light, Shower room Light, and
Corridor Light) display either a new conclusion or retain the previous value.
The values in the database indicating 1 or 0, which represent true or false
displayed on the Hybrid interface. The last column (“resolve_reason”), depicts
the reason the Hybrid system was used to resolve the conflict. In addition, the
system is able to solve multiple conflicts at the same time, using any or all of
the preference criteria in the iteration.

The demonstration link (Oguego (2019¢)) indicates the illustration dis-
cussed above, using the aforementioned specification file in this section.
Attached in the same link is the complete data set, showing more logs of the
detected conflicts and how they were solved, applying the preference criteria
where necessary. The validation was conducted for 2 hours.

Supermarket Chain Store (Tesco) API

The research took another step to validate the effectiveness of the Hybrid
system using live data. The live data were from one of the top supermarkets in
the United Kingdom, known as Tesco. We requested for the API on their
grocery products, which was used to filter “Cake” product, and check if the
product description contains sugar. The aim was to warn the user, Sara, who is
known to be diabetic, about the content of the Cake product, but it is Sara’s
decision to buy the Cake or not. The system also identifies the Cake products
that do not contain sugar, which gives Sara more options of deciding to buy
them or not.

So based on the users’ ranking preference (Sara in this case), since she
prefers health (prefHealth) over pleasure (prefPleasure) as seen in Figure 14,
the system should advise her “not” to buy the cake
(#Occ_SystemAdvicesBuyCake). If for some reason Sara changes her prefer-
ence ranking of preferring “Pleasure” over “Health,” the system will then
advise the user to buy the cake (Occ_SystemAdvicesBuyCake). In addition, if
it happens that all the filtered cake product do not contain sugar, Sara can
equally choose to (or not to) order from any of the available cake products that
do not contain sugar and vice versa.

»

APPLIED ARTIFICIAL INTELLIGENCE . 2363

Considering the healthy eating case study in Section 2, the below specifica-
tion file with rules was developed to check for the availability of a particular
product, “Cake.” If found, the rules check the product description (details of
the cake) for sugar, and then advises the user depending on her preference
ranking.

states(BuyCake, Diabetic, CakeOnSales, Sugar, Occ_CakeAvaliable,
Occ_SugarDetected, Occ_SystemAdvicesBuyCake, prefPleasure, prefHealth);

is(Occ_CakeAvaliable);

is(Occ_SugarDetected); is(Diabetic); is(prefPleasure); is(prefHealth); is
(Occ_SystemAdvicesBuyCake);

holdsAt(#BuyCake, 0);

holdsAt(Diabetic, 0);

holdsAt(#CakeOnSales, 0);

holdsAt(#Sugar, 0);

holdsAt(Occ_CakeAvaliable, 0);

holdsAt(#Occ_SugarDetected, 0);

holdsAt(#0cc_SystemAdvicesBuyCake, 0);

TESCO Labs

Home Documentation APIs Support

Gl et Grocery Search

Search

Returns matching grocery products based on search terms provided.

Query parameters

query cake
offset 0
limit 50

=+ Add parameter

Headers
Ocp-Apim-Subscription-Key | .. .ererereerreennn: ®

=+ Add header

Authorization

Subscription key Primary-9b74.. % v

Figure 29. Requesting for Tesco URL to search for Cake Product.

2364 (&) C.L. OGUEGO ET AL.

’ Select Specification File ‘

idPossibleConflict [detected_time [conflictName
1 |2019-09-10 16:30:45.0 |Occ_SystemAdvicesBuyCake

This detected conflict was solved using User Preferences
IReasoner Argumentation Solver

Load Results/Solved Conflicts

iteration | system_...| BuyCake | Diabetic | CakeOn. Sugar | Occ_Ca...| Occ_Su... |Occ_Sys...| prefPlea...| prefHealth
80 1568129... [false true true true false true false true true -
31 1568129... [false true true true false true false true true =
82 1568129... [false true true true false true false true true
83 1568129... [false true true true false true false true true
24 1568129... [false true true true false true false true true
85 1568129... [false true true true false true true n_ ltrue true
86 1568129... [false true true true false true true W [true true
87 1568129... [false true true true false true true true true
88 1568129... [false true true true false true true true true
29 1568129... [false true true true false true true true true
90 1568129... [false true true true false true true true true
91 1568129... [false true true true false true true true true
92 1568129... lfalse true true true false true true true true

Figure 30. System advice sara not to buy cake since her “health” has higher priority over
“pleasure.”

holdsAt(prefHealth, 0);

holdsAt(prefPleasure, 0);

ssr((Occ_CakeAvaliable) -> CakeOnSales);

ssr((CakeOnSales A prefPleasure) -> Occ_SystemAdvicesBuyCake); ssr
((Occ_SugarDetected) -> Sugar);

ssr((DiabeticASugar/ACakeOnSales/prefHealth) ->
#0cc_SystemAdvicesBuyCake);

Figure 29 depicts how the link to the data is generated from Tesco Labs.
According to the search parameter, the product to be queried needs to be
entered (Cake in this case), the “offset” indicates where the search should
commence from. If the “offset” is 10, the search result is produced from the
11th product, and the “limit” is how many products you want to limit the
search to. This can be any number, 12, 50, 67, or 500 (which is the maximum at
a time). When these parameters have been set, it will generate a url which will
be used (along with a private subscription key) to access the filtered product.

Figure 30 illustrates the Hybrid interface after system’s execution. The
specification file is first compiled to check for potential conflict(s)
(Occ_SystemAdvicesBuyCake in this case) as shown in the Figure 30, but, the
system is yet to advise Sara to buy the Cake or “not.” During execution, the
Hybrid system accesses the URL online to check for the availability of the
product, Cake. If Cake is available, it means the Cake is up for sale at that
moment. The system then checks from the list of Cakes available, to know if

APPLIED ARTIFICIAL INTELLIGENCE . 2365

the product description contains sugar. If sugar is found in the description, the
system advises Sara “not” to buy the product (as seen from the scenario) due to
her health condition, in addition to her preference priority of Health
(prefHealth) over Pleasure (prefPleasure), as seen in Figure 14.

Considering the rules on the specification file for the Tesco API, one might
ask why “User Preference” criteria was used to solve the conflict instead of
“Specificity.” “Specificity” as we know (when comparing arguments), is a way
of preferring the best-informed argument. Specificity is also based on the
structure of the arguments, and when the argument is incomparable or equi-
specific Augusto and Simari (2001), the system will then apply the next
preference criterion (user preference in this case). The argument
Occ_SystemAdvicesBuyCake, is incomparable because one of the arguments
has a unique property the other argument does not have. So, this cannot be
used to decide which one is preferable. However, if both arguments were as
follows:

ssr((CakeOnSales /A prefHealth) -> #Occ_SystemAdvicesBuyCake);

ssr((DiabeticASugarACakeOnSales/prefHealth) ->
Occ_SystemAdvicesBuyCake);

The notion “Specificity” will be applied in this case, as
Occ_SystemAdvicesBuyCake will win, as the argument is more informed than
the other argument. Since the argument for #Occ_SystemAdvicesBuyCake
does not contain any supporting property the argument for
Occ_SystemAdvicesBuyCake does not have, “Specificity” criterion can be used

SN product id _product_name super_department _department description content_que unit_price _price _ retrieved_date tpe A
|55 283330081 Cadburv Chocolate Mii Roll SPack Bakerv IChocolate flavoured soonae with a vanilla flavour creme. cove... 5 016 08
|56 264369712 Tesco Almond Finaers 5 Pack Bakerv 15 Almond flavoured soonae cakes toooed with half an amond.... 5 02 1
|57 268322208 Tesco Mini Chocolate ComfiakeBit... Bakerv 115 Cornfiake dlusters covered in mik chocolate. Made with Mik... 15 o2 18
|58 262780947 Almondv Daim Chocolate Cake 400G ~ Frozen Food Ichocolate cake with Daim fmik chocolate coated almond caram... 0 075 3
|59 296852241 Mcvities Diaestive Caramel Sice 5 ... Bakerv IDiaestives Sices Tooved with Caramel & Mik Chocolate/www. 1... 124 05 072
|60 295848818 Cadburv Rasoberrv MiniRoll 10 Pack Bakerv IGolden soonae with olum and rasoberry fam and a vanila flava... 10 025 2.5

61 287504132 Cadburv Rasoberrv MiniRol 5Pack Bakerv /Golden soonae with olum and rasoberrv fam and a vanila flavo... 5 016 08
|62 268770593 Tesco Crisov Caramel Bites 20 Pack Bakerv ICaramel and arisoed rice bites part coated in mik chocolate. E) 0.09 18

63 297571030 Tesco Cookies & Cream Cake Bakerv Ichocolate and madeira cake filed and covered with cookie cru... 1 13.0 13 20190510 16:38:42 Nosuaar
|64 207544495 Mcvitie's Jaffa Cakes 10 Pack Food Cunboard 110 Licht Soonae Cakes with Dark Cracklv Chocolate and a Sma... 10 005 05 20190910
|65 251816699 Mr Kioina Mii Battenbera Cakes 5... Bakerv ICheauered Soonae Sandwiched Together with an Aoricot Filln... 5 0164 082 20190910
|66 285313228 Tesco Rose Bouauet Cake Bakerv ISponoe cake filed with rasoberry iam and frosting. covered an... 1 110 11 201908-10 16:31:42 Nosugar
|67 282051574 Hoooers Chocolat MiniRols 10 Pack Bakerv Cakes. Cake Bars. ... /Chocolate flavour soonce rols with vanila flavour filna and co... 10 01 1 20190810 16:38:43 Nosugar
|68 300120975 MsMolv's 121ced Fairv Cakes Bakerv Cakes. Cake Bars. ... /12 Soonae cakes with olain, lemon or strawberry flavour idna.... 12 0063 0.5 20190910 16:31:43 No suar
|so 300503245 MaM' Chocolate B ool Celebrat.., Bakerv Cakes, Cake Bars. ... /Chocolate soonae filed and covered with a chocolate flavour f... 1 110 11 201909-10 16:31:43 Sugar
|70 301516206 Mcvitie's Jaffa CakeS Strawberry 1... Food Cuoboard Biscuits & Cereal Bars /10 Licht Sponae Cakes with Dark Cracklv Chocolate and a Stra... 10 0.05 05 2019-03-10 16:31:43 Nosucar
|71 284508478 Mcvities Jaffa Cake Bars 10Pack Bakerv Cakes. Cake Bars. ... /A saumbtious blend of luscious dark arackiv chocolate. lisht so... 10 025 25 2019-08-10 16:31:43 Nosugar
|72 300120998 Ms Mollv's 12 Fairv Cakes Bakerv Cakes. Cake Bars. ... /12 Soonae cakes. Lio smackinalv lovelv soonce cakes perfect .. 12 0063 075 201909-1016:31:43 No suaar
|73 299847773 Ms Mollvs Chocolate Fairv Cakes 1... Bakerv Cakes, Cake Bars. ... /12 Chacolate soonae cakes/\io smackinalv lovely soonae cakes.., 12 0063 075 20190910 16:31:43 No suaar
|74 251558848 Galaxv Cake Bars 5Pack Bakerv Cakes, Cake Bars. ... /Soonae cake bars with a chocolate cream centre covered in ... 5 03 15 2019-09-10 16:31:43 Nosudar
75 252479773 Real Lancashire Eccles Cakes Bakerv Cakes. Cake Bars. ... /Eccles cakes/For further detaik please 0o to our web site www... 4 0.4 16 2019-08-10 16:31:43 Nosuaar
|75 257617038 Tesco Small Chocolate Celebration... Bakerv Cakes. Cake Bars. ... fled d i 60 6 2019:05-10 16:30:43 Nosugar
|77 300735325 Tesco Jaffa Cakes Twin Pack 2826 Food Cuoboard Biscuts & Cereal Bars /24 Soft baked cakes and an orance centre. coated in dark cho... 282 0337 095 20190910 16:31:43 Nosuaar
|78 291396990 Tesco Jaffa Cake 4306 Frozen Food Frozen Desserts. I... /Baked orance filina on a soonce base. toooed with orance fla... 430 0,465 2 201909-10 16:31:43 No suaar
79 257373377 TescoHaoov Birthdav Cake Bakerv Cakes. Cake Bars. ... /Madeira sponae cake filed with rasoberry iam and buttercrea... 1 85 85 2019-08-10 16:31:43 Nosucar
|80 252657128 Mr Kinlina Battenbera Cake Bakerv Cakes. Cake Bars. ... /Cheauered Soonae Sandwiched Toaether with an Aoricot Filin... 1 10 1 20190810 16:38:43 Nosugar
|81 253904584 Tesco Stars Party Cake Bakerv Cakes. Cake Bars. fled with butter via. 1 67 67 20190510 16:31:44 Suoar
|82 261722967 TescoTriole Laver Chocolate Cake Bakerv Cakes. Cake Bars. ... [Three lavers of chocolate soonge cake. filed and covered with... 1 120 12 201909-10 16:3144 Nosudar
83 25031547 TescoFootbal Cake Bakerv Cakes. Cake Bars. ... /Madeira soonoe cake filed with rasoberry iam and buttercres... 1 80 § 201908-10 16:31:44 Sucar
184 267207059 Tesco Partv Cake Selection 12 Pack Bakerv Cakes. Cake Bars. ... /4Vanila k 12 0.15 18 2019-09-10 16:31:44 Sugar
|85 250221275 Galaxv Caramel Cake Bars SPack Bakerv Cakes. Cake Bars. ... /Soonae cake bars with a caramel centre covered in mik chocol... 5 03 15 20190510 16:38:44 Nosugar
|85 299370938 Mcvities Jaffa Cakes Twin Pack Food Cuoboard Biscuits & Cereal Bars /20 Liht Soonae Cakes with Dark Cracklv Chocolate and a Sma... 244 0,65 16 201909-10 16:31:44 Nosugar
|87 263501840 Norfolk Cake Co. Mixed FruitLoaf ... Bakerv Cakes, Cake Bars. ... /Made with aoole ice (from concentrate). 1 2.25 225 201909-10 16:31:44 No suaar
|88 300785204 Tesco Jaffa Cakes 1416 Food Cusboard Biscuits & Cereal Bars /Soft baked cake and a zinav orance centre. coated in rich dark... 141 0.42% 0.6 201909-1016:31:44 No sucar
89 258871840 Movities Jaffa CakeBars SPack Bakerv Cakes. Cake Bars. ... /A blend of dark cracklv chocolate. licht soonae and smashina o... 5 029 145 2019-08-10 16:30:44 No suaar
|90 291548490 Tesco Free From Carl The Caterol... Bakerv Cakes. Cake Bars. ... /Free from chocolate cake filed with chocolate flavoured fiostin... 1 60 6 20190510 16:31:44 Sucar
91 265217995 TescoMadeira Party Cake Bakerv Cakes. Cake Bars. ... /Madeira soonae cake with rasoberrv izm. filed and toooed wit... 1 60 6 201903-10 16:31:45 Nosugar
|92 271188921 Dr. Oetker Partv Candles 18 Food Cupboard Home Bakina 118 Partv Candles/Join our Webake Community to showcase vo... 18 0.056 L 2019-09-10 16:31:45 No sugar
93 297570993 TescoRainbow Cake Bakerv Cakes. Cake Bars. ... /Madeira soonae cake filed and coated with mult coloured frost... 1 120 12 201905-10 16:31:45 Sucar
|94 302088595 Maltesers Treat Cake Bakerv Cakes, Cake Bars. ... /Chocolate soonae cake covered with a chocolate frostinaand ... 1 80 8 2019:05-10 16:31:45 Nosugar
| 284515383 Tesco Birthdav Cake Cubes 15Pack Bakerv Cakes. Cake Bars. ... /15 Cubes of chocolate flavoured soonae cake filed with chocal... 15 0.667 0 20190910 16:3145 Nosugar
|96 300016978 Tesco Pink Flamingo Cake Bakerv Cakes, Cake Bars. ... /Pink soonae cake lavered with strawberrv iam. covered with ar... 1 120 12 201909-10 16:31:45 Sugar
|97 264983216 Tesco Celebration Cake Bakerv Cakes. Cake Bars. fled with b via.. 1 85 85 2019-05-10 16:31:45 Suoar
|38 272080844 Thomtons Celebration Cake Bakerv Cakes. Cake Bars. ... /Chocolate Soonae Filed and Covered with Chocolate Butterare... 1 120 12 20190510 16:34:45 Nosuaar
99 293943455 Emoi Celebration Cake Bakerv Cakes. Cake Bars. ... /Celebration Cake - Sonae with a laver of rasoberrv iam and's... 1 2.0 9 2010810
100 265991781 Cadbury Fske Cake Bakerv Cakes, Cake Bars. ... /Chocolate soonae lavered with chocolate flavour creme anda ... 1 110 11 2019-09-10 16:31:45 No sudar

(s o

Figure 31. Some database records of the filtered “Cake,” with last column indicating the cake with
“Sugar” or “No Sugar.”

2366 (&) C.L OGUEGO ET AL.

in solving this conflict. Figure 31 consists of all Cake products that were
extracted from the filter, with an additional column to inform the user
(Sara) which of the products contains “Sugar” or “not.”

A video demonstration of the Tesco API illustration is found here: Oguego
(2019 d)

Discussion

The aim of this study has been to improve preference management in Ambient
Assisted Living (AAL). Although there has been significant work in this area,
not enough has been done to facilitate inter-relation between AAL systems
and user preferences. This research has been carefully investigated, as we first
conducted a survey in the state of the art to identify existing ways user
preferences were handled in AAL Oguego et al. (2018a). Analysis of previous
work, especially on several well-known preference handling techniques (CP-
net, etc.) were conducted but they were lacking some important features useful
to solve practical problems.

One feature, which is expected naturally, is the dealing of human prefer-
ences, which can conflict in terms of “desires” with “needs” as there is a battle
with what we humans would like, but cannot have due to various reasons. The
dynamic changing of preferences over time is also another feature, as humans
can choose to decide something different at any point in time (internally) and
can also be affected by external influences, such as weather information or
health professionals advises.

This led to the consideration of argumentation as a possible formalism, as it
has the ability to handle inconsistent information and knowledge in relation to
time. We theoretically explored argumentation techniques in another study
Oguego et al. (2019 b), emphasizing how it can be applied to manage users’
preferences. The investigation concluded that it is a suitable mechanism to
study computational management of preferences. Other argumentation fra-
meworks were complemented with a user preference architecture (Figure 1),
to show how the proposed system will handle conflicting situations within
arguments. The exploration conducted enabled us to validate the usefulness of
argumentation as we illustrated this by applying several scenarios.

Our previous paper Oguego et al. (2019 b) further aimed to implement the
system, including developing a suitable interface that facilitates preference
flow, from the user to the system, with the integration of a reasoning system.
This research has been able to provide the proposed practical solution using
argumentation to manage users’ preferences in a real smart home.

APPLIED ARTIFICIAL INTELLIGENCE . 2367

Conclusion and Further Work

Argumentation is a powerful tool for reasoning with inconsistent knowledge
and time and the demonstrations conducted enabled us to validate its potential
to handle conflicting situations. As mentioned earlier, conclusions obtained by
the system are ‘justified’ through ‘arguments’ supporting their consideration.
Argumentation has been utilized along with the integration of a reasoning
system (MReasoner) and user preferences interface, to provide a useful tool
that resolves detected conflicts in a smart home. The implemented AAL
system for smart homes aims to increase users’ satisfaction, which is why it
has been developed to understand and respond to the preferences of users. The
system has been designed to automate and provide viable decisions for the
users through effective management of users’ preferences. This research did
not only aim to deliver an effective and efficient system for AAL, ease of use
was a necessary factor that we considered during the development process. We
provided an interface that enables users to manage their preferences easily in
an intelligent environment. Users should be entitled to personalized systems
according to their preferences, which should be reasonably easy for them.
Further work aims to focus on developing a mobile application version of
the interface and to investigate how to generalize the management of multiple
users conflicting preference(s) in the same environment simultaneously.

References

Allen, J. F. 1984. Towards a general theory of action and time. Artificial Intelligence 23
(2):123-54. doi:10.1016/0004-3702(84)90008-0.

Allen, T. E. 2014. Making CP-Nets (More) Useful. In Twenty-Eighth AAAI Conference on
Artificial Intelligence, 3057-58.

Amgoud, L., and C. Cayrol. 1998. “On the acceptability of arguments in preference-based
argumentation.” In Proceedings of the Fourteenth conference on Uncertainty in artificial
intelligence, 1-7. San Francisco, CA, United States: Morgan Kaufmann Publishers Inc.

Amgoud, L., and H. Prade. 2009. Using arguments for making and explaining decisions.
Artificial Intelligence 173 (3-4):413-36. doi:10.1016/j.artint.2008.11.006.

Amgoud, L., J.-F. Bonnefon, and H. Prade. 2005. “An argumentation-based approach to
multiple criteria decision.” In European Conference on Symbolic and Quantitative
Approaches to Reasoning and Uncertainty, 269-80. Berlin, Heidelberg: Springer.

Augusto, J. C., and G. R. Simari. 2001. Temporal defeasible reasoning. Knowledge and
Information Systems 3 (3):287-318. doi:10.1007/PL00011670.

Augusto, J. C., M. Huch, A. Kameas, J. Maitland, P. McCullagh, J. Roberts, A. Sixsmith, and R.
Wichert. 2012. Handbook of ambient assisted living, In Handbook of ambient assisted living:
Technology for healthcare Rehabilitation and Well-being, 3-5. Amsterdam: IOS Press BV.

Augusto, J. C., V. Callaghan, A. Kameas, D. Cook, and I. Satoh. 2013. “Intelligent
Environments: A manifesto.” Human-centric Computing and Information Sciences 3 (12)
doi:10.1186/2192-1962-3-12.

https://doi.org/10.1016/0004-3702(84)90008-0
https://doi.org/10.1016/j.artint.2008.11.006
https://doi.org/10.1007/PL00011670
https://doi.org/10.1186/2192-1962-3-12

2368 (&) C.L OGUEGO ET AL.

Bandara, A. K., A. Kakas, E. C. Lupu, and A. Russo. 2006. Using argumentation logic for
firewall policy specification and analysis. In International workshop on distributed systems:
Operations and management, 185-96. Berlin: Springer.

Bentahar, J., R. Alam, Z. Maamar, and N. C. Narendra. 2010. Using argumentation to model
and deploy agent-based B2B applications. Knowledge-Based Systems 23 (7):677-92.
doi:10.1016/j.knosys.2010.01.005.

Besnard, P., and A. Hunter. 2001. A logic-based theory of deductive arguments. Artificial
Intelligence 128 (1-2):203-35. doi:10.1016/S0004-3702(01)00071-6.

Brafman, R., and C. Domshlak. 2009. Preference handling-an introductory tutorial. AI
Magazine 30 (1):58-58. doi:10.1609/aimag.v30i1.2114.

Chesievar, C. I., A. G. Maguitman, and R. P. Loui. 2000. Logical models of argument. ACM
Computing Surveys (CSUR) 32 (4):337-83. doi:10.1145/371578.371581.

. Galton, A. and J. C. Augusto, 2002, September. Two approaches to event definition.
In International Conference on Database and Expert Systems Applications. 547-556. Berlin,
Heidelberg: Springer.

Garca, A. J., and G. R. Simari. 2003. “Defeasible Logic Programming: An Argumentative
Approach.” Theory and Practice of Logic Programming 4 (1-2): 95-138.

Goldsmith, J., and U. Junker. 2008. Preference handling for artificial intelligence. AI Magazine
29 (4):9-9. doi:10.1609/aimag.v29i4.2180.

Hamblin, Charles L. 1972. “Instants and intervals.” In The Study of Time, 324-331. Berlin,
Heidelberg: Springer.

Ibarra, U. A,, J. C. Augusto, and A. A. Goenaga. 2014. “Temporal reasoning for intuitive
specification of context-awareness.” In 2014 International Conference on Intelligent
Environments, 234-41. Shanghai, China: IEEE.

Mahesar, Q.-A. 2018. “Computing argument preferences and explanations in abstract
argumentation.” In 2018 IEEE 30th International Conference on Tools with Artificial
Intelligence (ICTAI), 281-85. Volos, Greece: IEEE.

Muiioz, A., and J. A. Bota. 2010. “Developing an intelligent parking management application
based on multi-agent systems and semantic web technologies.” In International Conference
on Hybrid Artificial Intelligence Systems, 64-72. Berlin: Springer.

Muiioz, A., J. C. Augusto, A. Villa, and J. A. Bota. 2011. Design and evaluation of an ambient
assisted living system based on an argumentative multi-agent system. Personal and
Ubiquitous Computing 15 (4):377-87. doi:10.1007/s00779-010-0361-1.

Oguego, C. L. 2019 a. “Bedroom Scenario (Hybrid section 8.1).” https://mdx.figshare.com/
articles/Bedroom_Scenario_Hybrid_section_8_1_/9944603 .

Oguego, C. L. 2019 b. “Different users’ preferences effecting system output (section 7.2).”
https://mdx.figshare.com/articles/Different_users_preferences_effecting_system_output_
section_7_2_/9944681 .

Oguego, C. L. 2019 c. “Solving conflicts (section 8.2).” https://mdx.figshare.com/articles/
Solving_conflicts_section_8_2_ /9944711 .

Oguego, C. L. 2019 d. “Supermarket Store (Tesco) API (section 8.3).” https://mdx.figshare.
com/articles/Supermarket_Store_Tesco_API_section_8_3_/9944750 .

Oguego, C. L.,]. C. Augusto, A. Mufioz, and M. Springett. 2018a. “A survey on managing users’
preferences in ambient intelligence.” Universal Access in the Information Society 17
(1):97-114. doi:10.1007/s10209-017-0527-y.

Oguego, C. L., J. C. Augusto, A. Mufoz, and M. Springett. 2018b. “Using argumentation to
manage users’ preferences.” Future Generation Computer Systems 81:235-43. doi:10.1016/j.
future.2017.09.040.

https://doi.org/10.1016/j.knosys.2010.01.005
https://doi.org/10.1016/S0004-3702(01)00071-6
https://doi.org/10.1609/aimag.v30i1.2114
https://doi.org/10.1145/371578.371581
https://doi.org/10.1609/aimag.v29i4.2180
https://doi.org/10.1007/s00779-010-0361-1
https://mdx.figshare.com/articles/Bedroom_Scenario_Hybrid_section_8_1_/9944603
https://mdx.figshare.com/articles/Bedroom_Scenario_Hybrid_section_8_1_/9944603
https://mdx.figshare.com/articles/Different_users_preferences_effecting_system_output_section_7_2_/9944681
https://mdx.figshare.com/articles/Different_users_preferences_effecting_system_output_section_7_2_/9944681
https://mdx.figshare.com/articles/Solving_conflicts_section_8_2_/9944711
https://mdx.figshare.com/articles/Solving_conflicts_section_8_2_/9944711
https://mdx.figshare.com/articles/Supermarket_Store_Tesco_API_section_8_3_/9944750
https://mdx.figshare.com/articles/Supermarket_Store_Tesco_API_section_8_3_/9944750
https://doi.org/10.1007/s10209-017-0527-y
https://doi.org/10.1016/j.future.2017.09.040
https://doi.org/10.1016/j.future.2017.09.040

APPLIED ARTIFICIAL INTELLIGENCE . 2369

Ospan, B., N. Khan, J. Augusto, M. Quinde, and K. Nurgaliyev. 2018. “Context aware virtual
assistant with case-based conflict resolution in multi-user smart home environment.” In
2018 International Conference on Computing and Network Communications (CoCoNet),
36-44. Maui, Hawaii, USA: IEEE.

Pigozzi, G., A. Tsoukias, and P. Viappiani. 2016. Preferences in artificial intelligence. Annals of
Mathematics and Artificial Intelligence 77 (3-4):361-401. d0i:10.1007/s10472-015-9475-5.
Ruzic, L., S. T. Lee, Y. E. Liu, and J. A. Sanford. 2016. “Development of universal design mobile
interface guidelines (udmig) for aging population.” In International Conference on Universal

Access in Human-Computer Interaction, 98-108. Toronto, ON, Canada: Springer.

Sartor, G. 1994. A formal model of legal argumentation. Ratio Juris 7 (2):177-211. doi:10.1111/
j-1467-9337.1994.tb00175.x.

Simari, G. R., and R. P. Loui. 1992. A mathematical treatment of defeasible reasoning and its
implementation. Artificial Intelligence 53 (2-3):125-57. doi:10.1016/0004-3702(92)90069-A.

Tamani, N., and M. Croitoru. 2014. “A quantitative preference-based structured argumenta-
tion system for decision support.” In 2014 IEEE International Conference on Fuzzy Systems
(FUZZ-IEEE), 1408-15. Beijing, China: IEEE.

Vila, L. 1994. A survey on temporal reasoning in artificial intelligence. Ai Communications 7
(1):4-28. do0i:10.3233/AIC-1994-7102.

Walsh, T. 2007. Representing and reasoning with preferences. AI Magazine 28 (4):59-59.

Wang, H., J. Saboune, and A. E. Saddik. 2013. “Control your smart home with an autono-
mously mobile smartphone.” In 2013 IEEE international conference on multimedia and expo
workshops (ICMEW), 1-6. San Jose, CA: IEEE.

https://doi.org/10.1007/s10472-015-9475-5
https://doi.org/10.1111/j.1467-9337.1994.tb00175.x
https://doi.org/10.1111/j.1467-9337.1994.tb00175.x
https://doi.org/10.1016/0004-3702(92)90069-A
https://doi.org/10.3233/AIC-1994-7102

	Abstract
	Introduction
	Argumentation in AI
	Preferences in AI

	Case Study Analysis (Scenarios)
	Light Case Study
	Healthy Eating Case Study

	Temporal Reasoning
	Hybrid System for Real-time Decision Making
	Reasoning System (Mreasoner)
	Specification File and Execution Types

	Translating Argumentation Language
	Modeling Argumentation Theoretical Language to Implementation Language (<inline-formula id="ilm0045"><alternatives><inline-graphic xlink:href="UAAI_A_1966986_ILM0045.gif"/><tex-math>$${{\mathcal L}^{\mathbb T}}$$</tex-math></alternatives></inline-formula> to M)
	Translating Light Scenario (Example)
	Argumentation Light Scenario for Sara
	Specification File with Converted Rules

	Smart-Home Infrastructure
	Smart Spaces Lab
	Equipment

	Preference Management
	Preference Management Tool (Interface)
	Using User’s Preferences to Affect System Output
	Modeling Different Users Preferences

	Illustrations and Demos of Scenarios
	Hybrid System Illustration
	Solving Conflicts Using Three Preference Criteria (Specificity, User Preferences, and Persistency)
	Supermarket Chain Store (Tesco) API

	Discussion
	Conclusion and Further Work
	References

