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GAN-BElectra: Enhanced Multi-class Sentiment Analysis 
with Limited Labeled Data
Md. Riyadh and M. Omair Shafiq

School of Information Technology, Carleton University, Ottawa, Ontario, Canada

ABSTRACT
Performing sentiment analysis with high accuracy using 
machine-learning techniques requires a large quantity of train
ing data. However, getting access to such a large quantity of 
labeled data for specific domains can be expensive and time- 
consuming. These warrant developing more efficient techni
ques that can perform sentiment analysis with high accuracy 
with a few labeled training data. In this paper, we aim to address 
this problem with our proposed novel sentiment analysis tech
nique, named GAN-BElectra. With rigorous experiments, we 
demonstrate that GAN-BElectra outperforms its baseline tech
nique in terms of multiclass sentiment analysis accuracy with 
a few labeled data while maintaining an architecture with 
reduced complexity compared to its predecessor.
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Introduction

In recent times, high-performance computing along with cloud technologies 
have helped many research domains flourish rapidly. One such domain is 
machine learning and applied research based on machine-learning techniques 
such as self-driving cars and language translation services (Zhang, Wang, and 
Liu 2018). The dramatic rise in Internet usage and social media applications 
have made most people with a connected device a content generator of some 
sort. These user-generated contents are essential in the growth of many 
machine-learning-based applications such as virtual personal assistants and 
recommender systems (Ricci, Shapira, and Rokach 2015). The influx of user 
generated content elevated the demand for efficient techniques to analyze 
them to generate valuable insights for government and companies alike. 
This also caught the attention of researchers who are designing increasingly 
efficient and accurate data analysis techniques in a frequent manner. Natural 
Language Processing (NLP) of textual data is one such data analysis domain 
that saw rapid innovation in recent times. NLP’s general goal is to create an 
understanding of language in computers (Liddy 2001). Identifying sentiment 
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expressed in a text is a task that contributes to that overall understanding. This 
task is generally known as Sentiment Analysis, a research area that has seen 
rapid progress in recent years (Patel 2015; Zhang, Wang, and Liu 2018).

With sentiment analysis, a given piece of text is categorized with respect to 
the sentiment it expresses, often in terms of positive, neutral, or negative. It 
commonly uses machine-learning techniques in order to identify such pat
terns and then perform these categorizations of textual data. This type of 
machine learning technique, commonly referred to as supervised learning, 
heavily relies on training data. Sentiment analysis is a domain-specific task. 
This means words used in one context to express certain sentiments may exert 
different sentiments in different contexts. As a result, training a machine- 
learning model for sentiment analysis tasks typically requires training with 
domain-specific labeled data. Having a large quantity of labeled training data 
for specific domains can be tedious and expensive. In this research, we focus 
on the problem of the limited labeled training data in sentiment analysis.

Machine-learning-based sentiment analysis models trained with a low 
number of training data can perform poorly on this text classification task. 
However, since a large number of training data may not be always available, 
researchers have attempted to develop techniques to have higher sentiment 
classification accuracy with a lower number of labeled training data. These 
techniques, however, still fall short in reaching the peak performance of 
machine learning models trained on large labeled datasets. As a result, achiev
ing higher accuracy in sentiment classification task with low amount of 
training data is still a worthwhile research problem to address.

In this study, we propose a novel sentiment classification technique named 
GAN-BElectra that aims to attain high accuracy in sentiment classification 
with a few labeled data (i.e., 50 labeled training datapoints per class). GAN- 
BElectra focuses on multi-class sentiment analysis. In this type of sentiment 
analysis, there are more than two sentiment classes to choose from. The typical 
class labels are positive, neutral, and negative. This is in contrast with binary 
classification where only two sentiment classes are used for categorization: 
positive and negative. Multi-class sentiment analysis, especially the ones that 
consider neutral as one of the classes, seems to possess more practical value 
compared to binary classification since not every text expresses a sentiment, 
and some texts naturally fall into the neutral category.

GAN-BElectra outperforms our recently published technique named SG- 
Elect (Riyadh and Shafiq 2021). SG-Elect attempted to address the same that is 
the main focus of this paper – multiclass sentiment analysis with limited 
labeled data. SG-Elect employs three machine-learning components. Two of 
them are deep-learning components (GAN-BERT (Croce, Castellucci, and 
Basili 2020) and Electra (Clark et al. 2020)) and the other one is a traditional 
machine-learning component (Semi-Supervised Self Trainer (Yarowsky 1995). 
In GAN-BElectra, which is an extension of SG-Elect, we employ only two 
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deep-learning components (GAN-BERT and Electra), which significantly 
reduces the complexity of the architecture while still achieving higher senti
ment classification accuracy than SG-Elect.

As part of this research, we make the following contributions:

● We propose a novel technique for multi-class sentiment analysis named 
GAN-BElectra which builds upon SG-Elect and achieves higher classifica
tion accuracy than its predecessor (i.e., SG-Elect) with a few labeled 
training data while maintaining a more lightweight architecture.

● We evaluate GAN-BElectra on three datasets that are available in the 
public domain. These experiments illustrate that GAN-BElectra outper
forms its state-of-the-art (SOTA) baseline (i.e., SG-Elect) in the multi- 
class sentiment analysis task with limited labeled training data.

● We dissect GAN-BElectra’s architecture and analyze the individual com
ponents that constitute it to facilitate a thorough understanding of the 
proposed solution.

Related Work

The lack of labeled data is a common problem in text classification tasks. There 
are several proposals in the literature to address this general problem (Croce, 
Castellucci, and Basili 2020; Liu et al. 2015; Miao et al. 2020). Using lexicons to 
classify texts is a typical solution offered for this issue. (Mazharul Islam, Dong, 
and de Melo 2020). An example of this is technique shown in Figure 1. 
However, the lack of accuracy of lexicon-based techniques in text classifica
tion, especially in comparison to fully supervised machine-learning-based 
methods is well known (Hemmatian and Karim Sohrabi 2019).

Semi-supervised learning is another common technique that attempts to 
resolve the issue of lack of labeled training data. This method is specially 
engineered to train machine-learning models with a few labeled data (Kumar, 
Packer, and Koller 2010; Mastoropoulou 2019). Researchers have designed 
several variations of semi-supervised learning. These include using teacher- 
student method where teacher confidence is utilized to identify easy samples 
during training (e.g., self-paced co-training (Fan et al. 2017), self-paced learn
ing (Kumar, Packer, and Koller 2010)). Other examples include utilizing meta- 

Figure 1. Example of basic lexicon-based sentiment analysis.
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learning (Xinzhe et al. 2019) and active learning (Mastoropoulou 2019) for 
sample selection based on teacher confidence. A recent application of semi- 
supervised learning, specifically for sentiment analysis, is a neural network- 
based semi-supervised learning framework proposed by Li et al. (Ning, Chow, 
and Zhang 2020). It performs training with a few labeled data along with many 
unlabeled data. To address the labeled data scarcity issue in short text classi
fication tasks such as sentiment analysis of tweets, Yang et al. (Yang et al. 2021) 
proposed a heterogeneous graph attention network that embedded a flexible 
heterogeneous information network framework that modeled short text with 
the functionality to include additional information while appropriately detect
ing their semantic relations. By extending their technique with semi- 
supervised inductive learning, they demonstrate that the proposed solution 
outperforms their selected SOTA baselines for both single and multi-label 
classification tasks. Kim et al. (Kim, Son, and Han 2022) proposed a novel self- 
training method that leveraged a lexicon to guide its mechanism in generating 
pseudo-labels in order to address the lack of labeled data in text classification, 
particularly sentiment analysis. They demonstrated that the guidance from 
lexicon in their experimental setup enhanced the reliability of pseudo labels by 
performing manipulation on the loss term.

Text augmentation is another method to mitigate the labeled data scar
city issue in text classification. Abonizio et al. (Abonizio, Cabrera Paraiso, 
and Barbon Junior 2021) conducted an in-depth study of the usage of text 
augmentation in addressing labeled data scarcity issues in sentiment ana
lysis. They offered a taxonomy for these techniques, first categorizing all 
techniques into “sentence” manipulation and “embedding” manipulation 
(i.e., manipulating representative vectors of text instead of the actual text 
data), and then further dividing the “sentence” manipulation category into 
three subcategories: transformation (e.g., synonym replacement), para
phrasing (e.g., adapting translation models to generate rephrased text in 
the same language), and generation (e.g., using autoregressive language 
models such as GPT2 (Radford et al. 2019) to generate text). They eval
uated various text augmentation techniques and observed how they influ
enced the sentiment classification accuracy of different techniques in 
scenarios such as a low number of labeled training data. For instance, 
they found that BERT (Devlin et al. 2018) and ERNIE (Sun et al. 2019) 
achieved superior classification performance with a low number of avail
able training samples when boosted with back-translation (Edunov et al. 
2018) augmentation technique. Some researchers also applied text augmen
tation technique to mitigate the labeled data scarcity in non-English lan
guages. For example, Barriere et al. (Barriere and Balahur 2020) used 
automatic translation of English tweets to French, Spanish, German, and 
Italian to apply data-augmentation which improved the sentiment analysis 
performance over non-English tweets using different transformer-based 
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techniques (Wolf et al. 2019). Edwards et al. (Edwards et al. 2021) demon
strated how leveraging GPT-2 (Radford et al. 2019) driven text augmenta
tion in few-shot learning setup could enhance the text classification 
accuracy.

Recent advances in pre-trained model made their landfall in the sentiment 
analysis research area inevitable. Examples of such pre-trained models 
include BERT (Devlin et al. 2018), Electra (Clark et al. 2020) etc. These 
models, which are typically based on Transformers (Ashish et al. 2017), are 
trained on vast amount of data following a self-supervised approach. This 
provides these models with a general capability to comprehend language. At 
this stage, these pre-trained models are capable of many tasks that requires 
understanding of general-purpose language representation. For leveraging 
them in downstream tasks that require domain specific knowledge, for 
example sentiment analysis, they go through another light-weight training 
process known as fine-tuning. This is essentially training the pretrained 
model with the task/domain specific labeled data. Since the pretrained 
model already has an understanding of language in general, fine-tuning on 
a very small set of domain-specific labeled data can make them significantly 
more accurate as classifiers compared to typical training of machine learning 
models. As a result, there has been some interest in the researcher commu
nity in using these pretrained models to address the issue labeled data 
scarcity in text-classification task in general. For example, Croce et al. 
(Croce, Castellucci, and Basili 2020) experimented using semi-supervised 
generative adversarial network (GAN) to improve BERT’s fine-tuning 
stage. This architecture, named GAN-BERT (Croce, Castellucci, and Basili 
2020), was mainly focused on achieving higher accuracy compared to origi
nal BERT network in text classification tasks with low amount of labeled 
training data.

Building upon GAN-BERT, Riyadh et al. proposed SG-Elect (Riyadh and 
Shafiq 2021), which utilizes GAN-BERT in its architecture for pseudolabel 
generation along with another traditional machine-learning-based self- 
training mechanism (“Self-Training – Learn Documentation” n.d.). Their 
architecture also includes an Electra-based (Clark et al. 2020) final classifier. 
Together with these components, SG-Elect achieves higher accuracy in multi- 
class sentiment analysis task compared to GAN-BERT for three publicly 
available datasets.

Researchers have proposed various approaches that attained decent accu
racy in sentiment classification task with limited labeled data. While 
approaches that rely on a lot of training data can achieve considerably 
higher accuracy in this task, achieving similar accuracy with limited labeled 
data still remains a challenge. As a result, achieving higher accuracy in 
sentiment classification task using a few labeled data is still a worthwhile 
investigation.
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Proposed Solution

Our proposed solution, GAN-BElectra consists of two primary components: 
GAN-BERT (Croce, Castellucci, and Basili 2020) and Electra (Clark et al. 
2020). GAN-BERT acts as a pseudolabel generator in GAN-BElectra, whereas 
Electra consumes those pseudolabels to fine-tune itself. GAN-BElectra builds 
upon our previously designed technique, SG-Elect (Riyadh and Shafiq 2021) 
which attempted to address the same problem of multiclass sentiment analysis 
with limited labeled data. SG-Elect’s architecture has more complexity com
pared to GAN-BElectra as it contains an additional machine-learning compo
nent – semi-supervised self-trainer. Below we discuss the components of 
GAN-BElectra in greater details.

GAN-BERT

GAN-BERT is a deep-learning network which contains BERT (Bidirectional 
Encoder Representations from Transformers) (Fan et al. 2017), and SS-GAN 
(Semi-supervised Generative Adversarial Network) (Croce, Castellucci, and 
Basili 2020). BERT is a pretrained model based on Transformer technology 
(Ashish et al. 2017). It learns contextual relations between words using an 
attention-based mechanism. The model was pretrained with large training 
data consisting of raw texts. The pre-trained model is then fine-tuned on 
training data for specific task.

GAN-BERT’s novelty mainly stem from the fact that it extends BERT’s fine- 
tuning phase with an SS-GAN. SS-GAN consists of two main parts: a) 
a Generator and b) a Discriminator as shown in Figure 2. The Generator 
generates synthetic labels, and the Discriminator classifies those labels into real 
and fake using adversarial learning. In GAN-BERT, a pre-trained BERT model 
is fine-tuned with task-specific layers first, which is part of BERT’s typical fine- 
tuning process. Second, during this fine-tuning stage, SS-GAN layers is used to 
enable semi-supervised learning.

Figure 2. GAN-BERT Architecture (Croce, Castellucci, and Basili 2020). U, L, F, G, D denote unlabeled 
data, labeled data, fake labels, generator, and discriminator respectively.
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We use GAN-BERT in its original configuration from the study (Croce, 
Castellucci, and Basili 2020). At first, we use GAN-BERT’s fine-tuning process 
to fine-tune the model with the original few labeled data. Next, the fine-tuned 
GAN-BERT model is used to generate pseudolabels for the unlabeled data.

The next component in our architecture is Electra which takes the pseudo
label output from GAN-BERT as its input. We discuss this component below.

Electra

The final component in our architecture is a transformer-based pretrained 
model named Electra (Efficiently Learning an Encoder that Classifies Token 
Replacements Accurately) (Clark et al. 2020) along with typical adjacent deep- 
learning layers such as input embedding layer, dropout layer, and a dense layer 
(Figure 3). The Electra pretrained model layer is placed immediately after the 
input embedding layer. It employs an efficient training technique compared to 
other MLMs (masked language model). MLMs similar to BERT leverage 
subsets of unlabeled input for pre-training. In this technique, the transformer 
network learns to recognize the masked tokens and then retrieves the original 
input from that token. In contrast, Electra leverages replaced tokens to corrupt 
the input in rather than using masked subset of input. In the next stage, the 
deep-learning network is pretrained as a discriminator. The discriminator 
differentiates between the original token vs. replaced token.

In GAN-BElectra, we take the pooled output from the Electra pretrained 
model layer to a Dropout layer. This Dropout layer helps the model to avoid 
overfitting. The subsequent dense layer (deeply connected neural network 
layer) takes the output from Electra and outputs logits. We then apply 
Softmax (“Scipy.Special.Softmax – SciPy v1.8.0 Manual” n.d.) and Argmax 
function (“Numpy.Argmax – NumPy v1.22 Manual” n.d.) to those logits to 
attain the predicted labels.

This final Electra-based classifier model uses an optimizer named AdamW 
(Loshchilov and Hutter 2019). It enhances Adam optimizer (Kingma and 
Jimmy Lei 2015) with improvement to the weight decay implementation 
through a stochastic optimization mechanism. This includes separating weight 
decay from the gradient update.

Figure 3. Electra-based pretrained component.
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The loss calculation for this final classifier is performed using Sparse 
Categorical Cross-entropy. This selection is based on the fact that we are 
performing multi-class sentiment analysis which involves categorization of 
input text into more than two mutually exclusive classes.

The number of epochs (10) is based on the experimental performance of 
our network across various validation sets. We fine-tine this classifier twice. 
First with the pseudolabels generated by GAN-BERT. Then, the next fine- 
tuning is performed using the few original labeled data.

Figure 5 shows the overall architecture of GAN-BElectra. This architecture 
evolved from SG-Elect (Figure 4) where there was an additional Semi- 
Supervised Self Training Classifier acted as pseudolabel generator in addition 
to GAN-BERT.

GAN-BElectra streamlines SG-Elect architecture by stripping away the 
process-heavy Self Training Classifier, leaving only GAN-BERT as the sole 
generator of pseudolabels. This also abolishes the need of having the 
“Combinator” component which further simplifies the architecture.

Figure 4. SG-Elect architecture (Riyadh and Shafiq 2021), U, L, C denote unlabeled data, labeled 
data, and combinator respectively.

Figure 5. GAN-BElectra architecture. U and L denote unlabeled and labeled data respectively.
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Algorithm I: Training process of GAN-BElectra based on SG-Elect (Riyadh and Shafiq 2021)

inputs: X = XL + XU 

XL = xL1,xL2,. . ., xLn 

XU = xU1,xU2,. . ., xUm 

outputs: Trained model

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19

BEGIN 
for all x ∈ X do { 

CGB ← Train (GAN-BERT, X) 
} end for 
return CGB 

for all xU ∈ XU do { 
YGB ← Predict (CGB, XU) 

} end for 
return YGB 

for all yGB ∈ YGB do { 
CEL ← Train (ElectraTransformer, YGB) 

} end for 
return CEL 

for all xL ∈ XL do { 
CEL ← Train (ElectraTransformer, XL) 

} end for 
return CEL 

END

Algorithm I demonstrates GAN-BElectra’s high-level training process, 
which builds upon and enhances SG-Elect’s training process (Riyadh and 
Shafiq 2021) with reduced training steps and network complexity. The training 
process begins with many unlabeled data (XU) and a few labeled (XL). After 
being trained on the original few labeled data (XL) in a semi-supervised 
manner, the GAN-BERT component (CGB) generates pseudolabels (YGB) for 
the unlabeled data. We use this pseudolabels to fine-tune our Electra-based 
pretrained model (CEL). This final Electra-based classifier goes through 
another fine-tuning using our few labeled data. At this point, GAN-BElectra 
is fully trained, and we evaluate it using our test data.

Experiments and Evaluation

Procedure

We have performed several experiments in order to evaluate GAN-BElectra 
along with our SOTA baseline (i.e., SG-Elect) and other two techniques 
(GAN-BERT, Electra) acted as subcomponents within the proposed solution. 
Although individual experiments have some specificities, they all share some 
common steps. These include:

1) Data splitting
One of the initial steps in our experiments involve splitting the dataset 

into training and test sets. For train-test split, we opted for an 80:20 ratio 
where 80% of the total data accounted for the training dataset and 20% is 
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allocated for testing. We also split the training dataset into labeled and 
unlabeled sets. In all our data splitting exercise, we use specific seed numbers 
to generate controlled randomness. This makes our experiments 
reproducible.

Once we split our training dataset between labeled and unlabeled sets, we 
remove the labels from the unlabeled dataset to serve its intended purpose. 
Labeled dataset contains 50 datapoints for each sentiment class representing 
a minute fraction of the total datapoints used across our experiments with various 
datasets.

2) Data preprocessing
After train, test, labeled, and unlabeled datasets are created, we perform addi

tional data pre-processing, which includes removal of stop words as necessary, 
performing vectorization of the datasets so that they are consumable by the 
machine-learning algorithms. We describe this in greater details in the section 
that follows.

3) Defining model
The next step is to define the machine-learning model. This involves 

defining the correct parameters and configuration for the model, in addition 
to defining the layers that eventually construct the deep-learning networks 
used in this study.

4) Training and testing
The after model definition step, we begin training the model with our 

training data which is different for each experiment. After the training 
is complete, we test our trained model with test dataset. We report 
various metrics including F1-score, accuracy based on our evaluations of the 
models.

To sum up, each experiment mainly consists of dataset splitting, data prepro
cessing, defining model, training the model, and evaluating the trained model. To 
make our experimental findings more reliable, we run each of our experiment 
three times using three different random seeds, and we report the average results 
from these experiments. It is noteworthy that since GAN-BElectra builds upon 
SG-Elect (Riyadh and Shafiq 2021) and the evaluation criteria, datasets, and 
experimental settings are intentionally identical in these two consecutive studies 
and they share some of the reported results, especially as it relates to the two 
common individual sub-components, namely GAN-BERT (Croce, Castellucci, 
and Basili 2020) and Electra (Clark et al. 2020).

Tools

Our experiments required leveraging several existing tools. The following are 
some noteworthy examples:

1) Software:
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(a) Programming language: We used Python in all our experiments. Python 
provides many useful libraries for NLP tasks out of the box as well as for 
machine-learning experiments in general.

(b) Libraries: We used many publicly available software libraries in our 
experiments as required. Some of the noteworthy ones include Numpy 
(“NumPy” n.d.) and Matplotlib (“Matplotlib: Python Plotting – 
Matplotlib 3.4.2 Documentation” n.d.). For deep-learning algorithms, 
we heavily leveraged TensorFlow (“TensorFlow” n.d.).

(c) Machine-learning models: We make use of the GAN-BERT in its 
original configuration (“GitHub – Crux82/Ganbert: Enhancing the 
BERT Training with Semi-Supervised Generative Adversarial 
Networks” n.d.). This serves as the sole pseudolabel generator in 
our solution. Our deep-learning component involves the large variant 
of pre-trained Electra model (“TensorFlow Hub – Electra Large” n. 
d.).

2) Hardware:
Instead of using our on-premise hardware resources, we utilized cloud 

hardware resources provided as part of the Pro-tier subscription of Google 
Colab (“Colaboratory – Google” n.d.). This platform provides a browser-based 
user interface to perform coding, which is especially designed for data science 
tasks. This is supported by backend resources such as Tensor Processing Unit 
(TPU) (“Cloud Tensor Processing Units (TPUs) | Google Cloud” n.d.) and 
Graphics Processing Unit (GPU) (“What Is a GPU? Graphics Processing Units 
Defined” n.d.). The hardware specification provided by Google Colab Pro 
varied for different experiments and the runtime engines are dynamically 
allocated. However, the following specification represents the typical max
imum hardware resource we received from Google Colab Pro:

● Compute: Intel(R) Xeon(R) CPU @ 2.30 GHz (Max. available cores: 40)
● Memory: 36 GB
● Disk: 226 GB

Datasets

In order to perform a robust evaluation of our solution, we chose three 
publicly available datasets: SST5 dataset (Socher et al. 2013), US Airline dataset 
(“Twitter US Airline Sentiment | Kaggle” n.d.), and Rosenthal, Farra, and 
Nakov 2017 dataset (2017) (we refer to this as SemEval in this paper). We 
describe these datasets below:

1) SST5
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SST5 is a 5-class sentiment analysis dataset. SST stands for Stanford 
Sentiment Treebank (Socher et al. 2013). Datasets with five or more sentiment 
classes are typically called fine-grained sentiment datasets. SST5 dataset con
tains short texts, and each short text is labeled with any of the following 5 
sentiment classes:

● Very Positive
● Positive
● Neutral
● Negative
● Very Negative

Figure 6 demonstrates the composition of this dataset.
2) US Airline
US Airline dataset (“Twitter US Airline Sentiment | Kaggle” n.d.) is a three- 

class sentiment analysis dataset. Each datapoint consists of short text which is 
a real Twitter post about US Airline carriers, and a sentiment label which is 
either Positive, Neutral, or Negative. Figure 7 shows the composition of this 
dataset.

3) SemEval
SemEval (Rosenthal, Farra, and Nakov 2017) is another three-class senti

ment analysis dataset we have used in our experiments. This dataset is 
composed of short text from real Twitter post and each short text is labeled 
as either Positive, Neutral, or Negative. Figure 8 shows the composition of this 
dataset.

Figure 6. SST5 dataset composition.
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Data Preprocessing

TensorFlow’s BERT tokenizer (“TensorFlow” n.d.) transforms our input texts 
into numerical format. The deep-learning models incorporated in our experi
ments anticipate all the inputs sentences concatenated to one another. The 

Figure 7. US Airline dataset composition.

Figure 8. SemEval dataset composition.
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input begins with a “[CLS]” token (this indicates that the task is 
a “classification problem”). The end of each input is indicated with 
a separator token “[SEP].”

Finally, the datapoints were represented as Tensors (“TensorFlow” n.d.), 
and the deep-learning experiments were executed on TPUs (“Cloud Tensor 
Processing Units (TPUs) | Google Cloud” n.d.)

It is noteworthy that since our usage of 50 datapoints per class as the 
original few labeled data makes composition of the primary training data 
organically balanced, we kept the datasets in their original composition 
without applying any additional balancing technique. Also of note is that 
the original SemEval dataset contains total 61473 datapoints, majority of 
which would have been used in our setup as unlabeled data. Since our 
original labeled data per class is only 50 datapoints, an extensively large 
amount of unlabeled data provide little value in our setup while signifi
cantly increasing the training time. Consequently, we opted to use 
a representative sample from this dataset (i.e., taking total datapoints 
20000 out of 61473, resembling the other three-class dataset used in our 
study: US Airline dataset) while preserving the original composition (i.e., 
class distribution) of the dataset by leveraging stratified random sampling 
(Vries 1986).

Evaluated Techniques

Using the three selected datasets, we evaluated the following techniques:

● GAN-BElectra (Our proposed solution)
● SG-Elect (primary baseline)
● GAN-BERT
● Electra

Results

As explained in Section IV, in order to make our findings more reliable, we 
have evaluated each technique (GAN-BElectra, SG-Elect, GAN-BERT, and 
Electra) three times on each of the three selected datasets using seed 
numbers to achieve randomized datapoint allocation for train and test 
split for each evaluation. In summary, we ran a total of 36 experiments 
which is comprised of nine experiments per technique. We report the 
average of the results of our evaluations of the techniques on the three 
selected datasets.
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Tables 1 and 2 provide the summary of all our experimental results. In 
Table 1, we report the mean accuracy (i.e., average of three evaluations. 
Accuracy is calculated using true positives and true negatives as shown in 
equation I) for each technique on each dataset. 

accuracy ¼
tpþ tn

tpþ fpþ tnþ fn
(I) 

where, tp, fp, tn, fn consecutively represent true positive, false positive, true 
negative, and false negative.

In addition, we report the standard deviation of this mean, which represents 
the variations of the accuracy scores across the three evaluations for each 
technique on each dataset. Table 1 shows that the standard deviation scores for 
all our experiments were between 0.0195 and 0.0514 indicating high reliability 
of the reported mean accuracy scores based on our randomized experiments.

Table 1 also contains macro-averaged F1-score (see equation II) which, in 
contrast with accuracy, provides a more reliable assessment of techniques in 
the presence of class imbalance (Abonizio, Cabrera Paraiso, and Barbon Junior 
2021). 

Table 1. Summary of Results (F1-Score, Accuracy, Standard Deviation).
Dataset Technique Mean F1-Macro Mean Accuracy Standard Deviation of Mean Accuracy

SST5 GAN-BElectra 0.3796 0.3825 0.0350
SG-Elect 0.3763 0.373 0.0249
Electra 0.3138 0.3533 0.0225
GAN-BERT 0.3185 0.3406 0.0337

US Airline GAN-BElectra 0.6722 0.7108 0.0195
SG-Elect 0.6659 0.7072 0.0195
Electra 0.5493 0.623 0.0331
GAN-BERT 0.6413 0.7032 0.0514

SemEval GAN-BElectra 0.5663 0.5741 0.0145
SG-Elect 0.558 0.5635 0.0228
Electra 0.3992 0.4536 0.0184
GAN-BERT 0.473 0.5208 0.0448

Table 2. Summary of Results (Standard Error, Confidence Interval of Standard Error).
Dataset Technique Mean Standard Error Confidence Interval (at 95%) of Standard Error

SST5 GAN-BElectra 0.6175 0.0203
SG-Elect 0.627 0.0202
Electra 0.6467 0.0199
GAN-BERT 0.6594 0.0198

US Airline GAN-BElectra 0.2892 0.0164
SG-Elect 0.2928 0.0165
Electra 0.377 0.0176
GAN-BERT 0.2968 0.0165

SemEval GAN-BElectra 0.4259 0.0153
SG-Elect 0.4365 0.0154
Electra 0.5464 0.0154
GAN-BERT 0.4792 0.0155
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F1 macroð Þ ¼ 2 �
pr � re
pr þ re

(II) 

where 

pr precisonð Þ ¼
tp

tpþ fp
(III) 

re recallð Þ ¼
tp

tpþ fn
(IV) 

We also report the mean standard error (i.e., inverse of accuracy) in Table 2. 
Inspired by Tom Mitchell’s suggestion for comparing machine-learning mod
els (Mitchell 1997), we additionally report estimation statistics based on the 
reported standard error at the commonly used significance level of 95%. The 
following formula was used for the confidence interval (ci) calculation: 

ci ¼ z �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e� 1 � eð Þ

n

r

(V) 

where
● z is a critical value from the Gaussian distribution which has a value of 1.96 

for 95% significance level (Brownlee 2019),
● n is the size of the test sample,
● e is the standard error reported in Table 2.

The equations reported in this chapter (eq. I, II, III, IV, V) can be found in 
(Brownlee 2019).

Our analysis suggests that the confidence interval for the reported standard 
error remained between the range of 0.0154 and 0.0203 (see Table 2). This 
arguably further indicates the robustness of our results across multiple experi
mental runs for each of the evaluated techniques for the selected datasets.

Table 3 contains our pseudo-label generator’s (GAN-BERT) accuracy. 
Tables 4, 5, and 6 contain detailed results for all evaluated techniques for 
SST5, US Airline, and SemEval dataset, respectively. Following the tables, we 
also include confusion matrix visualizing the classification accuracy and true 
positives and negatives for each evaluated techniques for the three selected 
datasets. Below we describe our results by dataset.

Table 3. GAN-BERT’s accuracy in pseudo label 
generation across three datasets.

Dataset GAN-BERT Pseudo Label Accuracy

SST5 0.3328
US Airline 0.7087
SemEval 0.5209
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Table 4. Detailed Results for the SST5 Dataset.
Technique Class Precision Recall F1-score Accuracy

GAN-BElectra Very Negative 0.3246 0.5253 0.397 0.3825
Negative 0.4493 0.2461 0.3129
Neutral 0.2481 0.2601 0.2537
Positive 0.4232 0.485 0.4499
Very Positive 0.4969 0.4773 0.4847

SG-Elect Very Negative 0.3357 0.4854 0.3912 0.373
Negative 0.4604 0.2755 0.3301
Neutral 0.2617 0.3488 0.2944
Positive 0.4434 0.3452 0.3849
Very Positive 0.4695 0.5072 0.4807

Electra Very Negative 0.4121 0.3831 0.2701 0.3533
Negative 0.3828 0.2062 0.2363
Neutral 0.2385 0.3119 0.2663
Positive 0.3813 0.4459 0.4063
Very Positive 0.5194 0.4514 0.3901

GAN-BERT Very Negative 0.3114 0.4908 0.3725 0.3406
Negative 0.4753 0.2027 0.2476
Neutral 0.2358 0.3524 0.27
Positive 0.3932 0.3564 0.3539
Very Positive 0.4881 0.4159 0.4396

Table 5. Detailed Results for the US Airline Dataset.
Technique Class Precision Recall F1-score Accuracy

GAN-BElectra Negative 0.8896 0.7231 0.7975 0.7108
Neutral 0.463 0.6516 0.5404
Positive 0.6277 0.7408 0.6788

SG-Elect Negative 0.8921 0.7202 0.7967 0.7072
Neutral 0.4686 0.6328 0.5372
Positive 0.5932 0.7542 0.6637

Electra Negative 0.8282 0.6759 0.7375 0.623
Neutral 0.4369 0.4882 0.4468
Positive 0.398 0.5939 0.4636

GAN-BERT Negative 0.835 0.7752 0.7938 0.7032
Neutral 0.5015 0.5484 0.5048
Positive 0.6342 0.6264 0.6253

Table 6. Detailed Results for the SemEval Dataset.
Technique Class Precision Recall F1-score Accuracy

GAN-BElectra Negative 0.4373 0.6046 0.507 0.5741
Neutral 0.5992 0.5524 0.5727
Positive 0.6665 0.5857 0.6191

SG-Elect Negative 0.4374 0.6219 0.5116 0.5635
Neutral 0.5977 0.5244 0.557
Positive 0.639 0.5826 0.6055

Electra Negative 0.2835 0.3515 0.3006 0.4536
Neutral 0.5288 0.596 0.5526
Positive 0.5434 0.3259 0.3445

GAN-BERT Negative 0.4542 0.4787 0.44 0.5208
Neutral 0.5736 0.5394 0.468
Positive 0.634 0.5191 0.5109
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SST5 Dataset

GAN-BElectra outperformed SG-Elect, GAN-BERT, and Electra for the SST5 
dataset in mean accuracy. Table 1 shows that GAN-BElectra achieved an 
average accuracy of 0.3825 while SG-Elect, Electra, and GAN-BERT scored 
0.373, 0.3533, and 0.3406, respectively. Table 1 also contains mean F1-Macro 
scores for all techniques and shows that GAN-BElectra outperforms all other 
evaluated techniques in this metric as well for the SST5 dataset. Table 4 shows 
that our proposed solution also performed better than our main baseline SG- 
Elect and other evaluated techniques in F1-score for individual classes. It 
outperformed SG-Elect in F1-score for “Very Negative,” “Positive,” and 
“Very Positive” class, whereas SG-Elect achieved higher F1-score for 
“Negative” and “Neutral” class. GAN-BElectra also outperformed GAN- 
BERT and Electra for F1-score for all individual classes except the “Neutral” 
class. Confusion matrices in Figure 9 visualize the correct and incorrect 
predictions by all evaluated techniques for the SST5 dataset.

Figure 9. Confusion matrices for SST5 dataset for (a) GAN-BElectra (b) SG-Elect (c) Electra and (d) 
GAN-BERT.
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US Airline Dataset

Table 5 shows the detailed comparative classification result for GAN- 
BElectra, SG-Elect, GAN-BERT and Electra for the US Airline dataset. 
Our solution achieved an overall accuracy of 0.7108 while SG-Elect, 
Electra, and GAN-BERT scored 0.7072, 0.623, and 0.7032 respectively. 
This finding is further strengthened by the fact that GAN-BElectra 
outperforms all other evaluated techniques in the mean F1-macroscore 
as well for the US Airline dataset (see Table 1). As demonstrated in 
Table 5, GAN-BElectra achieved higher F1-score for all three individual 
classes compared to SG-Elect, GAN-BERT, and Electra. Figure 10 shows 
the confusion matrices that visualize the correct and incorrect predic
tions made by all four evaluated techniques for the US Airline dataset.

Figure 10. Confusion matrices (with red shades) for the US Airline dataset for (a) GAN-BElectra (b) 
SG-Elect (c) Electra and (d) GAN-BART and confusion matrices (with green shades) for the SemEval 
dataset (e) GAN-BElectra (f) SG-Elect (g) Electra and (h) GAN-BART.
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SemEval Dataset

Table 6 demonstrates that GAN-BElectra outperforms SG-Elect, GAN- 
BERT, and Electra in terms of classification accuracy for the SemEval 
dataset. It achieved an accuracy score of 0.5741 while SG-Elect, Electra, 
and GAN-BERT achieved 0.5635, 0.5464, and 0.4792 respectively. We also 
observe in Table 1 that GAN-BElectra outperforms all other evaluated 
techniques in terms of mean F1-macro score as well for the SemvEval 
dataset. As it can be seen in Table 6, our solution performed better than SG- 
Elect in two out of three individual classes, achieving higher F1-score for 
“Neutral” and “Positive” class while SG-Elect achieved higher F1-score for 
the “Negative” class. Both Electra and GAN-BERT underperformed in 
terms of F1-scores for all individual classes compared to SG-Elect and 
GAN-BElectra. Confusion matrices in Figure 10 visualize the correct and 
incorrect predictions made by GAN-BElectra, SG-Elect, GAN-BERT, and 
Electra for the SemEval dataset.

Ablation

Two major components within GAN-BElectra are GAN-BERT and Electra. As 
part of our ablation study, we investigated the individual performance of these 
components on the same test data used for GAN-BElectra and SG-Elect. This 
analysis provided insight about the effect of individual components that 
constitute our proposed solution. Table 3, 4, 5, and 6 contain these results 
for GAN-BERT and Electra. Below we discuss the performance of these 
individual components on the three datasets used with the proposed GAN- 
BElectra solution.

US Airline and SemEval Dataset

GAN-BERT outperformed Electra for our two 3-class sentiment classification 
datasets (US Airline and SemEval). For US Airline dataset, GAN-BERT 
achieved an overall accuracy of 0.7032 whereas Electra achieved 0.623. 
Similarly, for the SemEval dataset, GAN-BERT achieved an overall accuracy 
score of 0.5208 while Electra achieved 0.4536.

SST5 Dataset

For SST5 dataset, Electra outperformed GAN-BERT, achieving an overall 
accuracy of 0.3533 while GAN-BERT scored 0.3406.
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Pseudo Label Generation

We also investigated the accuracy of pseudolabels generated by GAN-BERT 
which were eventually utilized to train Electra along with the few original 
labeled data. For three different datasets we have used (SST5, US Airline, and 
SemEval), the average accuracy of GAN-BERT’s generated pseudolabels were 
0.3328, 0.7087, and 0.5209 respectively, as demonstrated in Table 3.

In the subsequent section, we discuss the results we achieved with our 
proposed solution along with the insights gained from the ablation study.

Discussion

Performance Gain with Less Training Steps and Reduced Network Complexity

Our experiments suggest that the semi-supervised self-training sub- 
component of SG-Elect (Riyadh and Shafiq 2021) that included a stacked 
classifier consisting of a Stochastic Gradient Descent (SGD) Classifier 
(“Optimization: Stochastic Gradient Descent” n.d.) and a XGBClassifier 
(“XGBoost Documentation – Xgboost 1.5.0-SNAPSHOT Documentation” n. 
d.) negatively contributed to the overall classification accuracy achieved by 
SG-Elect. The new technique proposed in this paper, GAN-BElectra, removes 
that component from the architecture along with SG-Elect’s “Combinator” 
component. This resulted in a performance gain. As we can observe in the 
reported results, GAN-BElectra performs slightly higher score compared to 
SG-Elect for the US Airline (GAN-BElectra: 0.7108, SG-Elect: 0.7072), the 
SemEval (GAN-BElectra: 0.5741, SG-Elect: 0.5635), and the SST5 dataset 
(GAN-BElectra: 0.3825, SG-Elect: 0.373). While the performance gain is 
small, the gain is consistent across all evaluated datasets. It is also important 
to emphasize that compared to SG-Elect, GAN-BElectra reduces the complex
ity of the architecture as it relieves the need of training an additional machine- 
learning component that consumes resources and incurs more training cycles.

Impact of Pseudolabels on the Final Result

GAN-BElectra uses GAN-BERT as the sole pseudolabel generator for the 
unlabeled training data. As reported in Section VI, we notice that the accuracy 
of the generated pseudolabels (0.3328, 0.7087, 0.5209 for SST5, US Airline, and 
SemEval, respectively) resembles the final results of GAN-BElectra for all three 
datasets (0.3825, 0.7108, 0.5741 in the same order). This highlights the impact 
of the pseudo label generator, GAN-BERT in our overall architecture, making 
it an important component of the proposed solution. Without the contribu
tion of GAN-BERT as a pseudolabel generator, the performance of our 
architecture would have degraded significantly, as can be inferred from our 
ablation study where we tested the performance of the stand-alone Electra pre- 
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trained model fine-tuned only on the original few labels. In terms of average 
accuracy, this fine-tuned stand-alone Electra model achieves 0.3533, 0.6233, 
and 0.4536 for SST5, US Airline, and SemEval dataset respectively, whereas 
our proposed model GAN-BElectra demonstrates boost in performance con
tributed by the pseudolabel generator GAN-BERT, and achieved 0.3825, 
0.7108, and 0.5741 in terms of average accuracy for these three datasets in 
the same order.

Prediction Trends for Individual Class

1) Incorrect Predictions More Likely to Fall into the Adjacent Categories

We observe that the majority of incorrect predictions typically fall into the 
adjacent sentiment categories. This means that a “positive” datapoint is more 
likely to be predicted as “positive” and “neutral” (also “very positive” for 
5-class dataset) compared to contrasting labels such as “negative.” For 
instance, for SST5 dataset, out of a total of 556 datapoints with “positive” 
label, GAN-BElectra correctly predicted the label for 269 datapoints as “posi
tive,” and then incorrectly predicted 138 datapoints as “very positive,” 95 
datapoints as “neutral,” only 26 datapoints as “very negative” and 28 as 
negative. This similar phenomenon has been observed for almost techniques 
with all datasets (see confusion matrices in Figures 9 and 10).

2) Variation in Pseudo Label Accuracy

The accuracy of pseudo label generation by GAN-BERT varied significantly 
across our three selected datasets. GAN-BERT achieved 0.3328, 0.7087, 0.5209 
in pseudo label generation accuracy for SST5, US Airline, and SemEval dataset 
respectively. Since SST5 is a finer grained sentiment dataset (i.e., 5 sentiment 
classes whereas the other two datasets have three classes), we expected it to 
have lower classification accuracy compared to US Airline and SemEval 
dataset. This is indeed consistent in all other experiments performed in this 
study.

We also observed that between US Airline and SemEval dataset, though 
they are both three-class sentiment datasets, GAN-BERT scored 0.7087 for the 
accuracy for the former compared to 0.5209 for the latter. We believe this is 
due to the different composition of the two datasets. For example, US Airline 
has a significantly higher number of “negative” datapoints compared to the 
other two classes. On the other hand, SemEval contains much less “negative” 
datapoints compared to the other two classes. However, Figure 7 and Figure 8 
show that this class imbalance in the SemEval dataset is visibly less significant 
compared to US Airline dataset. Confusion matrices in Figure 10 for test data 
show that all evaluated techniques performed more accurate predictions for 

e2083794-2310 M. RIYADH AND M. O. SHAFIQ



the neutral class for the SemEval dataset compared to the other two classes. For 
US Airline dataset, it is the negative sentiment class where more accurate 
predictions occurred across all techniques. Based on these observations, we 
argue that the different compositional attributes of these two datasets (e.g., 
significantly higher number of “negative” datapoints in the US Airline dataset 
compared to the SemEval dataset which was visibly less imbalanced) might 
have an impact on the overall differences in the accuracy of pseudolabel 
generation for these two datasets. As mentioned in Section IV, our rationale 
for not artificially balancing the composition of the datasets was due to the fact 
that the primary training data used in our experiments were organically 
balanced since we used 50 datapoints for each class for each dataset in each 
of our experiments as the “few original labeled training data.” In addition, 
along with accuracy, we also reported F1-macro score which provided more 
reliable comparison of techniques when class imbalance is present in the 
selected dataset. However, we believe that this may still have an impact on 
the pseudolabel generation accuracy as well as the variations in the number of 
correctly predicted labels for our test data (see Confusion matrices in Figure 9 
and 10). We recognize that this warrants further investigation.

It is also noteworthy that between GAN-BERT and Electra, the two main 
components of GAN-BElectra, GAN-BERT outperforms Electra for two 
3-class sentiment datasets, while Electra outperforms GAN-BERT for SST5 
dataset which contains 5-class sentiment data. Fine-tuning stand-alone Electra 
is significantly faster than fine-tuning GAN-BERT since GAN-BERT uses 
a semi-supervised training method, which essentially performs many itera
tions of supervised training with varying training data. Despite this, Electra 
achieving higher accuracy for SST5 than GAN-BERT is an interesting obser
vation which warrants further investigation.

Difference in Accuracy across Datasets

We observed that GAN-BElectra’s performance expectedly degrades with 
increase in the number of sentiment classes. However, it is of note that despite 
having identical sentiment categories, the two 3-class sentiment datasets used in 
our experiments yielded significantly different results for all architectures tested, 
including the proposed GAN-BElectra. Similar to our primary baseline (SG- 
Elect) and other two evaluated techniques (GAN-BERT, Electra), GAN-BElectea 
achieved a significantly higher classification accuracy for US Airline dataset 
(0.7108) compared to SemEval dataset (0.5741). As we argued above for the 
same phenomenon for the pseudolabel generation by GAN-BERT, we believe 
this may be due the differences in the data composition across these two 
datasets. However, we believe it is worth investigating further in future studies.
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Impact of Double fine-tuning

We observe that double fine-tuning Electra, once with pseudolabels and next 
with a few original labels boosts accuracy of this transformer network com
pared to training it only once with either pseudolabels or the original few 
labels. This confirms the finding in previous studies (Bowon and Jin Choi 
2020) where researchers noticed similar improvement in classification accu
racy with fine-tuning pretrained models twice.

Conclusion

In this research, we focus on the problem of lack of labeled data in multi-class 
sentiment analysis task. We aimed to build a sentiment analysis technique that 
performs well with a few labeled data. We propose a novel technique for multi- 
class sentiment analysis named GAN-BElectra, which builds upon its predecessor 
and baseline technique named SG-Elect. GAN-BElectra achieves a higher classi
fication accuracy compared to SG-Elect with reduced architecture complexity. 
GAN-BElectra’s architecture leverages GAN-BERT (Croce, Castellucci, and Basili 
2020) as its sole pseudolabel generator, and Electra (Clark et al. 2020) as the final 
classifier. This final component is fine-tuned twice; first with the pseudo-labels 
generated by GAN-BERT, and next with the few original labeled data. This 
overall architecture eventually predicted sentiment with more accuracy compared 
to its primary baseline SG-Elect for all three datasets we experimented with.

Although GAN-BElectra demonstrated better performance compared to its 
predecessor (i.e., SG-Elect), the margin of improvement is not exceptionally 
high. This suggests there is still room for further improvement in this area. 
Another noteworthy limitation of the proposed solution is that it requires 
a multi-step training process involving training the GAN-BERT component 
first and then training the Electra component. Achieving an end-to-end solu
tion without requiring multi-step training process is a worthwhile future 
exploration. Finally, it would be interesting to explore the efficacy of GAN- 
BElectra and its potential future variants with more NLP classification tasks 
other than sentiment analysis.
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