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Estimation of the Torques Produced by Human Upper Limb 
during Eating Activities Using NARX-NN
Zakia Hussain and Norsinnira Zainul Azlan

Department of Mechatronics Engineering, Faculty of Engineering, International Islamic University 
Malaysia, Kuala Lumpur, Malaysia

ABSTRACT
Upper limb movement disorders significantly hamper the ability 
of impaired to perform basic activities of daily living (ADL). 
Eating, without doubt, is one of the essential ADLs necessary 
for human survival. To develop a rehabilitation system meant 
specifically to assist the hand during eating, an in-depth knowl-
edge of hand motion and the forces/torques produced, during 
eating is vital. Since, Human Upper Limb (HUL) motion is highly 
dexterous, its dynamic model can be beneficial for predicting 
the torques during different eating activities. Four degrees of 
freedom (DOF), dynamic model of HUL including wrist and 
elbow joints, focusing on elbow and wrist flexion/extension, 
forearm pronation/supination, wrist flexion/extension and 
wrist adduction/abduction is formulated, using Nonlinear 
AutoRegressive network with eXogenous input Neural 
Network (NARX-NN), during different eating activities. We con-
ducted an experimental validation involving five different food 
types and using two types of cutleries. Torque prediction accu-
racy of the model is determined by comparing predicted values 
to that of measured load cell torques, for all eating activities and 
using Root mean square error (RMSE) as a statistical measure, to 
test the model performance. Torques predicted by the model 
track the measured torque efficiently.
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Introduction

Dysphagia and other eating complications are common among post-stroke 
patients, leading to complications, such as malnutrition, dehydration, suffoca-
tion, and eventually death (Jacobsson et al. 2000; Westergren 2006; Westergren, 
Hallberg, and Ohlsson 1999; Westergren et al. 2002). Albert Westergren et al. 
(2008,) in their research conducted in an urban hospital in Sweden, considered 
162 stroke patients over one year and found that eating difficulties were found in 
80%, while 52.5% of patients could not eat without any assistance. The most 
prominent eating difficulties encountered in the total sample included: ‘eats 
three-quarters or less of served food’ (60.1%), ‘manipulating food on the plate’ 
(56.2%), and ‘transport of food to the mouth’ (46.4%).
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Hand motion plays a crucial role in eating (feeding). With roughly 30 
degrees of freedom (DOFs), this complex structure can perform intricate 
tasks requiring varying amounts of forces/torques and dexterity. An in- 
depth knowledge of hand motion and the forces/torques produced during 
eating is vital to develop a robotic rehabilitation system explicitly meant to 
assist the hand function during eating. Without sufficient knowledge of the 
motion of the hand and the forces/torques applied by the hand during eating 
activity, it is not easy to effectively develop rehabilitation robots for eating 
activities. Modeling hand motion (i.e., motion and force/torque producing the 
motion) during eating can be complicated since it is subjected to the type of 
food (solid, liquid) to be ingested and the type of cutlery (fork or spoon) to be 
used. A dynamic model of the HUL for estimating the torques produced 
during different eating activities is pivotal. Dynamic modeling can be bene-
ficial to study the interactions between humans and rehabilitation systems to 
ensure human safety and enhance human performance. This quantification of 
the subjects’ effort (torques) can serve as a guideline (or reference torque 
input) for developing assisted robotic rehabilitation systems meant for eating 
activities.

Numerous dynamic models have been formulated using mathematical 
methods like Newton-Euler, Lagrange (Buondonno and De Luca 2015; 
Massa and Vignolo 2016; McGrath, Howard, and Baker 2017) and Kane’s 
method (Hirza, Ariff, and Rambely 2009; Rambely and Fazrolrozi 2012; Rosen 
et al. 2005; Tumit et al. 2015), and also Artificial Neural Networks (ANNs). 
Multi-body mathematical modeling is one of the popular noninvasive meth-
ods biomechanists employ to study various human motions and the corre-
sponding torques and forces produced during multiple ADLs. However, the 
mathematical models can be cumbersome if the system involved has many 
DOFs and is 3-dimensional, making the inverse dynamics calculation process 
lengthy and not real-time. This drawback is one of the primary reasons for 
developing a dynamic model of the limb using the Nonlinear AutoRegressive 
network with eXogenous input Neural Network (NARX-NN) for instanta-
neous torque prediction.

Nonlinear Auto-Regressive eXogenous-NN (NARX-NN) models are 
increasingly used to estimate joint dynamics. The NARX model is based on 
the linear Auto-Regressive eXogenous (ARX) model, commonly used in time- 
series modeling. It is a recurrent dynamic network, with feedback connections 
enclosing several network layers.

A NARX model to effectively decode the shoulder, elbow, and wrist move-
ment based on the EMG signals was developed by (Liu et al. 2017). The input 
training data to the model consisted of the EMG signals from six muscles of 
the arm, and the angular motion of the shoulder, elbow, and wrist joints 
measured by an exoskeleton robot called IntelliArm acted as the output 
training data was recorded, while the subject moved their arm voluntarily 
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only in the horizontal phase. The estimation performance of the model was 
about 98% for the shoulder, elbow, and wrist joints for both the control group 
and the impaired group of subjects.

In a similar study by (Raj and Sivanandan 2016), a NARX structure-based 
multiple-layer perceptron neural network (MLPNN) model was proposed for 
the estimation of elbow joint angle and elbow angular velocity from the 
Surface Electromyography (SEMG) signals. The training data included the 
SEMG from the biceps brachii muscle of the human hand as input and the 
elbow angular displacement and elbow angular velocity during extension and 
flexion of the elbow as the outputs. For feature extraction from the SEMG, 
two time-domain parameters, Integrated EMG (IEMG) and Zero Crossing 
(ZC), were extracted. The NARX MLPNN model was trained using 
Levenberg-Marquart algorithm. The average regression coefficient value 
(R) obtained for elbow angular displacement prediction was 0.9641, and 
the elbow angular velocity prediction was 0.9347. Hence, the proposed 
model could estimate the elbow joint angle and elbow angular velocity 
with considerable accuracy.

Several similar studies have successfully been conducted to estimate human 
dynamics using NARX models and EMG signals (Ayati et al., 2015; Akbari and 
Talasaz 2014; Jali et al. 2014a, 2014b). EMG signal is a commonly used 
biological signal for human motor intention prediction, which is an essential 
element in human-robot interaction systems. They have been extensively used 
for muscle force estimation for the past few decades. Several torque prediction 
models using EMG as input have also been developed. (Jali et al. 2014a) in 
their study used a two-layer feed-forward network trained using Back 
Propagation Neural Network (BPNN) to model the EMG signal to elbow 
torque value. The EMG signal of the biceps brachii muscle act as the input 
of the ANN, while the elbow torque is the desired output. The ANN model 
with 20 hidden neurons had an MSE of 0.13807 and average regression of 
0.999.

A Hill-type EMG-driven model for ankle-joint estimation was developed by 
(de Oliveira and Luporini Menegaldo 2010). This paper proposed to find 
individual-specific muscle maximum force Fom by estimating muscle physio-
logical cross-sectional area (PCSA) using ultrasound, which is then multiplied 
by a reasonable value of maximum muscle-specific tension to obtain the 
output ankle torque. Three EMGs-Soleus, gastrocnemius medialis, and gastro-
cnemius lateralis acted as inputs acquired in a series of experiments involving 
eight adult male subjects, performing an isometric contraction protocol con-
sisting of 10 s step contractions at 20% and 60% of the maximum voluntary 
contraction level. Isometric torque was simultaneously collected using 
a dynamometer which acted as the output. A statistically significant reduction 
in the root means square error was observed when ultrasound obtained Fom 

was used compared to Fom from the literature.
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EMG signals are extensively used in human-robot systems to foresee the 
purpose of the user’s motion. Acquisition (electrode placement) of these 
signals is the most critical step as the subsequent processes primarily depend 
on the quality of the signal (Bi, Feleke, and Guan 2019). Electrodes may shift 
away from the selected part of the muscle (because of dynamic changes in 
the human body) or may lose contact with the skin’s surface. This reduces 
the amplitude of the quantified signal and thereby affects prediction preci-
sion (Ghapanchizadeh, Ahmad, and Ishak 2016; Mesin, Merletti, and 
Rainoldi 2009). Apart from complex pre-processing of EMG signals to 
extract human motion intentions, EMG signals may not necessarily contain 
the complete information produced by the motor system, specifically, when 
a preplanned motion is canceled to avoid any catastrophic results (Mirabella 
2014; Mirabella and Lebedev 2017). Moreover, an EMG signal collected from 
part of the muscle does not represent the muscle as a whole (Staudenmann 
et al. 2010).

From the previous works discussed, it can be concluded that abundant 
research has been done to predict human motion dynamics using var-
ious methods. However, the novelty of this study, is to utilize user’s 
wrist and elbow angular motion to estimate the corresponding joint 
torques, which has not been explored yet. NARX-NN is used to map 
the dynamic relationship between the arm motion (elbow and wrist 
motion) and the torques generated. The network is trained using the 
Levenberg-Marquardt algorithm.

The modeling of HUL during different eating activities, considering 
different food characteristics and different cutleries, has not been studied 
in detail yet. Although (Perry and Rosen 2006), in their quest to develop 
a 7-DOF exoskeleton, along with 24 other basic ADLs, included an 
eating task using fork and spoon, however, the focus of this activity 
was mainly on analyzing the grasping action of the spoon by a healthy 
and impaired patient, rather than analyzing the dynamics of HUL, 
considering various food characteristics and cutleries involved. The pro-
posed NARX model in this study aims to estimate the torques produced 
in HUL (elbow and wrist joint), focusing on the elbow flexion/extension, 
forearm pronation/supination, wrist adduction/abduction, and wrist flex-
ion/extension motions, using the user’s wrist and elbow angular motion, 
while performing different eating activities in a fraction of a second, 
which has not been studied extensively in the previous works. An 
experiment is then performed to validate the formulated model by 
comparing its predicted torques to those measured by the load cells of 
a robotic system while performing different eating activities using dif-
ferent cutleries. The focus of this study is the torques produced at the 
wrist and elbow joint only. The torques produced at the shoulder joint 
will be considered in a future study.
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This paper is organized as follows: Section 2 describes the experimental 
design employed in this study. Section 3 presents the experimental results of 
the NARX-NN model developed. Section 4 presents the discussion of the 
results, and lastly, the conclusion is drawn in Section 5.

Materials & Methods

Experimental Setup

An experiment has been performed using a 4-DOF mechanical HUL robotic 
system (coupled with the human arm) as shown in Figure 1. All the DOFs 
possess a revolute configuration. The four joints correspond to the elbow 
flexion/extension q1ð Þ, forearm pronation/supination q2ð Þ, wrist abduction/ 
adduction q3ð Þ and wrist flexion/extension q4ð Þ. All four joints have load cells 
attached, which are used for the corresponding torque measurement. The 
electrical unit comprises of NI USB-6211 Data acquisition (DAQ) system, 
which acts as an interface between the sensors and the MATLAB/Simulink 
software.

Xsens Motion Tracker (MTw) has been used for capturing the motion of the 
wrist and elbow joints during various eating activities as shown in Figure 2. 
The orientation data obtained in the form of Roll, Pitch & Yaw, corresponds to 
the elbow flexion/extension q1ð Þ, forearm pronation/supination q2ð Þ, wrist 
radial/ulnar flexion (abduction/adduction) q3ð Þ and wrist extension/flex-
ion q4ð Þ.

Specialized Dynamixel XH430-W350-R servo motors were used for the 
wrist joint to allow easy movements, resulting in near-zero stiffness and 
frictional torques. Thus, these parameters were ignored in the model.

   (b) (a)

Figure 1. Isometric view of the 4-DOF robotic system (a) CAD drawing (b) during the system.
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Meanwhile, for the elbow joint, the stiffness and frictional torque of the 
exoskeleton was previously estimated by another researcher (Mounis, Azlan, 
and Sado 2020). The torque measurement calibration accounted for the stiff-
ness and frictional torques for each of the load cells attached at these joints. 
Thus, the measured torques for our motion study were only due to the human 
input torque, while the exoskeleton’s inertia, centripetal, Coriolis, and gravita-
tional torques have all been accounted for in our current Kane’s model 
(Hussain and Azlan 2019).

This research received ethical approval from IIUM Research Ethics 
Committee (IREC) 2019–019.

Experimental Procedure

Five healthy, right-handed subjects, including three males and two females, 
with an average age of 30 years and an average weight of 70 Kg, volunteered for 
the experiment. The experiment comprised subjects performing five different 
eating activities as in our previous HUL motion analysis study (Hussain, 
Zainul Azlan, and Bin Yusof 2018) while wearing the robotic system and 
Xsens Motion Tracker (MTw) on the upper limb. The experiment was per-
formed without the actuation of the robotic system as it ensured that the 
torque measured by the load cell is the torque produced by the human effort 
only. Using the actuated system implied that the machine assists the upper 
limb during eating; as such, the torque recorded by the sensors would not 
represent the accurate measure of the torque generated by the HUL while 
eating. The system with the load cells attached at the four joints measured the 
torques produced simultaneously, as the subject performed the eating activity, 
while the Xsens Motion Tracker (MTw) at wrist and elbow joints measured the 
angles of HUL. Five eating activities, with varied food characteristics, were 
performed using two different eating tools (fork/spoon) are:

Eating rice (solid) with a spoon.
Eating vegetable salad (solid) with a fork.
Eating noodles (solid) with a fork.
Eating soup broth (viscous liquid) with a spoon.

MTw fastened the 

forearm for elbow 
MTw attached to 

the hand for wrist 

Figure 2. Three main events were identified during each eating activity: (a) Origin (b) Event A (c) 
Event B (d) Event D.
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Eating thick cereal (not viscous) with a spoon.
Before the experiment, the subjects were trained to perform eating activities 

while wearing the robotic system. Each activity consisted of three trials by each 
participant using either fork or spoon while sitting comfortably on a chair with 
food on the table. Each trial lasted for around 20 seconds. The average of the three 
trials has been used for the analysis. Each eating trial is divided into three events, as 
shown in Figure 3. All the eating activities begin and conclude with the origin, 
where the subject’s right upper limb is stationary and rested on the robotic system. 
The hand and the wrist are in the neutral position, while the elbow joint was 
extended approximately 100°. Event A occurs when the participant moves their 
arm from origin to grasp the cutlery. During event B, the participant grasps the 
cutlery, digs into the food, and, while holding the cutlery, brings the food into the 
mouth to eat, and event. Event C shows the point when after eating, the partici-
pant releases the grip of the cutlery and brings their hand back to the origin.

Narx Neural Network

The defining equation for the NARX model is 

y tð Þ ¼ f y t � 1ð Þ; y t � 2; . . . ; y t � ny
� �

; u t � 1ð Þ; u t � 2ð Þ; . . . ::; u t � nuð Þ
� �� �

(1) 

where u tð Þ an y tð Þ are the input and output of the model at discrete time step 
t (Billings 2013; Design Time Series NARX Feedback Neural Networks – 
MATLAB & Simulink n.d.). The next value of the dependent output signal 
y tð Þ is regressed on previous values of the output signal and previous values of 

(a) Origin (c) Event B 

(b) Event A (d) Event C

Figure 3. (a) Motion trajectories, (b) Elbow flexion/extension T1ð Þ, (c) forearm pronation/supina-
tion T2ð Þ, (d) wrist adduction/abduction T3ð Þ, and (e) wrist flexion/extension T4ð Þ comparison 
plots, during cereal eating activity of Subject 1.
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an independent (exogenous) input signal. That is, in this study, the future 
torque values of the wrist and elbow joints depend on both the previous torque 
and the previous joint angle values. This network also uses tapped delay lines 
to store previous values of the u tð Þ and y tð Þ sequences. Due to this reason, 
NARX neural network models can learn more effectively, converge faster, and 
display better generalizations than other recurrent networks. Numerous stu-
dies have proven that NARX neural network successfully uses its output 
feedback loop to improve its predictive performance in complex time series 
prediction tasks and consistently outperforms standard neural network-based 
predictors, such as the Time Delay Neural Networks (TDNN) and Elman 
architectures (Menezes and Barreto 2008). In (Lin, Horne, and Giles 1998; Lin 
et al. 1996), authors reported that learning long-term temporal dependencies 
with gradient-descent techniques is more effective in NARX than in simple 
multilayer perceptron (MLP) based recurrent models. This happens due to the 
NARX model’s input vector skillfully built through two tapped-delay lines 
where one is sliding over the input signal together and the other sliding over 
the network’s output hence, adding to the network’s stability and performance

In this study, the NARX model was developed using the Neural Network 
Time Series Toolbox in MATLAB 2019a. The orientation data obtained using 
Xsens MTw (input training dataset) is used to calculate the corresponding 
torques produced during elbow flexion/extension T1ð Þ, forearm pronation/ 
supination T2ð Þ, wrist flexion/extension T3ð Þ and wrist adduction/abduction 
T4ð Þ, while performing various eating activities, by performing inverse 

dynamics of a 3D Kane’s mathematical model of the upper limb formulated 
in our previous study (Hussain and Azlan 2016) and used as output training 
dataset (target).

Four individual networks were trained corresponding to the torques pre-
dicted during elbow flexion/extension T1ð Þ, forearm pronation T2ð Þ, wrist 
adduction/abduction T3ð Þ and wrist flexion/extension T4ð Þ respectively, 
instead of training a single network for predicting all the four together, 
which lead to better training results (Section 3.1). Each network consisted of 
a single input layer consisting of an angle and the output The training, 
validation, and test data sets in all four networks are 70%, 15%, and 15%, 
respectively. The total training dataset consisted of an average of 3799 target 
timesteps, with 2659 timesteps used in training (70%), 570 timesteps for 
validation (15%) and 570 for testing (15%) for each eating activity. Torques 
T1, T2, T3 and T4 for each eating activity consisted of an average of 120 input 
u tð Þ and output y tð Þ steps. The number of hidden neurons in the hidden layers 
and the number of delays in the inputs and outputs are determined by trial- 
and-error procedure. Here, better training results were obtained by selecting 
the number of hidden neurons as 10. The delay is 2 s, except for the training of 
the network for elbow flexion/extension T1ð Þ, the hidden neurons are taken as 
2 for cereal, rice and noodle eating activities and 5 for soup and vegetable 
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eating activities. Figure 4 shows the flowchart of input and target training 
datasets of 4 individual NARX models used for torque estimation during 
various eating activities.

Unlike, inverse dynamics approach where for each eating activity, the 
corresponding input angles have to be adjusted, with every change in the 
input motion activities, the four NARX individual networks have been 
trained once, for predicting torques of the elbow flexion/extension T1ð Þ, 
forearm pronation/supination T2ð Þ, wrist flexion/extension T3ð Þ and 
wrist adduction/abduction T4ð Þ, respectively and then, these four net-
works were used to estimate the torques for all other eating activities.

Figure 4. HUL and robotic system setup showing the placement of MTWs on the forearm & hand.

APPLIED ARTIFICIAL INTELLIGENCE e2033472-2223



NARX-NN Training Performance Validation

The performance of the network is assessed based on the Mean Squared Error 
(MSE) of the training data and Regression (R) between the target outputs and 
the network outputs. MSE is the average squared difference between outputs 
and targets. Lower values are better. Zero refers to no error. R values measure 
the correlation between outputs and targets. An R-value of 1 means a close 
relationship and 0 is a random relationship. The training stops when the 
validation error ceases to decrease after specific iterations. The training per-
formance of all four networks is summarized in Table 1.

Elbow Flexion/extension Network Training Performance

This network is trained using the soup eating activity data of a subject, where 
the training dataset includes the angle of elbow flexion/extension q1ð Þ as the 
input (from MTw) and the output target T1ð Þ is the corresponding torque 
(calculated from Kane’s math model (Hussain and Azlan 2019)). The network 
was generalizable for all eating activities, with a RMSE of 0.009 Nm.

The best validation performance of the network is obtained at 2.0875e-06 at 
epoch 153. As shown in Figure 5, the MSE decreased continuously until it 
achieved the best validation performance.

Regression values of the training, validation and test data are all very close 
to 1, hence, showing a good correlation between the outputs and targets, as 
shown in Figure 6.

The network performance is further validated by checking the error auto-
correlation function and input-error cross- 
correlation function of the network, shown in Figure 7–Figure 8. Error auto-
correlation function depicts how the prediction errors are related in time. 
There should only be a single non- 
zero value of the autocorrelation function for a perfect prediction model on 
occurring at zero lag. That is, the prediction errors are completely uncorre-
lated with each other. In this network, some correlations fall within the 95% 
confidence limit around 0, which is acceptable for a model to be adequate. 
Similarly, the input-error cross-correlation function illustrates how the errors 
are correlated with the input sequence u tð Þ. For a perfect prediction model, all 
the correlations should be zero. All the correlations fall within the confidence 
limits around zero in this network, as shown in Figure 8.

Table 1. Training validation performance of NARX-NNs.
NARX-NN Training activity Mean Squared Error (MSE) Validation regression (R)

NN1 Soup 2.0875e-06 0.999
NN2 Cereal 7.070e-05 1
NN3 Soup 1.059e-07 1
NN4 Rice 1.035e-07 0.999
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Figure 9 shows the time series response of the network. It displays the 
inputs, targets, and errors versus time. It also specifies which time points were 
selected for training, testing and validation. Hence, as seen from Figure 9, the 
red-colored parts show the time points used as test targets and test outputs, 
while the yellow fluctuation in error shows the data points where the error 
occurs.

The network performance of the rest three networks for the prediction of 
forearm pronation/supination T2ð Þ, wrist flexion/extension T3ð Þ and wrist 
adduction/abduction T4ð Þ is included in the supplementary data.

Experimental Results

The experiment performed using the 4-DOFs prototype robotic system 
coupled with the human upper limb, was to validate and determine the 
accuracy of the torques predicted by the formulated NARX-NN in real-time, 
by comparing to those measured by the loadcells, corresponding to the 
motions elbow flexion/extension q1ð Þ, forearm pronation/supination q2ð Þ, 
wrist abduction/adduction q3ð Þ and wrist flexion/extension q4ð Þ, during var-
ious eating activities.

Cereal activity

Figure 5. Flowchart showing input and target training datasets of 4 individual NARX models used 
for torque estimation during various eating activities.
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Figure 10(a) shows the motion angles of subject 1, during cereal eating 
activity. The torque validation graphs comparing the NARX-NN model pre-
diction to that of the load cell readings, during cereal eating activity of subject 
1 are shown in Figure 10(b)-(e). Three main events–event A, event B and event 
C have been highlighted in the graphs. The experimental results of the other 
four eating activities are in the supplementary section.

As demonstrated in Figure 10, during event A as the arm moves to grasp the 
cutlery, all the joint torques, and the joint angles start fluctuating. During 
event B, while the subject is eating, the joint torques increase and attain 
a stable state. During event C, as the subject drops the cutlery and moves 
his/her hand back to the origin the joint torques, and corresponding angles 
start fluctuating again and eventually decrease, the torques reach a minimum 
value as predicted by the NARX-NN model. It was observed from the torque 
graphs, that the maximum torque was generated, during event B in both wrist 
and elbow joints, for the majority of the eating activities. Also, the torques 

Figure 6. Validation performance of T1 NARX model.
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Figure 7. Regression values of T1 NARX model.

Figure 8. Error autocorrelation function of u tð Þ NARX model.
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produced during forearm supination T2ð Þ, torque produced during wrist 
abduction T3ð Þ and wrist flexion T4ð Þ have opposite direction to that of 
elbow flexion T1ð Þ. This indicates that the net torque produced by the wrist 
joint acts in the opposite direction to the torque generated by the elbow joint. 
Hence, the torques predicted by the NARX-NN model are consistent with the 
measured torques by the load cells.

It can also be observed that motion trajectories and the torque prediction 
graph of the other four subjects have shown results. It can be observed that the 
torque trajectories for all eating activities show similar trends, this can be 
attributed to the similar basic eating action involved.

Result Validation

Root mean square error (RMSE) is used as a validation means for the 
performance of the NARX-NN model. It is a standard statistical metric 
used to measure model performance in various fields. It can be defined as 
the square root of the mean of the squared differences between the corre-
sponding elements of the forecasts (f) and observations (o). The smaller an 
RMSE value, the closer forecasted and observed values are (Barnston 
((1992)); Chai and Draxler 2014) 

Figure 9. Input-error cross-correlation function of T1 NARX model.
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XN

i¼1

Toi � Tfi

� �2

N

" #1
2 

where N is the number of elements.
The average RMSE results of all the subjects are shown in Table 2.
The RMSE results of all torques, which consists of elbow flexion/extension, 

forearm pronation/supination, wrist adduction/abduction and flexion/exten-
sion, indicate that the NARX-NN model formulated fits all the torques well, 
with an average RMSE of 0.09 Nm, for all eating activities. The estimation 
performance of the NARX-NN model is appropriate to be used for torque 
prediction. This result shows that the formulated method successfully mod-
eled the wrist and elbow joints of the HUL, while eating different food types 
and using various cutlery. It provides an alternative way of predicting joint 
dynamics using motion data instead of commonly used EMG signals which 
can be complicated to acquire and process.

The experimental validation results of this study are better in comparison to 
the ANN model developed by (Jali et al. 2014a) with an MSE of 0.13807. 
NARX-NN model developed by (Jali et al. 2014b) to predict EMG-based elbow 
joint torque has not been validated externally; only network training validation 
performance is included. Moreover, in (Akbari and Talasaz 2014; Jali et al. 
2014a, 2014b), only 1 DOF (elbow flexion) has been considered, while in this 
study, 4 DOFs have been included while performing five different eating 
activities, which to our knowledge, has not been done before.

The torques predicted by the NARX-NN model can be helpful to study the 
dynamics of the wrist and elbow joints while performing various eating 
activities using different cutleries. This quantification of torques can serve as 
a guideline in designing and improving the assistive robotic and rehabilitation 
systems meant for eating activities of post-stroke patients and other patients 
with upper limb disabilities, where the user’s muscular efforts need to be 
considered.

The model developed can determine the torques for 4-DOFs of the human 
upper limb for various eating activities, using two kinds of cutlery, which have 
not been studied extensively in detail yet. Unlike the present state-of-the-art 
studies, which have developed NARX-NN models using EMG signals, the 
user’s wrist and elbow angular motion has been used to estimate the 

Table 2. Average RMSE of torque predictions by NARX-NN for all subjects.
AVG T1 (Nm) 

RMSE
T2 (Nm) 

RMSE
T3 (Nm) 

RMSE
T4 (Nm) 

RMSE
CEREAL 0.0533 0.0582 0.0986 0.0362
RICE 0.0867 0.0681 0.1078 0.0600
NOODLE 0.1831 0.0672 0.0472 0.0476
SOUP 0.0583 0.0684 0.1010 0.0938
VEG 0.1037 0.0808 0.0673 0.0491
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corresponding joint torques in this study. The torques predicted by this model 
are instantaneous, unlike the inverse dynamic mathematical model, which can 
be complicated and consumes high computational time and effort.

Conclusion

In this study, a dynamic model of the human upper limb, focusing on the 
elbow flexion/extension motion, forearm pronation/supination, wrist adduc-
tion/abduction, and wrist flexion/extension, has been formulated using 
NARX-NN, during different eating activities and using various cutlery. This 
study has certain limitations which can be addressed in future work. 1) For the 
modeling of the HUL, only wrist and elbow joints have been included, while 
the fingers have been neglected. 2) Significant improvements are required in 
the design of the prototype robotic platform used for the model validation. 
The system should be redesigned as an HUL exoskeleton with the machine 
joints precisely in line with the axis of human joints to provide more accurate 
torque results. 3) The load cells can be replaced by the actual torque sensors, 
which provide more reliable and consistent data.
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