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ABSTRACT
Malaria fever is a potentially fatal disease caused by the 
Plasmodium parasite. Identifying Plasmodium parasites in 
blood smear images can help diagnose malaria fever rapidly 
and precisely. According to the World Health Organization 
(WHO), there were 241 million malaria cases and 627 000 deaths 
worldwide in 2020, while 95% of malaria cases and 96% of 
malaria deaths occurred in Africa. Also in Africa, children that 
are less than five years old accounted for an estimated 80% of all 
malaria deaths. To address the menace of malaria, this paper 
proposes a novel deep learning model, called a data augmenta
tion convolutional neural network (DACNN), trained by reinfor
cement learning to tackle this problem. The performance of the 
proposed DACNN model is compared with CNN and directed 
acyclic graph convolutional neural network (DAGCNN) models. 
Results show that DACNN outperforms previous studies in pro
cessing and classification images. It achieved 94.79% classifica
tion accuracy in malaria blood sample images of balanced class 
dataset obtained from the Kaggle dataset. The proposed model 
can serve as an effective tool for the detection of malaria para
sites in blood smear images.
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Introduction

Malaria is an endemic infection that has affected over 228 million people 
worldwide. In 2018, 405,000 people died in 106 countries and territories 
(World Health Organization 2020). Malaria in Nigeria is a major health 
problem, accounting for more cases and deaths than any other nation in the 
world. Malaria posed a threat to about 97% of the population of Nigeria 
because of location. Only about 3% of the Nigerian population is accounted 
as malaria-free zone and this small percentage protects the remaining 3% of 
the population (Okeke 2012). There are more than 100 million malaria cases in 
Nigeria alone with more than 300,000 deaths per year, which is even higher 
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compared to 215,000 HIV/AIDS fatalities per year in Nigeria. Malaria also 
accounts for around 11% of maternal deaths (National Population 
Commission 2019).

Malaria parasites are transmitted to people through infected female 
Anopheles mosquitoes called malaria vectors (Poostchi et al. 2018). Five 
different kinds of parasites cause malaria in humans, namely Plasmodium 
falciparum, Plasmodium vivax, Plasmodium knowlesi, Plasmodium ovale, and 
Plasmodium malariae. Several approaches have been proposed to address the 
problem of detecting malaria parasites in blood samples (Bibin et al. 2017; 
Rajaraman, Jaeger, and Antani 2019; Yadav and Jadhav 2019).

Before the adoption of deep learning models for the classification of blood 
sample images, some of the approaches that have been used to solve this 
problem include manual blood sample inspection to discover the existence 
of parasites in the blood sample image (Roy et al. 2018). The effectiveness of 
the analysis depends on the skill of the human expert and is subject to human 
error. The manual examination is labor intensive, as medical personnel must 
examine thousands of cells at higher magnification (Centers for Disease 
Control and Prevention 2020). The downside of this approach, apart from 
the one mentioned before, is that it is inefficient, slow, and strenuous.

To overcome the challenges associated with the manual examination, 
the polymerase chain reaction (PCR) and rapid diagnostic test (RDT) 
were developed for a rapid diagnosis of malaria patients (Shah et al. 
2020). These techniques are very fast, but they are characterized by low 
accuracy. In addition, these methods require skilled and experienced 
operators. The time taken to screen blood samples is drastically reduced 
by computerizing the process. Therefore, the dependability of the diag
nosis process is greatly improved. These methods have exhibited consid
erable efficiency in handling these problems. However, they have not 
succeeded in efficiently handling the issue of low accuracy in the detection 
of malaria parasites in blood sample images.

Recently, deep learning techniques have proven to be the most effective 
approach in medical diagnostics. They have been used to detect a wide 
variety of diseases from biomedical images such as breast cancer (Irfan 
et al. 2021), COVID-19 (Khan et al. 2021), retinal hemorrhages (Maqsood, 
Damaševičius, and Maskeliūnas 2021), and Alzheimer’s disease (Odusami 
et al. 2021). Deep learning methods can be used to classify image blood 
samples into infected and uninfected data sets (Fuhad et al. 2020; Gunčar 
et al. 2018) and to segment leucocytes from blood smear images (Kadry et al. 
2021). This is carried out by providing a deep learning model with a dataset 
of image blood samples as input. At this stage, the input data set is divided 
into training and testing sets. The deep learning algorithm is then used to 
train the training dataset and a trained model is created that will be used by 
the deep learning model for further processing. The patterns existing in the 

e2033473-2236 D. O. OYEWOLA ET AL.



input data set are used to build the training model. In the successive stage, 
the test data set is arbitrarily given to the classifier and then compared with 
the trained model which generates the result in the form of image blood 
samples classification result.

Conventional methods of malaria parasite detection and classification are 
characterized by low precision and time wastage (Tangpukdee et al. 2009). 
Therefore, deep learning models such as AlexNet (Krizhevsky, Sutskever, and 
Hinton 2012), GoogLeNet (Szegedy et al. 2015), VGGNet (Simonyan and 
Zisserman 2014), ResNet (He et al. 2016) and DenseNet (Huang et al. 2018) 
were proposed to solve these problems. These techniques are very efficient in 
detecting malaria parasites in blood samples. Deep learning algorithms are 
often used in clinical studies because they are fast and effective computational 
methods (Litjens et al. 2017; Miotto et al. 2018). They also reduce the costs of 
health care in activities to prevent infection compared to experimental meth
ods. Some of the areas of applications of the computational method and deep 
learning models in relation to health include diagnostic plans, the develop
ment of treatment protocols, the development of drugs, the follow-up of 
patients and care (Ahuja 2019).

Recently, reinforcement learning has been adopted to improve the training 
process of deep neural networks (Alom et al. 2019; Hernandez-Leal, Kartal, 
and Taylor 2019; Wang et al. 2020). It has also been used for the classification 
of biomedical images (Mahmud et al. 2018). For example, reinforcement 
learning was used in segmenting transrectal ultrasound images to assess the 
location and volume of the prostate (Sahba, Tizhoosh, and Salama 2008). 
Zhang et al. (Zhang et al. 2019) proposed a reinforcement sampling strategy 
to address the problem of unbalanced data in the breast tumor image dataset. 
Tian et al. (2020) describe the image segmentation process as a Markov 
decision process. Then an agent is trained using a deep reinforcement learning 
(DRL) algorithm to perform segmentation of regions of interest in medical 
images.

The main novelty and contribution of this work is the fusion of directed 
acyclic graph and data enhancement with a convolutional neural network 
(CNN) to enhance the performance of malaria parasite detection in blood 
smear images. Reinforcement learning is adopted to obtain superior malaria 
parasite blood sample detection and classification results.

The contributions of the paper are outlined below:

(i) The method of detecting and diagnosing malaria using time saving and 
effective deep learning technique was developed in this paper,

(ii) A novel deep learning model, known as data augmentation convolu
tional neural network (DACNN) which is a the combination of direc
ted acyclic graph and data enhancement with a convolutional neural 
network (CNN) with enhanced accuracy was proposed,
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(iii) Reinforcement learning was applied to train DACNN to obtain better 
detection and classification accuracy of about 94.79%,

(iv) The application of DACNN rather than using traditional classifier such 
as Random Forest to take advantage of the ability of the classifier to 
operate directly on blood smear images was accomplished,

The rest of this paper is organized as follows: Section 2 discusses related 
works in the field of cassava mosaic disease detection. The proposed metho
dology used in this work is explained in Section 3. The results and the 
discussion of the results are presented in Section 4 and Section 5 is the 
conclusion of the paper.

Related Works

In this section, we briefly discuss recent researches conducted in the field of 
malaria disease detection. Machine learning and deep learning algorithms 
have gained wide acceptance among researchers and academicians for detect
ing malaria in blood smear images. This can be attributed to the efficacy of 
these algorithms in solving the problems associated with the detection and 
classification of malaria. During the past decade, a wide range of deep learning 
models has been used in clinical study and healthcare. In one of the studies, the 
Deep Belief Network (DBN) was proposed in Bibin, Nair, and Punitha (2017) 
to detect malaria parasites on blood images. The proposed method contains 
stack Boltzmann machines that use the contrastive divergence strategy to 
classify blood image samples as either parasite or nonparasite. The perfor
mance of the proposed system is satisfactory. However, there is still room for 
further improvement as the image dataset used for the experiment is small, 
and therefore it cannot be ascertained if their technique can effectively handle 
a large dataset.

Rajaraman, Jaeger, and Antani (2019) investigated the performance of 
CNNs in detecting malaria parasites in blood samples. The main intention 
of the authors is to design an ensemble CNN model that have a superior 
performance compared to other state-of-the-art models in terms of robustness 
and accuracy. The proposed system classifies blood samples as parasitized or 
normal. The experimental results indicated that the ensemble of VGG-19 and 
SqueezeNet outperformed the other ensemble models used for the study.

Qanbar et al. (2019) applied a Residual Attention Network (RAN) to assist 
in the analysis and decision making system for classifying blood samples as 
infected or non-infected. The result showed that the RAN model achieves 
a good prediction performance in the processing and classification of image 
blood samples compared to other types of algorithms. RAN achieved a 95.79% 
accuracy rate compared to an 83.30% accuracy rate obtained using the support 
vector machine (SVM).
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Chaya and Usha (2019) proposed three techniques which are: the Cuckoo 
Search-Based Ensemble Classifier (CSEC), Scale to Estimate Premature 
Malaria Parasites Scope (SEMP), and Hybrid Classification of Malaria Blood 
Smear Images. The experimental result indicated that CSEC performs better 
than the hybrid classifier method in terms of accuracy. The strength of their 
approach is that it employed a metaheuristic optimization algorithm instead of 
machine learning. The shortcoming of the method is that metaheuristics do 
not guarantee that a globally optimal solution can be found in some classes of 
problems (Torres-Jimenez and Pavon 2014).

Kumari, Singh, and Kumar (2019) applied feature selection technique with 
Logistic Regression, Naive Bayes, KNN, Decision Trees, Random Forest 
Classifier, Support Vector Machine (SVM) and Artificial Neural Network 
(ANN) machine learning models to predict liver disease from UCI dataset. 
Simulation results show that rightly choosing feature extraction method for 
each model is very important in getting good results. The combination of 
feature selection and machine learning models produce enhanced accuracy of 
up to 92%. This is an improvement compared to when machine learning 
classifiers alone were used. The downside of their work is that accuracy is 
the only performance metric used for evaluating the effectiveness of the 
proposed model. Moreover, the only liver disease dataset used in the work 
was the one obtained from UCI. Furthermore, the size of the dataset is small, 
and therefore is not sufficient to prove the efficacy of the technique presented 
by the authors.

Negi, Kumar, and Chauhan (2021) proposed deep CNN model to identifi
cation and recognition of plant diseases. Experimental results indicated that 
the proposed technique attained an accuracy of 96.02% which is very good. 
However, the authors did not use many of the state-of-the-art performance 
measures to evaluate the performance of the proposed system. Oyewola et al. 
(2021) presented a unique deep residual convolution neural network (DRNN) 
for detection of Cassava Mosaic Disease in cassava leaf images. The proposed 
method can counterbalance the imbalanced image dataset of cassava diseases, 
and enhance the number of images accessible for training and testing by using 
different block processing. Furthermore, Gamma correction and decorrelation 
stretching was used to improve color separation in images with high band-to- 
band correlation. The results of the simulations show that employing 
a balanced dataset of images improves classification accuracy. The proposed 
DRNN model outperforms the simple convolutional neural network (PCNN) 
by producing balanced accuracy of 94–99% with a considerable margin of 
9.25% on Kaggle cassava disease dataset which comprises of 5,656 images. One 
limitations of this work is that every deep learning based techniques are 
inclined to overfit the training dataset, which hinders them from generalizing. 
Moreover, image enhancement using gamma correction is not likely the most 
ideal technique in case of hostile photographing situations.
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Alok, Krishan, and Chauhan (2021) proposed deep learning technique for 
detecting malaria. The authors used a malaria dataset that contains 27587 
images which was divided into training set (23448 images) and validation set 
(4139 images) for their experiments. The proposed method achieved 95.70% 
accuracy in detecting and classifying malaria cells. Also, the method proposed 
in the paper attained precision, recall, and f1-score of 0.96.

Negi and Kumar (2021) proposed deep learning method for the detection 
and classification of citrus diseases to assist crop productivity. The dataset 
includes 759 images of both Citrus fruits and collectively leaves safe and 
unhealthy images. The proposed method was able to recognize and classify 
the diseases satisfactorily especially in the first stage. A precision of 97.65%, 
Recall of 91.21%, and f1-Score of 94.32% was attained for first phase. For 
the second phase of the proposed method, a training accuracy of 65.94% and 
validation accuracy of 62.50% was recorded. One of the limitations of the work 
is that the combined average classification accuracy of the two stages is still 
relatively low. Moreover, the dataset used for the work is not balanced. Also, 
the dataset used for the experiments is small in size.

Table 1 presents a summary of all related works considered in this paper.

Methodology

Convolutional Neural Networks (CNN)

Presented in Figure 1 is the random display of training images for both 
Uninfected and Infected Malaria blood samples. The CNN model mainly 
consists of three types of layers: convolution, pooling, and fully connected 
layers. The primary layers are, convolution and pooling layers which 
extract features while the third, a fully connected layer, map the extracted 
features into the final (classification or regression) output (as shown in 
Figure 2).

The convolutional layer serves as the feature extractor and learns the 
features properties of the input images. The neurons are grouped into 
feature (characteristics) maps in the convolutional layers. The neuron is 
organized into a feature map in the convolutional layers. A neuron within 
a feature map has a receptive field linked to a neuron region of the preceding 
layer, often referred to as a filter bank, and has a series of trainable weights 
(LeCun, Bengio, and Hinton 2015). The feature map Yk can be computed as 
follows: 

Yk ¼ γ Wkxþ bð Þ (1) 

where the input image is denoted by x, the convolutional filter related to the 
kth feature map is denoted by Wk, b is the bias and γ represents the nonlinear 
activation function.
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A batch normalization layer as the name implies normalizes, scales, and 
moves mini-batch data to boost network stability from the previous layer 
(Bjorck et al. 2018). The batch normalization layer mathematical equation is 
given as: 

yi ¼ αbxi þ β (2) 

Figure 1. Images of infected and uninfected blood samples.

Figure 2. General architecture of convolutional neural networks.
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bxi ¼
xi � μ
ffiffiffiffiffi
σ2
p
þ ε

(3) 

μ ¼
1
m

Xm

i¼1
xi (4) 

σ2 ¼
1
m

Xm

i¼1
xi � μð Þ

2 (5) 

where μ is the mean, σ2 is the variance, bxi is the normalized data, α; β are the 
parameters, γ β to be learned for proper scaling and shifting the normalized 
data.

A rectified linear unit (ReLU) (Nair and Hinton 2010) represents actual 
neurons more complexly. It is produced through the creation of numerous 
sigmoid copies. This can be done under the premise that all the repeated items 
learn the same weights and biases. The ReLU is given as follows: 

φ ¼ max 0;Ykð Þ (6) 

Where Yk is given in Equation (1).
Pooling layers is another elementary unit of CNN. This layer increasingly 

decrease the spatial dimension of the model to lower the number of para
meters and processing in the network. Pooling layers help to reduce complex
ity further and increase network strength. The most common form of pooling 
layers is Max pooling and average pooling. Note that in any of the pooling 
layers there is no learnable parameter, whereas filter size, stride, and padding 
are similar to hyper-parameters in pooling operations (Suárez-Paniagua and 
Segura-Bedmar 2018). Max pooling layer extracts patches outputs and feature 
maps of the input features, the maximum value for each patch, and discard all 
other values. To prevent overfitting, the dropout layers are used (Srivastava 
et al. 2014).

The final output layer for CNN consists of one or more fully connected 
layers also called dense layers, in which each input matches each learning 
outcome (Teuwen and Moriakov 2020). After extraction of features from the 
convolution layers and downsampling by the pooling layers, the outcome is to 
assign the features in a subset of the fully connected layers to each group in the 
classification tasks. In general, the final fully connected layer usually contains 
the same number of output nodes as the class number. The output layer is 
given as an unconstrained problem: 

ρ ¼
eŵyn x̂n

P1
j¼0 eŵjx̂n

(7) 
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min
Ŵ

f Ŵ
� �

¼ �
1
N

XN

n¼1
ln ρð Þ (8) 

Where f Ŵ
� �

is the output layer and ρ is the probability of the observed data.

Directed Acyclic Graph Convolutional Neural Network (DAGCNN)

A directed acyclic graph (DAG) is a graph containing cycles, which is 
a similar node that has coordinated paths from beginning to end (Li, Li, 
and He 2019). It is a non-cycle diagram. We utilize DAGCNN in this 
paper by incorporating it with the CNN features due to impressive 
performance on both image classification and object detection (He et al. 
2016). The coordinated paths that follow each convolution layer for 
classification are shown in Figure 3, starting with the image input layer 
and ending with the classification layer. Figure 3 shows the DAGCNN 
structure with all the layers.

Data Augmentation of Convolutional Neural Network (DACNN)

This paper used data augmentation technique on the malaria blood 
sample data from infected and uninfected malaria blood samples. To the 
best of our knowledge this method has not been used before now for 
detection of malaria in blood samples. In both the training and test set of 
the malaria blood sample images, data augmentation was used on the 

Figure 3. Directed acyclic graph network.
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dataset. The data was augmented from basic image transformation, such 
as rotation, translation, horizontal and vertical scale, random shear, and 
random reflection. The augmentations used in this study are random 
rotation, random translation, and horizontal and vertical scale. The 
images are rotated along the axis between −20° and 20° to the right or 
left. Rotation stability is calculated by the rotation degree parameter. 
Rotations between 20° and −20° help to improve the accuracy of the 
malaria blood sample of both infected and uninfected blood sample 
images utilized in this paper (Shorten and Khoshgoftaar 2019). Shifting 
images to the left, right, and down is useful to prevent positional bias in 
the malaria blood sample images. In this study, the images are translated 
between +3 and −3 pixels. The translated images of malaria blood samples 
are filled with a constant value which enables it to preserve the spatial 
dimension of images (Zheng et al. 2020). Horizontal and vertical scaling 
to the malaria blood sample dataset was also applied here. Each image is 
scaled randomly between 1 and 1.

Reinforcement Learning

The general scheme of reinforcement learning adopted in this paper is shown 
in Figure 4. An agent interacting with the external environment in discrete 
time t ¼ 1; 2; . . . ;T was considered. The agent in state S tð Þ performs the 
action a tð Þ, receives reinforcement r tð Þ and goes into the state S t þ 1ð Þ. The 
agent’s goal is to maximize the total reward U tð Þ that can be received in the 
future. The U tð Þ value is estimated by considering the forgetting coefficient: 

UðtÞ ¼
X1

j¼0
γjrðt þ jÞ; t ¼ 1; 2; . . . ; (9) 

Model

Critic

Critic

ΔX pr(t+1)

{ΔX(t), u(t)} V(t)

{ΔX(t-m+1),…,ΔX(t)}

{ΔX pr(t+1), u} Vpr
u (t+1)

V(t+1){ΔX(t+1), u(t+1)}

Figure 4. Schematics of reinforcement learning. The critic is intended to assess the quality of 
situations V Sð Þ for the current situation S tð Þ ¼ ΔX tð Þ; u tð Þf g.
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where U tð Þ is the estimate of the total reward expected after time t; γ is the 
forgetting coefficient (0< γ< 1), with the help of which it is considered that 
the further the agent “looks” into the future, the less confidence he has in 
assessing the reward.

An agent, which aims to maximize its performance function C tð Þ was 
considered. The agent seeks to increase his performance C tð Þ by changing 
the value of u tð Þ. 

C t þ 1ð Þ ¼ C tð Þ 1þ u t þ 1ð ÞΔX t þ 1ð Þ=X tð Þf g 1 � J u t þ 1ð Þ � u tð Þj j½ � (10) 

where ΔX t þ 1ð Þ ¼ X t þ 1ð Þ � X tð Þ, J – is a parameter.
Following [4], we use the logarithmic scale R tð Þ ¼ lnC tð Þ. Current reinfor

cement r tð Þ ¼ R t þ 1ð Þ � R tð Þ is equal to: 

r tð Þ ¼ ln 1þ u t þ 1ð ÞΔX t þ 1ð Þ=X tð Þf g þ ln 1 � J u t þ 1ð Þ � u tð Þj j½ � (11) 

The agent’s control system is an adaptive critic, consisting of two 
neural networks: Model and Critic (see Figure 4). The adaptive critic 
aims to maximize U tð Þ. Assuming the agent’s state S tð Þ depends only on 
two quantities ΔX tð Þ and u t þ 1ð Þ : S tð Þ ¼ ΔX tð Þ; u tð Þf g. The model is 
a two-layer neural network, the work of which is described by the 
formulas: 

yM
j ¼ th

X

i
wM

ij xM
i

 !

(12) 

ΔXpr t þ 1ð Þ ¼
X

j
vM

j yM
j (13) 

where xM – input vector, yM – output vector of the hidden layer, w M
ij and vM

j 
– weights of neurons.

The critic is intended to assess the quality of situations V Sð Þ, i.e., to 
assess the utility function U tð Þ for an agent in the state S tð Þ. The critic is 
a two-layer neural network, whose work is described by the formulas: 

xC ¼ S tð Þ¼ ΔX tð Þ; u tð Þf g (14) 

yC
j ¼ th

X

i
wC

ij x
C
i

 !

(15) 

VðtÞ ¼ VðSðtÞÞ ¼
X

j
vC

j yC
j (16) 

where xC is the input vector, yC is the vector of the outputs of the neurons 
of the hidden layer, and are the weights of the neurons.
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For each time t, the following operations are performed:
1) The critic estimates the value of V for the current state V tð Þ ¼ V S tð Þð Þ

for both possible actions Vpr
u t þ 1ð Þ ¼ V Spr

u t þ 1ð Þ
� �

, where 
Spr

u t þ 1ð Þ ¼ ΔXpr t þ 1ð Þ; uf g, u ¼ 0 or u ¼ 1.
2) The ε-greedy rule is applied: the action that corresponds to the maximum 

value Vpr
u t þ 1ð Þ is chosen with probability 1 � ε, whereas an alternative 

action is chosen with probability ε; 0< ε< < 1. The choice of action is 
u t þ 1ð Þ: u t þ 1ð Þ ¼ 1, or u t þ 1ð Þ ¼ 0.

3) The selected action u t þ 1ð Þ is executed. Reinforcement r tð Þ is calculated 
according to Equation (11). The observed value ΔX t þ 1ð Þ is compared 
with ΔXpr t þ 1ð Þ. The weights of the neural network are adjusted to 
minimize the prediction error by backpropagation: 

ΔvM
i ðt þ 1Þ ¼ � αM ΔXprðt þ 1Þ � ΔXðt þ 1Þð Þ yM

j (17) 

ΔwM
ij ðt þ 1Þ ¼ � αM ΔXprðt þ 1Þ � ΔXðt þ 1Þð Þ vM

j 1 � ðyM
j Þ

2
� �

xM
i (18) 

where αM – is the training speed (αM > 0).
4) The Critic network calculates V t þ 1ð Þ ¼ V S t þ 1ð Þð Þ; S t þ 1ð Þ ¼

ΔX t þ 1ð Þ; u t þ 1ð Þf g. Then, the error is computed: 

δ tð Þ ¼ r tð Þ þ γV t þ 1ð Þ � V tð Þ (19) 

The value of δ tð Þ characterizes the error in the estimate V tð Þ ¼ V S tð Þð Þ, which is 
the total reward that can be obtained based on the state S tð Þ. The error δ tð Þ is 
calculated considering the current award r tð Þ and the estimate of the total 
award V S t þ 1ð Þð Þ.

5) Weights of the Critic neural network are adjusted to minimize the value of 
δ tð Þ, this training is carried out by the stochastic gradient descend method: 

ΔvC
i ðt þ 1Þ ¼ αCδðtÞyC

j (20) 

ΔwC
ij ðt þ 1Þ ¼ αCδðtÞ vC

j 1 � ðyC
j Þ

2
� �

xC
i (21) 

where αC – is the training speed of the Critic (αC > 0). Presented in Figure 4: 
Schematics of reinforcement learning.

Performance Measurements

The prediction performance of the proposed system was evaluated using three 
metrics: Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and 
Mean Absolute Scaled Error (MASE), Accuracy (AcÞ; Specificity (SpÞ;

Sensitivity (SeÞ; Kappa Kð Þ and detection rate Drð Þ. MAE is defined as the 
average of the difference between predicted and actual values in the test. 
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MAE ¼
1
n

Xn

n¼1
rn

t � r̂n
t

�
�

�
� (22) 

RMSE is defined as the standard deviation of prediction errors in a test. 

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

n¼1
yn

t � ŷn
tð Þ

2

s

(23) 

MASE is defined as a measure of the accuracy of predictions that represents it 
as a percentage in comparison to a standard mean error. 

MASE ¼
1
n

Xn

n¼1

yn
t � ŷn

t
�
�

�
�

1
n� m

Pn
n¼mþ1 yn

t � yn
t� mj j

 !

(24) 

The classification performance measures are defined as follows: 

AC ¼ 1 �
FN þ FP

TN þ FN þ TP þ FP
(25) 

Se ¼
TP

T þ FN
(26) 

K ¼
Po � Pe

1 � Pe
(27) 

Dr ¼
Tp

Tp þ Fp þ TN þ FN
(28) 

Where Ac is the accuracy, Se is the sensitivity, K is the Kappa, TP is the true 
positive, TN is the true negative, FP is the false positive, Dr is the detection rate, 
FN is the false negative, Po is the probability of the observed accuracy and Pe is 
the probability of expected accuracy obtained from the confusion matrix.

Results and Discussion

Datasets

Images of Malaria Cells used in this paper were obtained from the Kaggle 
database (Kaggle 2018). A balanced dataset was used for our experiments. The 
dataset comprises 27,558 photos of cells with equivalent instances of infected 
cells (13,779) and uninfected cell images (13,779) taken from the samples of 
blood cells using a microscope. Sample of malaria-infected and uninfected 
images are shown in Figure 5. This dataset is then divided into sets of training 
(80%) and test (20%). As a result, the training dataset consists of 22,046 images 
while the test set consists of 5,512 images.

e2033473-2248 D. O. OYEWOLA ET AL.



Results and Discussion

Deep learning technologies such as Convolutional Neural Networks (CNN) 
are commonly employed in classifying images. They are designed to work with 
images as inputs, but they can also handle text, signals, and other continuous 
responses. The anatomical structure of a visual cortex, which incorporates 
configurations of basic and complex cells, is the inspiration for CNN. Based on 
the sub-regions of a visual field, these cells are discovered to activate. Receptive 
fields refer to these sub-regions. The neurons in a convolutional layer link to 
sub-regions of the layers preceding it, rather than being totally connected as in 
other types of neural networks, as a result of the findings of this study. Outside 
of these sub-regions in the image, the neurons are unresponsive. 
Convolutional layers, batch normalization, max-pooling layers, softmax, and 
fully connected layers are among the layers that make up CNN. The neurons 
in each layer of a CNN are organized in three dimensions, translating a three- 
dimensional input into a three-dimensional output. Malaria image input of the 
infected and uninfected in the first layer (input layer) retains the images as 
3-D inputs, with the dimensions being height, width, and the color channels of 
the image, which were set as 32,32,1 accordingly. The neurons in the first 
convolutional layer link to the areas of these malaria images and turn them 
into a 3-D output. The hidden units (neurons) in each layer learn nonlinear 
combinations of the original inputs, a process known as feature extraction. 
These learnt characteristics, also called as activations, from one layer become 
the inputs for the following layer. The learnt features are used as inputs to the 
classifier function at the end of the network. Optimizers based on Stochastic 
Gradient Descent with Momentum (SGDM) were used to train the network. 
The size of the mini-batch is specified using the MiniBatchSize pair parameter 
of training Options, and MaxEpochs is set to 50 for fine-tuning and transfer 
learning. The second method presented in this paper is the Directed Acyclic 
Graph Convolutional Neural Network (DAGCNN). A DAGCNN contains 
layers that are organized as a directed acyclic graph and is more sophisticated 
than a series architecture of CNN, which has layers that have inputs from 

Figure 5. Images of uninfected and infected malaria blood samples.
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several layers and outputs to numerous layers. When used to image proces
sing, these structures combine pixel localization information from beginning 
layers into final layers. The third approach is Data Augmentation 
Convolutional Neural Network (DACNN) with Reinforcement Learning. 
DACNN prevents the network from overfitting and remembering the specifics 
of the training images. It also aids in the improvement of CNN performance 
and outcomes by generating new and diverse instances for training datasets. 
We build an imageDataAugmenter object to specify image augmentation 
preparation options including scaling, rotation, translation, and reflection. 
Randomly translate and rotate the malaria images by up to three pixels 
horizontally and vertically, and by up to 20 degrees. Matlab R2018a was 
used to run the experiments. The machine utilized has a DELL motherboard, 
4 GB of RAM, and an Intel Dual Core @ 2.20 GHz processor. The computer 
operating system utilized in this study was Windows 8.1.

In this paper, the performance of Convolution Neural Network (CNN), 
Directed Acyclic Graph Convolutional Neural Network (DAGCNN), and 
Data Augmentation Convolutional Neural Network (DACNN) was compared. 
Data augmentation is an approach that artificially builds new training data 
from existing training data. It can expand the size of a training dataset by 
generating better versions of data in the dataset. Training deep convolution 
neural network models using extra data can result in more effective models. 
Moreover, the augmentation methods can generate disparities of the images 
that can augment the capacity of the suitable models to hypothesize what they 
have learned to new images. The overall performance of CNN, DAG, and 
DACNN models are evaluated using eight performance measures: MAE, 
RMSE, Mean Absolute Scaled Error MASE, Sensitivity, Detection Rate, 
NPV, Prevalence, Accuracy, Kappa, and 95% CI.

Table 2 displays the performance metrics for each criterion used in this 
paper. As shown in this table, DACNN has the lowest error rate compared to 
other algorithms. However, the performance of CNN and DAGCNN are 
evaluated using sensitivity, detection rate, NPV, prevalence, accuracy, kappa, 
and CI (as shown in Tables 3–6).

CNN failed to classify malaria blood smear images as shown in the perfor
mance metrics such as Se;NPV;Dr and Prevalence. Sensitivity (SeÞ of the CNN 
of the two classes of malaria blood smear images, for example, Infected and 
Uninfected is within the range of 65–81% as shown in Table 3. DAGCNN on 

Table 2. Performance evaluation of models based on 
MAE, RMSE, and MASE.

MODEL MAE RMSE MASE

CNN 0.313 0.560 1.096
DAGCNN 0.273 0.523 0.956
DACNN 0.0520 0.228 0.181
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the other hand also failed to classify malaria blood smear images as shown in 
the performance metrics such as Se;NPV;Dr and Prevalence (as shown in 
Table 4). The Sensitivity (SeÞ of the DACNN of the two classes of malaria 
blood smear images, for example, Infected and Uninfected is within the range 
of 92–96%, Detection Rate (DrÞ is 41–53%, NPV is 94–95% while Prevalence is 
44–55%. This shows that DACNN performs better than CNN and DAGCNN 
as shown in Table 5.

Table 6 is the overall evaluation of CNN, DAGCNN and DACNN models 
based on Ac;K and CI. DAGCNN failed to classify malaria blood smear 
images. According to Table 6, DACNN performed best with an accuracy of 
94.79%, and kappa of 89.44%, followed by CNN, with an accuracy of 72.62%. 
This shows that integrating Data Augmentation and Convolution Neural 
Network data can improve the classification efficiency of malaria smear 
imaging.

CNNs use image features for classification. These features are learned 
by the network during the training process. In this study, the hidden layer 
output visualizes features used for diagnosis of malaria disease from blood 
sample images was adopted. The complex patterns and textures of the 
infected blood samples produced by the third convolutional layer are 
shown in Figure 6.

Table 3. Performance metrics of CNN of malaria blood sample images.
MODEL Se (%) Dr (%) NPV Prevalence

Infected 81.24 37.72 80.03 46.43
Uninfected 65.15 34.91 66.89 53.57

Table 4. Performance metrics of DAGCNN of malaria blood sample images.
MODEL Se (%) Dr (%) NPV Prevalence

Infected 70.43 43.09 58.53 61.18
Uninfected 65.75 25.53 76.42 38.82

Table 5. Performance metrics of DACNN of malaria blood sample images.
MODEL Se (%) Dr (%) NPV Prevalence

Infected 96.32 53.21 95.34 55.24
Uninfected 92.91 41.58 94.37 44.76

Table 6. Overall evaluation of CNN, DAGCNN, and DACNN 
models based on Ac; K , and CI.

MODEL Ac (%) K 95% CI

CNN 72.62 45.74 (0.7143, 0.738)
DAGCNN 68.61 35.38 (0.6737, 0.6984)
DACNN 94.79 89.44 (0.9417, 0.9536)
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Despite these promising results, the proposed approach has several draw
backs. To begin with, all deep learning methods have a tendency to overfit the 
training dataset. Because the purpose of deep learning models is for them to 
generalize successfully from training data to any data from the problem domain, 
it is critical for CNN to make predictions on datasets it has never seen before. 
Overfitting occurs when a model tries to learn too many details from the training 
data while still allowing for noise. As a result, the model’s performance on 
unknown or test datasets is unsatisfactory. This can make the network to fail 
in generalizing the training dataset’s features or patterns. This inhibits people 
from making broad generalizations. Moreover, gamma correction may not be 
the ideal strategy for image enhancement in poor lighting circumstances.

Conclusion

A new deep learning model, called the data augmentation convolutional 
neural network (DACNN) was proposed in this paper. The proposed model 
was trained by reinforcement learning to tackle this problem. The paper 
compared DACNN with other variations of CNN to investigate its perfor
mance. Simulation results show that DACNN performs better than the 
convolutional neural network (CNN) and the directed acyclic graph con
volutional neural network (DAGCNN). The result shows that DACNN 
outperforms the previous techniques used in earlier studies in image 
processing and classification. DACNN achieves 94.79% classification accu
racy while utilizing DAGCNN or CNN achieved just 68.61%, and 72.62% 

Figure 6. Activations from the third CNN layer of malaria blood sample images.
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accuracy, respectively. Therefore, the deep learning methods combined 
with reinforcement learning can produce faster and more accurate 
(with an accuracy of 94.79%) results in malaria screening using 
image recognition.

This paper shows the benefits of data augmentation in improving the 
classification performance of malaria blood smear images using deep learning- 
based image classification techniques.

In the future, we aim to adopt interdisciplinary methods that combine 
medical professionals’ knowledge and experience with deep learning-based 
systems to further increase the effectiveness and diversity of the model. In 
addition to this is the deployment of the model on low-cost consumer smart
phones for tele-healthcare applications.
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