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Abstract
Our goal is to reconstruct an unknown sparse signal. In this paper, we consider the feature of the
sparse signal and research good conditions for the recovery of sparse signals. In detail, we assume
that h ≡ x⋆−x and h = (h1, h2, · · · , hn), where x is an unknown signal and x⋆ is the CS-solution.
Furthermore for simplicity, we assume that the index of h is sorted by |h1| ≥ |h2| ≥ · · · ≥ |hn| and
T0 = {1, 2, · · · , s}. In this paper, we focus the quality of hT0 . In more details, we shall reseach
good conditions for the recovery of sparse signals by investigating the difference between the mean
|h1|+|h2|+···+|hs|

s
and the mean |h1|+|h2|+···+|hr|

r
, r = 1, 2, · · · , s. We shall show that if δs < 0.366 by

the quality of x, and similarly if δ 2
3
s < 0.436, then we have stable recovery of approximately sparse

signals.
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1 Introduction
This paper introduces the theory of compressed sensing(CS). For a signal x ∈ Rn, let ∥x∥0 be the
l0-norm of x, which is defined to be the number of nonzero coordinates, ∥x∥1 be the l1-norm of x and
∥x∥2 be the l2-norm of x. Let x be a sparse or nearly sparse vector. Compressed sensing aims to
recover a high-dimensional signal (for example: images signal, voice signal, code signal...etc.) from
only a few samples or linear measurements. The efficient recovery of sparse signals has been a very
active field in applied mathematics, statistics, machine learning and signal processing. Formally, one
considers the following model:

y = Ax+ z, (1.1)

where A is a m× n matrix(m < n) and z is an unknown noise term.
Our goal is to reconstruct an unknown signal x based on A and y given. Then we consider

reconstructing x as the solution x⋆ to the optimization problem

min
x

∥x∥1, subject to ∥y −Ax∥2 ≤ ε, (1.2)

where ε is an upper bound on the the size of the noisy contribution.
In fact, a crucial issue is to research good conditions under which the inequality

∥x− x⋆∥2 ≤ C0∥x− xT ∥1 + C1ε, (1.3)

for suitable constants C0 and C1, where T is any location of {1, 2, · · · , n} with number |T | = s
of elements of T and xT is the restriction of x to indices in T . One of the most generally known
condition for CS theory is the restricted isometry property(RIP) introduced by [1]. When we discuss
our proposed results, it is an important notion. The RIP needs that subsets of columns of A for all
locations in {1, 2, · · · , n} behave nearly orthonormal system. In detail, a matrix A satisfies the RIP of
order s if there exists a constant δ with 0 < δ < 1 such that

(1− δ)∥a∥22 ≤ ∥Aa∥22 ≤ (1 + δ)∥a∥22 (1.4)

for all s-sparse vectors a. A vector is said to be an s-sparse vector if it has at most s nonzero entries.
The minimum δ satisfying the above restrictions is said to be the restricted isometry constant and is
denoted by δs.
Many researchers has been shown that the l1 optimization can recover an unknown signal in noiseless
cases and in noisy cases under various sufficient conditions on δs or δ2s when A obeys the RIP. For
example, E.J. Candès and T. Tao have proved that if δ2s <

√
2 − 1, then an unknown signal can be

recovered [1]. Later, S. Foucart and M. Lai have improved the bound to δ2s < 0.4531 [2]. Others,
δ2s < 0.4652 is used in [3], δ2s < 0.4721 for cases such that s is a multiple of 4 or s is very large in [4],
δ2s < 0.4734 for the case such that s is very large in [3] and δs < 0.307 in [4]. In a resent paper, Q.
Mo and S. Li have improved the sufficient condition to δ2s < 0.4931 for general case and δ2s < 0.6569
for the special case such that n ≤ 4s [5]. T. Cai and A. Zhang have improved the sufficient condition
to δs < 0.333 for general case [6]. T. Cai and A. Zhang have improved the sufficient condition to δk in
case of k ≥ 4

3
s, in particular, δ2s < 0.707 [7]. By using a rescaling method, H. Inoue has obtained the

sufficient conditions of δ̃s < 0.5 and δ̃2s < 0.828 in [8].
In this paper, the main propose is to show various sufficient conditions with respect to the quality of
each sparse signal. In particular, we shall reseach good conditions for the recovery of sparse signals
by investigating the difference between the l∞- norm of h ≡ x⋆ −x and the mean |h1+|h2|+···+|hs|

s
of

{|h1|, · · · , |hs|}. In more details, we consider a function p on {1, 2, · · · , s} defined by

p(r) =
|h1|+ |h2|+ · · ·+ |hr|
|h1|+ |h2|+ · · ·+ |hs|

, r = 1, 2, · · · , s,

where the index of h is sorted by |h1| ≥ |h2| ≥ · · · ≥ |hn|.
Then, p(1) > 1

s
if and only if p(r) > r

s
, r = 1, 2, · · · , s, that is, this means that (the mean |h1|+|h2|+···+|hr|

r
) >
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(the mean |h1|+|h2|+···+|hs|
s

), r = 1, 2, · · · s. In this case, take an arbitrary c > 1 such that 1
s
< c

s
<

p(1). In Theorem 2.1, we shall show that if A obeys the RIP of order 2s
c

and δ 2s
c

< 1

1+

√
2−p(rc)
p(rc)

,

then we have stable recovery of approximately sparse signals, where rc is a natural number such
that c

s
(rc − 1) < p(rc) ≤ c

s
rc, 2 ≤ rc < s

c
. For example, in case that p( 1

4
s) > 1

2
, if δs < 0.366,

and in case that p( 1
4
s) > 3

4
, if δ 2

3
s < 0.436, then we have stable recovery of approximately sparse

signals. In Theorem 2.2, we shall consider the recovery of s-sparse signals in case that p(1) = 1
s
,

equivalently, the mean |h1|+|h2|+···+|hr|
r

= |h1|+|h2|+···+|hs|
s

, r = 1, 2, · · · , s. In this paper, we give the
sufficient conditions for recovery of signal x under various assumptions for the function p(r) which
depends on x. Though a signal x is unknown, a signal x has the various features. The idea of this
paper introduces that we may obtain new results by considering the features of a signal x in order to
analyze each signal x. Hence it seems to be useful for various real data analysis.

Our analysis is very simple and elementary. We introduce the proposed results using the T. Cai
and A. Zhang idea and the H. Inoue idea. We regard Theorem 2.1 as the main proof in general case,
and regard Theorem 2.2 as the main results in this paper. Otherwise, in Section 2, we prepare some
notions and lemmas to prove the main theorems, and we introduce new bounds of δ 2s

c
and δs.

2 Main Theorem

2.1 Preliminaries and Some Lemmas
We first prepare two Lemmas needed for the proof of Theorem 2.1.

The following result plays an important rule in this paper.

Lemma 2.1. For a positive number α and a positive integer k, define the polytope T (α, k) ⊂ Rp

by

T (α, k) = {v ∈ Rp; ∥v∥∞ ≤ α, ∥v∥1 ≤ kα} . (2.1)

For any v ∈ Rp, define the set of sparse vectors U(α, k,v) ⊂ Rp by

U(α, k,v) = {u ∈ Rp; supp(u) ⊆ supp(v),

∥u∥0 ≤ k, ∥u∥1 = ∥v∥1, ∥u∥∞ ≤ α} . (2.2)

Then v ∈ T (α, k) if and only if v is in the convex hull of U(α, k,v). In particular, any v ∈ T (α, k) can
be expressed as

v =

N∑
i=1

λiui, 0 ≤ λi ≤ 1,

N∑
i=1

λi = 1, ui ∈ U(α, k,v). (2.3)

Proof. The proof of this Lemma can be obtained by [[7], Lemma 1.1].

Suppose that A obeys the RIP of order s′ + s′′. Then the following is easily shown.

Lemma 2.2. Let s′ and s′′ be positive integers. Then∣∣⟨Aa′, Aa′′⟩∣∣ ≤ δs′+s′′∥a′∥2∥a′′∥2
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for any s′-sparse vector a′ and s′′-sparse vector a′′ in Rn with disjoint supports.

Suppose that x is an original signal we need to recover and x⋆ is the solution of CS optimization
problem (1.2). Let h ≡ x⋆ − x and h = (h1, h2, · · · , hn). For simplicity, we may assume that the
index of h is sorted by |h1| ≥ |h2| ≥ · · · ≥ |hn|. By (1.2) we have

∥Ah∥2 ≤ 2ε. (2.4)

Throughout this paper, we put any r ∈ N , 1 ≤ r ≤ s fixed. Let T0 = {1, 2, · · · , s}. By the definition
of CS optimization (1.2), we have

∥hTc
0
∥1 ≤ ∥hT0∥1 + 2∥x− xs∥1, (2.5)

where xs is the vector consisting the s-largest entries of x in magnitude. For any location T of
{1, 2, · · · , n} we denote the i-component of hT by hT

i . We may suppose ∥h∥∞ = |h1| ̸= 0 with out
loss of generality. Then an increasing function p(r) on T0 is defined by

p(r) ≡ |h1|+ · · ·+ |hr|
∥hT0∥1

, r ∈ T0.

For the function p(r) we can easily show that

p(1) ≥ p(r)

r
≥ 1

s
. (2.6)

and

p(1) =
1

s
if and only if |h1| = · · · = |hs|. (2.7)

The following two cases arise:
Case 1. p(1) > 1

s
.

Case 2. p(1) = 1
s
.

We first consider Case 1. Take an arbitrary c > 1 such that 1
s
< c

s
< p(1). Let rc be a natural

number such that

c

s
(rc − 1) < p(rc) ≤

c

s
rc, 2 ≤ rc <

s

c
. (2.8)

2.2 Case.1.

The following main theorem shows that if δ 2s
c

< 1

1+

√
2−p(rc)
p(rc)

, then we have stable recovery of

approximately sparse signal x.

Theorem 2.1. Let x be any vector in Rn such that ∥y − Ax∥2 ≤ ε. Assume that A obeys the
RIP of order 2s

c
and δ 2s

c
< 1

1+

√
2−p(rc)
p(rc)

. Then, the solution x⋆ to (1.2) obeys

∥x− x⋆∥2 ≤ C0∥x− xs∥1
+ C1ε, (2.9)
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Figure 1: Case.1: p(1) > 1
s

Figure 2: Case.2: p(1) = 1
s

where xs is the vector consisting the s-largest entries of x in magnitude and

C0 =
2
((√

2−p(rc)
p(rc)

− 1
)
δ 2s

c
+ 1
)

1−
(
1 +

√
2−p(rc)
p(rc)

)
δ 2s

c

,

C1 =
4
√

rc(1 + δrc)

p(rc)
(
1−

(
1 +

√
2−p(rc)
p(rc)

)
δ 2s

c

) . 95
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Figure 3: c
s(rc − 1) ≤ p(rc) ≤ c

src, 2 ≤ rc <
s
c .

Proof. We put

α ≡ ∥hT0∥1 + 2∥x− xs∥1
s

. (2.10)

Let T1 ≡ {1, 2, · · · , rc} and T2 ≡ {rc + 1, · · · , n} be a decomposition of {1, 2, · · · , n}. By (2.6) and
(2.8), we have

∥hT2∥∞ ≤ p(rc)

rc
∥hT0∥1 ≤ αc (2.11)

and so

∥hT2∥1 = ∥hTc
0
∥1 + ∥hT0∩T2∥1

≤ αs+ (1− p(rc))∥hT0∥1
≤ (2− p(rc))αs

= αc

(
2− p(rc)

c
s

)
. (2.12)

Using Lemma 2.1 for k ≡ 2−p(rc)
c

s, there exist {λi}1≤i≤N and {ui}1≤i≤N such that

hT2 =

N∑
i=1

λiui,
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where

0 ≤ λi ≤ 1 ,

N∑
i=1

λi = 1

supp ui ⊂ T2,

|supp ui| ≤ 2− p(rc)

c
s,

∥ui∥∞ ≤ αc, (2.13)

and so

∥ui∥2 ≤ ∥ui∥∞
√

|supp ui|

≤ αc

√
2− p(rc)

c
s

= α
√
s
√

c(2− p(rc)). (2.14)

By (2.8) and (2.13), we have

|T1|+ |supp ui| = rc +
2− p(rc)

c
s =

2s

c
,

and hence it follows from (2.6) that

αs = ∥hT0∥1 + 2∥x− xs∥1

=
1

p(rc)
∥hT1∥1 + 2∥x− xs∥1

≤
√
rc

p(rc)
∥hT1∥2 + 2∥x− xs∥1,

which implies by Lemma 2.2, (2.8) and (2.14) that

|⟨AhT1 , Aui⟩| ≤ δ 2s
c
∥hT1∥2∥ui∥2

≤ δ 2s
c
∥hT1∥2

(
α
√
s
√

c(2− p(rc)
)

≤ δ 2s
c

√
crc
s

√
2− p(rc)

p(rc)
∥hT1∥2 +

2
√

c(2− p(rc))√
s

∥hT1δ 2s
c
∥2∥x− xs∥1

≤ δ 2s
c

√
2− p(rc)

p(rc)
∥hT1∥

2
2 + 2

√
p(rc)(2− p(rc))

rc
δ 2s

c
∥hT1∥2∥x− xs∥1. (2.15)

Since A obeys the RIP of order 2s
c

, it follows from (2.4) and (2.13) that

(1− δrc)∥hT1∥
2
2 ≤ ∥AhT1∥

2
2

≤ |⟨AhT1 , Ah⟩|+ |⟨AhT1 , AhT2⟩|

≤
√

1 + δrc∥hT1∥2 · 2ε+
N∑
i=1

λi |⟨AhT1 , Aui⟩|

which implies by (2.15) that

(1− δ 2s
c
)∥hT1∥2 ≤ (1− δrc)∥hT1∥2

≤ 2
√

1 + δrcε+

√
2− p(rc)

p(rc)
δ 2s

c
∥hT1∥2 + 2

√
p(rc)(2− p(rc))

rc
δ 2s

c
∥x− xs∥1.
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Since (
1 +

√
2− p(rc)

p(rc)

)
δ 2s

c
< 1,

we have

∥hT1∥2 ≤
2
√

1 + δrcε+ 2
√

p(rc)(2−p(rc))
rc

δ 2s
c
∥x− xs∥1

1−
(
1 +

√
2−p(rc)
p(rc)

)
δ 2s

c

. (2.16)

Using (2.5), (2.6) and (2.16), we have

∥x− x⋆∥2 ≤ ∥x⋆ − x∥1
= ∥hT0∥1 + ∥hTc

0
∥1

≤ 2∥hT0∥1 + 2∥x− xs∥1

=
2

p(rc)
∥hT1∥1 + 2∥x− xs∥1

≤
2
√
rc

p(rc)

2
√

1 + δrcε+ 2
√

p(rc)(2−p(rc))
rc

δ 2s
c
∥x− xs∥1

1−
(
1 +

√
2−p(rc)
p(rc)

)
δ 2s

c

+ 2∥x− xs∥1

=
4
√

rc(1 + δrc)

p(rc)
(
1−

(
1 +

√
2−p(rc)
p(rc)

)
δ 2s

c

)ε+ 2
((√

2−p(rc)
p(rc)

− 1
)
δ 2s

c
+ 1
)

1−
(
1 +

√
2−p(rc)
p(rc)

)
δ 2s

c

∥x− xs∥1.

This completes the proof.

Corollary 2.1. We give the sufficient conditions for recovery of a signal x under various assumptions
for the functions p(r).
(1) Take p(rc) = 1, then we have rc = s and c = 1 and δ2s < 1

2
implies that

∥x− x⋆∥2 ≤ 2

1− 2δ2s
∥x− xs∥1 +

4
√

s (1 + δs)

1− 2δ2s
ε.

(2) Take p(rc) =
1
2
, then we have c = s

2rc
and δ4rc <

√
3−1
2

≈ 0.366 implies that

∥x− x⋆∥2 ≤
2
((√

3− 1
)
δ4rc + 1

)
1−

(
1 +

√
3
)
δ4rc

∥x− xs∥1 +
8
√

rc (1 + δrc)

1−
(√

3 + 1
)
δ4rc

ε.

For a signal x in case that rc = s
4
, that is, |h1| + · · · + |h s

4
| = 1

2
∥hT0∥1, we have c = 2 and

δs <
√

3−1
2

≈ 0.366 implies that

∥x− x⋆∥2 ≤
2
((√

3− 1
)
δs + 1

)
1−

(
1 +

√
3
)
δs

∥x− xs∥1 +
4

√
s
(
1 + δ s

4

)
1−

(√
3 + 1

)
δs

ε.

(3) Take p(rc) =
3
4
, then we have c = 3s

4rc
and δ 8

3
rc

<
√
15−3
2

≈ 0.436 implies that

∥x− x⋆∥2 ≤
2
((√

5
3
− 1
)
δ 8

3
rc

+ 1
)

1−
(
1 +

√
5
3

)
δ 8

3
rc

∥x− xs∥1 +
16
√

rc (1 + δrc)

3
(
1−

(
1 +

√
5
3

)
δ 8

3
rc

)ε.
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For a signal x in case that rc = s
4
, that is, |h1+ · · ·+ |h s

4
| = 3

4
∥hT0∥1, we have c = 3 and δ 2

3
s < 0.436

implies that

∥x− x⋆∥2 ≤
2
((√

5
3
− 1
)
δ 2

3
s + 1

)
1−

(
1 +

√
5
3

)
δ 2

3
s

∥x− xs∥1 +
8

√
s
(
1 + δ s

4

)
3
(
1−

(
1 +

√
5
3

)
δ 2

3
s

)ε.
We next introduce Theorem 2.1 in a special case.

Example. Let A be a n×n orthogonal matrix obeying A⋆A = nI and let ak and a′
k be a column and

row vector of A, respectively, that is,

ak =


a1k

a2k

...
ank

 , a′
k = (ak1ak2 · · · akn).

For example, A is the discrete Fourier tarnsform (DFT) matrix with entries:

akj = ei2π(j−1)k/n, 1 ≤ j, k ≤ n.

We define a m× n matrix Am obtained by restricting columns of A, that is,

Am =


a′
1

a′
2

...
a′
m

 .

Then since

AmA⋆
m = nIm (m×m unit matrix)

and

Ker Am ≡ {x ∈ Rn; Amx = 0}
= {a′

1,a
′
2, · · · ,a′

m}⊥

= Span {a′
m+1,a

′
m+2, · · · ,a′

n},

it follows that

x⋆ =
1

n
A⋆

my.

Any element x of Rn satisfying Ax = y is represented as x = x⋆ +Ker A. Hence we have

h ≡ x⋆ − x ∈ Span {a′
m+1, · · · ,a′

n}.

Thus, we may make use of Theorem 2.1 for Span {a′
m+1, · · · ,a′

n}.
For example, take x = x⋆ + a′

m+1 and suppose p(1) ≥ s
2
. Then,

(1) If p
(
s
2

)
= 1, that is, am+1 k = 0 for some 1 ≤ k ≤ s

2
, then δs < 1

2
implies Theorem 2.1.

(2) if p
(
s
4

)
≥ 1

2
, that is,

2
(
|am+1 1|+ · · ·+ |am+1 s

2
|
)
≥ |am+1 1|+ · · ·+ |am+1 s|,

then δs <
√

3−1
2

≈ 0.366 implies Theorem 2.1.
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2.3 Case.2.
We next consider Case 2. Then we define a function p2 on T0 ≡ {1, 2, · · · , 2s} by

p2(r) =
|h1|+ · · ·+ |hr|
|h1|+ · · ·+ |h2s|

, 1 ≤ r ≤ 2s. (2.17)

Similarly to (2.7), we can show that p2(1) = 1
2s

if and only if |h1| = |h2| = · · · = |h2s|. In this case, if
A obeys the RIP of order 2s and x is s-sparse, then by (2.5)

∥hT0∥1 ≥ ∥hTc
0
∥1

= (|hs+1|+ · · ·+ |h2s|) + (|h2s+1|+ · · ·+ |hn|)
= ∥hT0∥1 + (|h2s+1|+ · · ·+ |hn|).

Hence we have h2s+1 = · · · = hn = 0, and so h is a 2s-sparse vector. Since A obeys the RIP of
order 2s, it follows from (2.4) that

(1− δ2s)∥h∥22 ≤ ∥Ah∥22 ≤ 4ε2,

which implies that

∥x⋆ − x∥2 = ∥h∥2 ≤ 2√
1− δ2s

ε. (2.18)

In case that p2 ̸= 1
2s

, we can obtain a similar result of Theorem 2.1, but it is not interesting since the
assessment is not better than that of the T. Cai and A. Zhang [4] in general case.

In case that x is not a s-sparse vector we consider a function p3 on {1, 2, · · · , 3s} by

p3(r) =
|h1|+ · · ·+ |hr|
|h1|+ · · ·+ |h3s|

, 1 ≤ r ≤ 3s. (2.19)

Then p3(1) =
1
3s

if and only if |h1| = |h2| = · · · = |h3s|. If this is true, then

∥hT0∥1 + 2∥x− xs∥1 ≥ ∥hTc
0
∥1

= 2∥hT0∥1 + (|h3s+1|+ · · ·+ |hn|),
(2.20)

which implies that

∥h∥2 = 2∥hT0∥1 + (|h3s+1|+ · · ·+ |hn|)
≤ 4∥x− xs∥1. (2.21)

In case that p3(1) ̸= 1
3s

, it is also not interesting from the same reason as p2(1) ̸= 1
2s

. Thus we have
the following result for Case 2:

Theorem 2.2. Let x be any vector in Rn such that ∥y −Ax∥2 ≤ ε. Then we have the following:
(1) Suppose that p2(1) ≡ |h1|

|h1|+···+|h2s|
= 1

2s
. Then if A obeys the RIP of order 2s and x is a s-sparse

vector, then

∥x⋆ − x∥2 ≤ 2√
1− δ2s

ε. (2.22)

(2) Suppose that p3(1) ≡ |h1|
|h1|+···+|h3s|

= 1
3s

. Then

∥x⋆ − x∥2 ≤ 4∥x− xs∥1. (2.23)
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3 Conclusion
In this paper, we consider the feature of a sparse signal and research good conditions for the recovery
of a sparse signal. In Theorem 2.1 and Theorem 2.2, we have given sufficient conditions for the
recovery of a signal x under various assumptions for the function p(r) defined in Introduction.
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