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Abstract 
 

In this work, we investigate and compare the Successive approximations method and He-
Laplace method for solving the some problems of partial differential equations. 

Keywords: Successive approximations method, He-Laplace transform Method, He’s 
polynomials, linear and nonlinear partial differential equations. 

 

1 Introduction 
  
Many important phenomena occurring in different fields of engineering, physics, biology and 
another science are frequently modeled through differential equations. However, it is still very 
difficult to get exact solutions form for most models of real life problems abroad class of 
analytical methods and numerical method were used to handle such problem. In recent years, 
many authors have attention to study the solution of linear and Nonlinear PDEs by using different 
methods. For example Adomain decomposition method [1-6], finite different method [7,8], 
variational iteration method [9-12], weighted finite difference technique [13], Laplace 
decomposition method [14-16], integral transform [17], He-Laplace method, Homotopy 
Perturbation Method, Successive approximation method, etc . This paper outlines a reliable 
Comparison between two powerful methods that were recently developed. The first is the 
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successive approximations method (SAM) is one classical method for solving integral equations 
[18]. It is also called the Picard iteration method in the literature. In fact, this method provides a 
scheme that one can use for solving initial value problems. First to starts by finding successive 
approximations to the solution by writing an initial guess, called the zeroth approximation, which 
is any selective real-valued function that one uses in a recurrence relation to determine the other 
approximations [18]. The second is He-Laplace method is combination of the Laplace 
transformation, He’s polynomials and the homotopy perturbation method. We use the homotopy 
perturbation method coupled with the Laplace transformation for solving some problems of   
linear and nonlinear PDEs.  
 
This paper has been designed as following. Next section the methods, Then, application, lastly, 
conclusion. 
 

2 The Methods 
 
To convey first Homotopy Perturbation Method (HPM) and He’s Polynomials, second the He-
Laplace Transform Method, third Successive approximations Method. 
 

2.1 Homotopy Perturbation Method (HPM) and He’s Polynomials 
 
We suppose a general equation of the form 
 

L(u) = 0,                                                                                       (2.1) 
 
where L is any integral . We define a convex homotopy  H(u, p) with boundary conditions of 
 

H(u, p)  =  (1 −  p)F(u)  +  pL(u)                                     (2.2) 
 

where F(u) is a functional operator with known solutions v� .[19] It is clear that, for 
 

H(u, p) = 0                                                                                  (2.3) 
 
Then we get 

H(u, 0) =  F(u) ,       H(u, 1) =  L(u)                                        
 
This suggests that H (u, p) continuously traces an implicitly knows curve from the beginning point 
H (v�, 0) to a solution function H (u, 1)[19]. The embedding parameter monotonically increases 
from zero to unit as the trivial problemF (u)  =  0, is continuously deforms the original problem 
L(u)  =  0. The embedding parameter � ∈ (0,1] can be supposed as an expanding   parameter  
[19-43]. The homotopy perturbation method uses the homotopy parameter p as an expanding   
parameter [19-27] to get 
 

u = � P�u� = u� + pu� + +p�u� + p�u� + ⋯                                       (2.4)

∞

�� �

 

 
If � → 1, then (2.4) corresponds to (2.2) and becomes the approximate solution of the form: 
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u = lim
�→ �

u� = u� + u� + u� + u� + ⋯                                                           (2.5) 

 
It is well known that series (2.5) is convergent for most of the cases and also the rate of 
convergence is Relies on L(u) ; [19-27]. We suppose that (2.5) has a unique solution. The 
comparisons of like powers of � give solutions of different orders. In sum, according to [28, 29], 
He’s HPM supposes the nonlinear term  N(u) as: 
 

N(u) = � p�H� = H� +

∞

�� �

pH� + p�H� + ⋯  ,                                               (2.6) 

 
 where H�’s are the so-called He’s polynomials [28,29], which can be calculated by using the form     
 

H�(u�, ⋯ , u�) =   
1

n!

∂�

∂p�
�N �� p�u�

�

�� �

��

�� �

  n = 0,1,2, ⋯                                   (2.7) 

 

2.2 He-Laplace Method 
 
 We suppose a general nonlinear nonhomogeneous Partial differential equation with initial 
conditions [19] 

���

��� + R�y(x, t) + R�y(x, t) + Ny(x, t) = f(x, t)                        (2.8) 

y(x, 0) = α(x),       
∂y

∂t
(x, 0) = β(x), 

 
where R� = ∂� ∂x�⁄  and R� = ∂ ∂x⁄  are the linear differential operators, N  represents the general 
nonlinear differential operator and f(x, t) is the source term[19]. Applying the Laplace transform 
(denoted by L) on both sides of (2.8) we get 
 

L �
∂�y

∂t�
� + L[R�y(x, t) + R�y(x, t)]+ L[Ny(x, t)]= L[f(x, t)] 

              
   s�L[y(x, t)]− sy(x, 0) −

∂y

∂t
(x, 0)                                                            (2.9) 

 
= −L[R�y(x, t) + R�y(x, t)]− L[Ny(x, t)]+ L[f(x, t)].  

 
Applying the initial conditions given in (2.8), we have 
 

L[y(x, t)]=
α(x)

s
+

β(x)

s�
−

1

s�
(L[R�y(x, t) + R�y(x, t)]− L[Ny(x, t)])

+
1

s�
(L[f(x, t)])                                                          

(2.10) 
Operating the inverse Laplace transform  of (2.10), we get 
 

y(x, t) = F(x, t) − L�� �
1

s�
(L[R�y(x, t) + R�y(x, t)]− L[Ny(x, t)])� ,                              (2.11) 
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where F(x, t) represents the term arising from the source term and the prescribed initial conditions. 
We apply the homotopy perturbation method: 
 

y(x, t) = � p�y�(x, t),                                                              (2.12)

∞

�� �

 

 
and the nonlinear term can be decomposed as 
 

Ny(x, t) = � p�H�(y)

∞

�� �

.                                                              (2.13) 

 
For some He’s polynomials H�(see [44,45]) with the coupling of the Laplace transform and the 
homotopy perturbation method are given by 
 

� p�y�(x, t)

∞

�� �

= F(x, t) − p �L�� �
1

s�
L �(R� + R�) � p�y�(x, t) + � p�H�(y)

∞

�� �

∞

�� �

��� .      (2.14) 

 
Comparing the coefficients of same powers of p, on (2.14) we have the following approximations 
 

p�:    y�(x, t) = F(x, t), 

p�: y�(x, t) = −L�� �
1

s�
L[(R� + R�)y�(x, t)]+ H�(y)]�, 

p�: y�(x, t) = −L�� �
�

�� L[(R� + R�)y�(x, t)]+ H�(y)]�,                            (2.15) 

p�: y�(x, t) = −L�� �
1

s�
L[(R� + R�)y�(x, t)]+ H�(y)]�, 

                                            ⋮     

2.3 Successive Approximation Method (SAM) 
 
To convey the basic idea of the successive approximations method (SAM), we suppose the 
following general nonlinear differential equation: 
 

L[u(t)]+ R[u(t)]+ N[u(t)]= K(t), t> 0.                             (2.16) 
 

where  L =
��

���  , m  ϵ N   is the highest order derivative, R[u(t)] is the reminder linear term, 

N[u(t)] is a nonlinear operator and K(t) is the inhomogeneous source term, subject to the initial 
conditions 
 

u(�)(0) = c�    , k = 0,1,2, … , m − 1                                                 (2.17) 
 

We are looking for a solution u of (2.16). We shall suppose that (2.16) admits a unique solution. 
Otherwise, the SAM will give a solution between many (possible) other solution. 
 
The successive approximations method considers the approximate solution of an integral equation 
a sequence usually converging to the accurate solution [18]. For solving Eq. (2.16) using SAM we 
apply L��[. ], which is 
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L��[. ]=
1

(m − 1)!
� (t− τ)� ��[. ]dτ

�

�

                                                                    (2.18) 

 
on both sides of (2.16) so that we get 
 

u(t) = � c�

t�

k!
+ L���k(t)� − L��(R[u(t)]) − L��(N[u(t)])

� ��

�� �

                        (2.19) 

 
The SAM consists of representing the solution of (2.19) as a sequence 
 

{u�(x)}�� �    
∞                                                                                                                   (2.20) 

 
The method introduces the recurrence relation 
 

u�� �(t) = � c�

t�

k!
+ L���k(t)� − L��(R[u�(t)]) − L��(N[u�(t)])      

� ��

�� �

      (2.21) 

 
where the zeroth approximation u�(x)  is an arbitrary real function. Several successive 
approximations u�, n ≥  1 will be determined as 
 

u�(t) = � c�

t�

k!
+ L���k(t)� − L��(R[u�(t)]) − L��(N[u�(t)])

� ��

�� �

 

u�(t) = � c�

t�

k!
+ L���k(t)� − L��(R[u�(t)]) − L��(N [u�(t)])

� ��

�� �

                 (2.22) 

                                            ⋮   

u�� �(t) = � c�

t�

k!
+ L���k(t)� − L��(R[u�(t)]) − L��(N[u�(t)])

� ��

�� �

            (2.23) 

 
and the solution computed as: 
 

u(x) = lim
�→ ∞

u�(x)                                                                                                       (2.24) 

 
The SAM is very simple in its principles. The difficulties consist in proving the convergence of 
the introduced series. For convergence of this method we refer the reader to [18]. 
                 

3 Applications 
  
Example 3.1   [19], [46]: Suppose the following 
 

∂y

∂t
+

∂y

∂x
−

∂�y

∂x�
= 0                                                                                                        (3.1) 

 
with the following conditions: 
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y(x, 0) = e� − x,         y(0, t) = 1 + t,    
∂y

∂x
(1, t) = e − 1                                  (3.2) 

 
3.1.1. Using He-Laplace method 
 
Applying the He- Laplace method of both sides of equations (3.1) & use the conditions (3.2), we 
get  
 

y(x, s) =
(e� − x)

s
−

1

s
L �

∂y

∂x
−

∂�y

∂x�
�                                                                        (3.3) 

 
The inverse of the Laplace transform of (3.3) implies that  
 

y(x, t) = e� − x − L�� �
1

s
�
∂y

∂x
−

∂�y

∂x�
��                                                                    (3.4) 

 
 We apply the homotopy perturbation method both sides of (3.4); we have  
 

� p�y�(x, t) =

∞

�� �

e� − x − P �L�� �
1

s
�
∂y

∂x
−

∂�y

∂x�
���,                                           (3.5) 

 
Comparing the coefficient of same powers of p, on (3.5) we get 
 

p�:y�(x, t) = e� − x, 

                           p�:y�(x, t) = −L�� �
�

�
L �

���

��
−

����

���
�� = t,                                                            (3.6) 

p�:y�(x, t) = −L�� �
1

s
L �

∂y�

∂x
−

∂�y�

∂x�
��= 0, 

We have 
p�: y�(x, t) = 0, 

   p�: y�(x, t) = 0,                                                                                              (3.7) 
⋮ 

 

 The solution is 
       y(x, t) = e� − x + t+ 0 + 0 + ⋯                                                                   (3.8) 

= e� − x + t. 
  
The exact solution of (3.1) & (3.2).  
 
3.1.2 The successive approximations method 
 
Equation (3.1) can be write as 
 

         
��

��
=

���

��� − 
��

��
                                                                                                 (3.9) 
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We applying L��[∙] on both sides of (3.9), 
 

    y(x, t) = y(x, 0) + ∫ �
���

��� −
��

��
�

�

�
dτ.                                                                (3.10) 

 
For the zeroth approximation y�(t), we can select y�(x, t) = 0. then the equation (3.10) we have 
the iteration formula 
 

    y�� �(x, t) = e� − x + ∫ �
���

��� −
��

��
�

�

�
dτ.                                                           (3.11) 

 
Substituting y�(x, t) = 0 into (3.11) we obtain  
 

y�(x, t) = e� − x, 

y�(x, t) = e� − x + ∫ �
��

���
(e� − x) −

�

��
(e� − x)�

�

�
dτ = e� − x + t,            (3.12) 

y�(x, t) = e� − x + � �
∂�

∂x�
(e� − x + t) −

∂

∂x
(e� − x + t)�

�

�

dτ = e� − x + t, 

⋮ 
 The solution y(x, t) is given by 
 

y(x, t) = y�(x, t) + y�(x, t) + y�(x, t) + y�(x, t) + ⋯  
  y(x, t) = e� − x + t.                                                                                       (3.13) 

     
which is exact solution of (3.1) & (3.2). 

 
Example 3.2   [19], [46]: Suppose the following  

 
∂�y

∂t�
+ y −

∂�y

∂x�
= 0,                                                                                                  (3.14) 

 
with the following conditions: 
 

y(x, 0) = e�� + x,    
∂y

∂t
(x, 0) = 0                                                                        (3.15) 

 
3.2.1 Using He-Laplace method 
 
 Applying the He- Laplace method of both sides of equations (3.14) & use the conditions (3.15), 
we get  

y(x, s) =
e�� + x

s
−

1

s�
L �y −

∂�y

∂x�
�                                                                     (3.16) 

 
The inverse of the Laplace transform of (3.16) implies that  
 

y(x, t) = e�� + x − L�� �
1

s�
L �y −

∂�y

∂x�
��                                                          (3.17) 
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we apply the homotopy perturbation method both sides of (3.17); we have  
 

� p�y�(x, t) =

∞

�� �

e�� + x − p �L�� �
1

s�
L �y −

∂�y

∂x�
���.                                     (3.18) 

 
Comparing the coefficient of same powers of p, on (3.18) we have 
 

p�:y�(x, t) = e�� + x, 

p�:y�(x, t) = −L�� �
1

s�
L �y� −

∂�y�

∂x�
��=

−xt�

2!
,                                               (3.19) 

p�:y�(x, t) = −L�� �
1

s�
L �y� −

∂�y�

∂x�
��=

xt�

4!
, 

 We have   

p�:y�(x, t) =
−xt�

6!
         

  p�:y�(x, t) =
���

�!
,                                                                                           (3.20) 

⋮ 

p�:y�(x, t) =
(��)�����

��!
, 

 The solution y(x, t) is   
 

y(x, t) = y� + y� + y� + y� + ⋯    

= e�� + x −
xt�

2!
+

xt�

4!
−

xt�

6!
+ ⋯ +

(−1)�xt��

2n!
                                             (3.21) 

= e�� + x�1 −
t�

2!
+

t�

4!
− ⋯ +

(−1)� t��

2n!
� 

= e�� + x Cos(t), 
  
the exact solution of (3.14) & (3.15). 
 
3.2.2 The successive approximations method 
 
Equation (3.14) can be write as 
 

                                
���

��� =
���

��� − y                                                                                                             (3.22) 

 
We applying L��[∙] on both sides of (3.22), 
 

y(x, t) = y(x, 0) + � � �
∂�y

∂x�
− y�

�

�

dτ                                                                 (3.23)
�

�

 

 
For the zeroth approximation y�(t), we can select y�(x, t) = 0. then the equation (3.23) we have 
the iteration formula 
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y�� �(x, t) = e�� + x + � �
∂�y

∂x�
− y�

�

�

dτ                                                                (3.24) 

 
Substituting y�(x, t) = 0 into (3.24) we obtain  
 

y�(x, t) = e�� + x 

y�(x, t) = e�� + x + � � �
∂�

∂x�
(e�� + x) − (e�� + x)� dt= e�� + x − x

t�

2
,                        (3.25)

�

�

�

�

 

 

y�(x, t) = e�� + � � �
∂�

∂x�
�e�� + x − x

t�

2
� − (e�� + x − x

t�

2
)� dt= e�� + x − x

t�

2
 +  x

t�

4!
,   

�

�

�

�

 

 
And so on  
The solution y(x, t) is  

y(x, t) = y�(x, t) + y�(x, t) + y�(x, t) + y�(x, t) + ⋯  

                  y(x, t) = e�� + x − x
t�

2
 +  x

t�

4!
− x

t�

6!
+ x

t�

8!
− ⋯                                           (3.26) 

y(x, t) = e�� + x�1 −
t�

2!
+

t�

4!
−

t�

6!
+

t�

8!
− ⋯ +

(−1)�t��

2n!
� 

y(x, t) = e�� + xCos(t). 
 
The exact solution of the (3.14) & (3.15). 

 
Example 3.3 [19], [34]: Suppose  the following 
 

∂y

∂t
− y

∂y

∂x
−

∂�y

∂x�
= 0,                                                                                                (3.27) 

 
which the following conditions: 
 

y(x, 0) = 1 − x,   y(0, t) =
1

(1 + t)
, y(1, t) = 0.                                        (3.28) 

 
3.3.1 Using He-Laplace method 
 
 Applying the He- Laplace method of both sides the equations (3.27) & use the condition (3.28), 
we get 
 

y(x, s) =
���

�
+

�

�
L �

���

��� + y
��

��
�                                                                       (3.29) 

 
The inverse of the Laplace transform of (3.29) implies that  
 

y(x, s) = 1 − x + L�� �
1

s
L �

∂�y

∂x�
+ y

∂y

∂x
��.                                                           (3.30) 

 
 we apply the homotopy perturbation method both sides of (3.17); we get 
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∑ p�y�(x, t) =∞
�� � 1 − x + p �L�� �

�

�
�L �

���

���� + L[∑ p�H�(y)∞
�� � ]���,          (3.31) 

 
where H�(y) are He’s polynomials. The first few components of He’s polynomials are given by 
 

H�(y) = y�

∂y�

∂x
= −(1 − x), 

                       H�(y) = y�
���

��
+ y�

���

��
= 2(1 − x)t,                                                             (3.32) 

H�(y) = y�

∂y�

∂x
+ y�

∂y�

∂x
+ y�

∂y�

∂x
= −3(1 − x)t�. 

⋮ 
Comparing the coefficient of same powers of p, on (3.31) we have  
 

p�:y�(x, t) = 1 − x, 

p�:y�(x, t) = −L�� �
1

s
�L �

∂�y�

∂x�
� + L[H�(y)]�� = −(1 − x)t,                         (3.33) 

p�:y�(x, t) = −L�� �
1

s
�L �

∂�y�

∂x�
� + L[H�(y)]�� = (1 − x)t�, 

 
We have  

                               
p�:y�(x, t) = −(1 − x)t�,                                                                                        (3.34) 
p�:y�(x, t) = (1 − x)t�       

                             ⋮                
The solution y(x, t) is   

y(x, t) = y� + y� + y� + y� + ⋯  
                            = (1-x)-(1-x)t+(1-x)+t� + (1 − x)t� + ⋯  

                   = (1-x) [ 1 − t+ t� − t� + t� − ⋯ ]                                                               (3.35) 

= (1 − x)(1 + t)�� =
(1 − x)

(1 + t)
 , 

 
The exact solution of the (3.27) & (3.28). 
 
3.3.2 The successive approximations method 
 
Equation (3.27) can be write as 
 

∂y

∂t
= y

∂y

∂x
+

∂�y

∂x�
,                                                                                                       (3.36) 

 
We applying L��[∙] on both sides of (3.36), 
 

y(x, t) = y(x, 0) + �  �y
∂y

∂x
+

∂�y

∂x�
� dτ                                                                 (3.37)

�

�

 

 
For the zeroth approximation y�(t), we can select y�(x, t) = 0.  Then the equation (3.37) we have 
the iteration formula 
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y�� �(x, t) = 1 − x + � �y
∂y

∂x
+

∂�y

∂x�
�

�

�

dτ                                                              (3.38) 

 
Substituting y�(x, t) = 0 into (3.38) we get 
 

y�(x, t) = 1 − x, 

y�(x, t) = 1 − x + � �(1 − x)
∂

∂x
(1 − x) +

∂�

∂x�
(1 − x)�

�

�

dτ = (1 − x) − (1 − x)t, (3.39)  

y�(x, t) = 1 − x + � �(1 − x − t+ xt)
∂

∂x
(1 − x − t+ xt) +

∂�

∂x�
(1 − x − t− xt)�

�

�

dτ 

= (1 − x) − (1 − x)t− (1 − x)t� − (1 − x)
��

�
, 

⋮ 
 

 The solution y(x, t) is  
y(x, t) = y� + y� + y� + y� + ⋯  

    = (1 − x) �1 − t− t� −
��

�
− ⋯ �.                                                                   (3.40) 

 
the exact solution of  (3.27) & (3.28). 
 
Example 3.4 (34): Suppose the following 
 

��

��
− y − y

���

��� − �
��

��
�

�
=0                                                                              (3.41), 

 
with the following conditions: 
 

y(x, 0) = √x,      y(0, t) = 0,     y(1, t) = e�.                                                       (3.42)  
 

3.4.1 Using He-Laplace method 
 
Applying the He- Laplace method of both sides the equations (3.41) & use the condition (3.42), 
we get  

y(x, s) =
√x

s
+

1

s
L �y + y

∂�y

∂x�
+ �

∂y

∂x
�

�

� .                                                            (3.43) 

 
The inverse of the Laplace transform of (3.43) implies that 
 

y(x, t) = √x + L�� �
1

s
L �y + y

∂�y

∂x�
+ �

∂y

∂x
�

�

��.                                                   (3.44) 

we apply the homotopy perturbation method of  (3.44), we get 
 

� p�y�(x, t) =

∞

�� �

√x + p �L�� �
1

s
�L[y]+ L �� p�H�(y)

∞

�� �

����                         (3.45) 
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where H�(y) are He’s polynomials. The first few components of He’s polynomials are given by 
  

H�(y) = y�

∂�y�

∂x�
+ �

∂y

∂x
�

�

= 0 

          H�(y) = y�
����

��� + y�
����

��� + 2
���

��

���

��
= 0                                                      (3.46) 

H�(y) = y�

∂�y�

∂x�
+ y�

∂�y�

∂x�
+ y�

∂�y�

∂x�
+ �

∂y�

∂x
�

�

+ 2
∂y�

∂x

∂y�

∂x
= 0 

⋮ 
 Comparing the coefficient of like powers ofp, on (3.46) we have 
 

p�:y�(x, t) = √x, 

p�:y�(x, t) = L�� �
1

s
{L[y�]+ L[H�(y)]}�= √x t,                                             (3.47) 

p�:y�(x, t) = L�� �
1

s
{L[y�]+ L[H�(y)]}�=

√x t�

2!
. 

 We have 

p�:y�(x, t) =
√x t�

3!
, 

 

      p�:y�(x, t) =
√� ��

�!
,                                                                                         (3.48) 

⋮ 
 The solution y(x, t) is   

y(x, t) = y� + y� + y� + y� + ⋯  

= √x +
√x t

1!
+

√x t�

2!
+

√x t�

3!
+ ⋯  

 

 = √x �1 +
 t

1!
+

 t�

2!
+

 t�

3!
+ ⋯ +

 t�

n!
+ ⋯ �                                                     (3.49) 

= √x e�, 
The exact solution of (3.41) & (3.42). 
 
4.3.2 The successive approximations method 
 
Equation (3.41) can be write as 
 

��

��
= y + y

���

��� + �
��

��
�

�
                                                                                    (3.50) 

 
We applying L��[∙] on both sides of (3.50), 
 

y(x, t) = y(x, 0) + � �y + y
∂�y

∂x�
+ �

∂y

∂x
�

�

� dτ                                                   (3.51)
�

�

 

 
For the zeroth approximation y�(t), we can select y�(x, t) = 0.  then the equation (3.37) we have 
the iteration form 
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y�(x, t) = √x + � �y + y
∂�y

∂x�
+ �

∂y

∂x
�

�

� dτ                                                        (3.52)
�

�

 

 
Substituting y�(x, t) = 0 into (3.52) we get  
 

y�(x, t) = √x , 
 

y�(x, t) = √x + ∫ �√x + �√x�
��

���
�√x� +

�

��
(√x)� dτ

�

�
= √x + √x t,  

 

y�(x, t) = √x + � ��√x + √x t� + �√x + √x t�
∂�

∂x�
�√x + √x t� +

∂

∂x
�√x + √x t�� dτ

�

�

= √x + √x 
t�

2!
, 

 

So that the solution y(x, t) is given by 
 

y(x, t) = y� + y� + y� + y� + ⋯  
 

y(x, t) = √x + √x t+ √x
t�

2!
+ √x

t�

3!
+ ⋯ + √x 

t�

n!
+ ⋯  

 

y(x, t) = √x �1 + t+
t�

2!
+

t�

3!
+ ⋯ +

t�

n!
+ ⋯ � 

y(x, t) = √x e�, 
 
The exact solution of (3.41) & (3.42). 
 

4 Conclusions and Discussions 
 
The main goal of this work is to conduct a comparative study between the successive 
approximations method and the He-Laplace method. The two methods are powerful and efficient 
methods that both give approximations of higher accuracy and closed form solutions if existing. 
 
An important conclusion can made here .The successive approximations method for solving the 
some problems of partial differential equations. The same problems are solved by He-Laplace 
method. However, He-Laplace is combination of the Laplace transformation, the homotopy 
perturbation method and He’s polynomials. Moreover, He-Laplace method. provides the 
components of exact solution, The He-Laplace is capable of reducing the volume of the 
computational works as compared to the classical methods  while still maintaining the high 
accuracy of the numerical results. 
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