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By using scalar similarity transformation, nonlinear model of time-fractional diffusion/Harry Dym equation is transformed to
corresponding ordinary fractional differential equations, from which a travelling-wave similarity solution of time-fractional
Harry Dym equation is presented. Furthermore, numerical solutions of time-fractional diffusion equation are discussed. Again,
through another similarity transformation, nonlinear model of space-fractional diffusion/Harry Dym equation is turned into

corresponding ordinary differential equations, whose two similarity solutions are also worked out.

1. Introduction

Nonlinear partial differential equations arise in many fields
of engineering, physics, and applied mathematics. During
the last few decades, nonlinear fractional partial differential
equations have gained much attention due to their applica-
tions in many branches of science and engineering such as
porous media, fluid flow, fractals, heat conduction, control
theory, dynamical processes, and other areas. It is generally
known that fractional calculus can propose better results
than classical calculus. Many methods have been used to
study and analyze fractional differential equations, in which
the Lie-group analysis method is an effective tool to investi-
gate symmetries of ordinary and partial differential equa-
tions. Later, this method was generalized to study fractional
partial differential equations [1-9]. Djordjevic and Ata-
nackovic obtained similarity solutions to nonlinear fractional
heat conduction equation and Burgers/KdV equations [9]. It
is very critical to mention two recent papers [10, 11]. First, in
Ref. [10], the authors presented and discussed a fractional
nonlinear partial differential equation by use of similarity
reductions and recovered some interesting results associated
with Harry Dym-type equations. In addition, in Ref. [11], the
fractional nonlinear space-time wave-diffusion equation was
discussed and solved by the similarity method utilizing frac-

tional derivatives in the Caputo, Riesz-Feller, and Riesz
senses. In this work, we shall treat a nonlinear model of
time-fractional diffusion/Harry Dym equation
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and further study nonlinear model of space-fractional diftfu-
sion/Harry Dym equation
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with2 < < 3, we can obtain all equations between the
diffusion and Harry Dym equation. In the following, we want
to study similarity solutions with Equation (1), including a
travelling-wave similarity solution and a kind of numerical
solutions. Furthermore, two similarity solutions in Equation
(2) are also produced.

First of all, we recall several associated notations. For con-
tinuous function f(t), the left Riemann-Liouville fractional
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Similarly, for n — 1 < 8 < n, we have
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2. Travelling-Wave Similarity Solution of Time-
Fractional Harry Dym Equation

Firstly, we will prove that nonlinear model (1) possesses sim-
ilarity solutions, consider Lie-group scaling transformation
by introducing new variables t,%, 1 in the form [9]

t =Mt x =Nk, u=Mu(x,t), (6)

where p and q are parameters to be determined later. It is easy
to verify that the transformed equation reads
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which implies that g — a = (n + 1)g — np, that is

Since
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in order to obtain the travelling-wave similarity solution to
time-fractional Harry Dym equation
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we consider the similarity transformation
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where p, g, and ¢ are constants to be determined. We find that
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Set y=ct/x—1; then t — 7= (x/c)(&—y),d/0t = (x/c)(d/
d&), and then Equation (12) becomes
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Inserting (13) and (16) into Equation (10) leads to
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Then, the corresponding ordinary nonlinear fractional
Harry Dym equation reads

=T(E)U(§). (19)
We take special solutions of (19) in the forms:
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Substituting (20) into Equation (19) gives
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By using (18) and (22), from Equation (21), we get
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Hence, we obtain the travelling-wave similarity solutions
to Equation (10) as follows:

u(x, t) = X NEP = N(ct - x)l_%“

_ [18(3 =2a)c*I'(2 — 1/3a) 3 Ta (24)
i { (o = 9)T'(3 —4/3q) } (et =27
From (23), we get
_ N3 (0(3 — 9OC)F(3 —4/3a) :
i { 18(3 - 20)I'(2 - 1/304)} (25)

Inserting (25) into (24), we finally obtain
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3. Numerical Solutions of Time-Fractional
Diffusion Equation

In order to obtain the numerical solutions of time-fractional
diffusion equation
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we consider the similarity transformation

u=ng(E),E=X7t, (28)

where U(&), &, p, and g are constants to be determined. We
find that
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Substituting (29) and (31) into (27), we have correspond-
ing ordinary nonlinear fractional diffusion equation
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In what follows, we discuss its numerical solutions. In
Ref. [12], suppose that a given function f(¢) has continuous
first and second derivatives, then we get
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Utilizing the integration by parts on the right-hand side
gives
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As an application, we take finite number of terms in sums
of (34), that is, we take n=2, 3, ---, N with suitable chosen
N(N =7). Thus, from following formula for the fractional
derivative, we have
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where {/v,, is given by (35). Similar to the method proposed in
Refs. [13-15], the fractional equation can be replaced by a
system of first-order equations of integer order by using (36).



In what follows, we consider Equation (32). We utilize
the substitution x, = U,x, = U and (35) to express the
fractional derivative U(®). Then, we have the following sys-
tem of first-order equations (with & =¢)
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4. Two Similarity Solutions of Space-Fractional
Diffusion/Harry Dym Equation (2)

Similarity transformation of space-fractional diffusion/Harry
Dym Equation (2) is similar to the corresponding discussion
of time-fractional diffusion/Harry Dym Equation (1). Take
the following transformation:

t =M, x =Nk u=Mu(x,t). (40)

Equation (2) is transformed to
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forn —1 < 3 < n, by use of definition (5), one can com-
pute that

du(x 1) 1o uEt)
= dx. 46
dxP F(}’l - ﬁ) ox" JO (x_ &)ﬁ+1—n x ( )
Let
1 o u(x 1) ~
1 x,t = dx. 47
et I(n-p) L (x—x)Prin (47)
we have
g "YUt Px
'I(xt) 1 aJ tU(tPx) )
ox" F(I’l - ﬁ) ox" ), (x_ic)[iﬂ—n
Set { = tPx; then, we have
0" da"
_y=tP(E_ o _mp
x-x=t({&-1), 3 t E (49)

Substituting the above calculations into Equation (46),
we have
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which is equivalent to (42). Thus, we have the following frac-
tional ordinary differential system:
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and then insert (54) into (53); we have
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In terms of (52) and (56), from Equation (55), we get
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Then, we get the following similarity solutions to Equa-
tion (2):
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Similar to the discussion of the time-fractional Harry
Dym Equation (10), we can obtain the travelling-wave simi-
larity solution to space-fractional diffusion/Harry Dym
Equation (2). To obtain this solution a suitable similarity
transformation reads

u=tU(E), &= L% (59)

where p, g, and ¢ are constants to be determined later. We see
that

ou ap !

5 = £p L_(Z U@)-(E&+o)Uu (E)} (60)
Fu 1 9 (FePURIE-T)
N G s

Set z=Xx/t — ¢, and then x —x=t( - z),0"/ox" =t™"(d"
/dE™); then, Equation (61) becomes

oFu 1 d ¢t 19U (z) o dPU(E)

— st — 7 tdz=tv .

oxf I'(n-p) difqﬁﬂn@—@““" &P
(62)

Inserting (60) and (62) into (2) yields
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Thus, we get the following fractional ordinary differential
system:

FUE) (1 psier (e a e B!
WS‘O 5 O -+ aUtOU . (@

We take special solutions of (65) in the forms
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Substituting (66) into Equation (65) gives
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Thus, we obtain the following travelling-wave similarity
solution:

[TGB-B-UB)VE,
u(x,t) = [m} (x—ct) P (70)

5. Conclusions

In this paper, through similarity transformations, two nonlin-
ear models of time-fractional and space-fractional diffusion/-
Harry Dym equation are transformed to corresponding
ordinary fractional differential equations, from which four
similarity solutions are presented, including travelling-wave
similarity solutions and numerical solutions. The technology
presented in this paper can be applied to other fractional par-
tial differential equations, such as multi-equation systems and
(2 + 1)-dimensional equations, to get more various similarity
solutions, which will enrich and supplement the known
results.
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