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ABSTRACT

The genomic reality is highly complex and dynamic. Recent developments of high-throughput
technologies have enabled researchers to measure the RNA abundance of thousands of genes
simultaneously. The challenge is to unravel from such measurements genomic interactions and
key biological features of cellular systems. Two common problems are the high-dimensionality
of the system and the spurious correlations induced by unmeasured intermediate substrates.
Furthermore most currently available models cannot deal with biological replicates. Our goal
is to devise a method for inferring large transcriptional or gene regulatory networks from high-
throughput data sources such as gene expression microarrays with potentially hidden states, such
as unmeasured transcription factors (TFs).
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Methodology: We propose a dynamic state space representation to account for the effects of
such hidden states. Our inference method is based on a Kalman smoothing algorithm incorporated
in the E-step of an EM algorithm. We employ bootstrap confidence intervals for inferring sparse
networks, combined with an AIC criterion for determining the size of the latent space. The proposed
method is applied to time course microarray data obtained from a well established T-cell experiment.

Keywords: Genomic interactions; microarray experiments; dynamic networks; state space representa-
tion; EM algorithm.

1 INTRODUCTION

Since the turn of the century a new scientific
field has emerged: system biology has started
to view biological processes as interrelated
events, which ought to be understood in its
entirety to make progress within the life sciences
[1]. It is a biology-based, but interdisciplinary
field that focuses on the systematic study of
complex interactions in biological systems. The
aim of this holistic approach is to discover
new emergent properties that may arise from
a systemic view, which are inaccessible to
reductionist approaches. The concept of gene
networks is central in system biology. A network
is an abstract representation of a system, where
the substrates or genes are seen as the nodes
and the links as some kind of relationship, such
as binding or some chemical reaction between
them. It is an abstract representation of the
stability and interconnectedness of molecular
reactions. The challenge is to give this a
precise statistical interpretation in order to
allow one to be able to infer the network
from quantitative observations on the nodes.
Nowadays, expression levels of many genes
can be measured simultaneously through many
techniques including DNA hybridization arrays
[2, 3] or RNA-seq methods [4]. A major challenge
in system biology is to uncover, from such
measurements, gene-protein interactions and
key biological features of cellular systems.

The inverse problem of system biology
requires a flexible statistical method that in
a computationally efficient manner infers the
complexity, the dependence structure of the
network topology and the functional relationship
between the genes. A lot of the statistical
system biology literature only consider static
networks [5, 6, 7]. In this paper, we will
focus on the well-known linear state space

models (SSM) [8, 9], which consider dynamic
interactions across observed variables and non-
observed states. Several authors have used
Kalman filtering of SSM on gene expression
data to reverse engineer transcriptional networks.
[10] used a two-step approach. In the first
step, factor analysis was employed to estimate
the state vector and the design matrix; this
resulted in the choice of the dimension of the
state vector by means of BIC. In the second
step, the matrix representing protein-protein
translation was estimated using least squares
regression. [11, 12, 13] have applied SSM
to T-cell activation data, in which a bootstrap
procedure was used to derive a classical
confidence interval for parameters representing
gene-gene interaction through a re-sampling
technique. [14] approached the problem of
inferring the model structures of the SSM
using variational approximations in the Bayesian
context. They used a Variational Bayes method
to make the method computationally tractable
and identify the dimension of the latent state.
[15] also applied SSM to infer the topology
of Gene regulatory networks. They introduce
an empirical Bayes estimation procedure for a
feedback state space model in a hierarchical
Bayesian framework that is complementary to
the method developed by [14]

Recently, [16] used SSMs to rank observed
genes in gene expression time series
experiments according to their degree of
regulation in a biological process. Their
technique is based on Kalman smoothing
and maximum likelihood estimation to obtain
estimates of the model parameters; however, little
attention was paid to the dimension of the hidden
state. [17] also presented a novel approach
based on the state space model to identify the
transcriptional modules and module-based gene
networks simultaneously using SSM.
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The common problem of all current statistical
implementations of SSMs has been that they
ignore the existence of biological replicates.
[17, 18, 15] however used technical replicates
of gene expression profiles, which are often
measured in duplicate or triplicate. In the
presence of biological replicates, time-series are
typically averaged out within each time point and
the SSM is applied to the average profiles. It
is well-known however that replicated genomic
time-series typically undergo a gradual phase-
shift. These diffusion-like shifts are typically
stochastic and not under any genomic control.
Averaging out time-series will blur the genomic
control and reduce the ability of correct inference.
It is our aim to build a dynamic model of replicated
dynamic RNA transcripts and unobserved
quantities that represent (linear combinations of)
commonly unmeasured protein regulators. We
infer the model structure as a biological network
by estimating model interaction parameters
through the EM algorithm [19] combined with
the Kalman smoothing algorithm [20, 21] in
the context of maximum likelihood estimation.
We use a bootstrap approach [22] to infer the
complex transcriptional response of the network
and to reveal interactions between components.

Choosing SSM to model network kinetics has a
number of advantages. Most importantly, it allows
the inclusion of hidden regulators, which can
either be unobserved gene expression values
or transcription factors (TFs). It can be used to
model gene-gene and gene-protein interactions.
The parameter estimates obtained through the
EM algorithm and the state estimates from the
Kalman filter have been shown to be consistent
and asymptotically normal under some general
conditions [23, 24]. In this paper, we demonstrate
how the EM algorithm with the Kalman smoothing
algorithm are used in the maximum likelihood set-
up to reverse engineer transcriptional networks
from gene expression profiling data. By so doing,
we are able to add some useful interpretations to
the model. The EM algorithm itself guarantees
at least a monotonically increasing likelihood.
Model selection or determining a suitable
dimension of the hidden state is an additional
complication. [12] approached the problem of
deciding on a suitable dimension of the hidden
state through cross-validation. In their approach,

they continuously increased the dimension of
the hidden states and monitored the predictive
likelihood using the test data. One major
drawback of this approach is that it is very slow
and that it cannot be applied in an exploratory
analysis of the data. As a result, we focus on
faster information-based criteria.

The rest of the paper is organized as follows.
In section 2, we introduce the model and
give it a precise mathematical and biological
interpretation. Crucially, we will focus on
replicated genomic time-series that will undergo
stochastic time-shifts. Section 3 describes the
inference method including a model selection
procedure for the regulating, but unobserved
substrates. Identifiability issues of the model are
also discussed and resolved through a minimal
number of assumptions. In section 4 we assess
via simulation the performance of our method
extensively in terms of the F1-score, true positive
and false positive rates under various scenarios.
Section 5 consists of the application of our
model to a well-studied T-cell data set through
a bootstrap procedure where we identify the
network kinetics, by identifying genetic regulatory
networks. Importantly, our analysis makes
explicitly use of the replicated time-series, which
has been ignored thus far. We summarize the
results, analyze their statistical significance and
their biological plausibility. We conclude with a
discussion of the method, possible extensions
and a summary of related work in section 6.

2 GENOMIC STATE SPACE
MODEL

Linear Gaussian state space models, also known
as linear dynamical systems [25, 26], are a
class of dynamic Bayesian networks that relate
p temporal observations yt ∈ Rp to k temporal
hidden state variable θt ∈ Rk. We consider
a sequence (y1, ..., yT ) of p-dimensional real-
valued observation vectors through time, which
we shall simply denote by y1:T , representing a
gene expression data matrix with p rows and T
columns, where p and T are the number of genes
and the measuring time points, respectively.
The model assumes that the evolution of the
hidden variables θt is governed by the state
dynamics, which follows a first-order Markov
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process and is further corrupted by a Gaussian
intrinsic biological noise ηt. However, these
hidden variable are not directly accessible to the
experimenter but rather can be noticed through
their effect on the observed data vector, yt, the
quantity of mRNA for each of the p genes at time
t. The observation yt is a linear transformation of
a k-dimensional real-valued θt with observational
Gaussian noise ξt. It is assumed that the entire
experiment is replicated nR times, resulting in the
following model formulation:

{
θtr = Fθt−1,r +Ayt−1,r + ηtr
ytr = Zθt,r +Byt−1,r + ξtr

(2.1)

where r = {1, 2, ..., nR}, F , A, Z and B
represent the model interactions parameters of
dimensions compatible with the matrix operations
required in (2.1). The terms ηt and ξt
are zero-mean independent system noise and
measurement noise, respectively with

E(ηtη
′
t) = Q, E(ξtξ

′
t) = R (2.2)

Both Q and R are assumed to be diagonal in
many practical applications. The initial state θ0
is independently Gaussian distributed with mean
a0 = 0 and covariance Q. This model is
more complex and represents an extension of
the standard SSM described in [27, 28, 10] as it
includes various forms of feedback and can also
be extended to include additional covariates.

The novelty of our approach as compared to
other method such as [14] and [12] is the fact that
we take biological replication into account. This
is a crucial difference as can be seen in Fig. 1.
In this simple 2 gene system with a single latent
state, the expression of the same gene, i.e. 1,
varies dramatically between replicates, although
the underlying kinetics, given by

F = (0.9) , A = (−0.5, 0.5) , Z =

(
0.5

−0.5

)
,

B =

(
1.0 0.5

−0.3 1.0

)
,

are exactly the same, just as the covariance
structure and initial states, given by

θ1 = 1, y1 =

(
1
1

)
, Q = (0.02) ,

R =

(
0.2 − 0.03

−0.03 0.2

)
.

It is clear that averaging such profiles would lose
all biological meaning. Nevertheless, this is what
most methods do currently. Our method takes the
inter-replicate variability explicitly into account.

It must be noted that the method proposed in
[15] is also capable of dealing with replicated
time-series gene expression data. Their
approach is based on an iterative empirical
Bayesian procedure with the introduction of
hyperparameters that estimate the posterior
distributions of network parameters. We
proposed a complementary method. The novelty
in our paper is that we used a Maximum
Likelihood inference approach which is a direct
inference of the parameters and do not have to
worry much about convergence problems . We
also used AICc which is a data driven technique
in estimating the dimension of the hidden state k.

A mathematical representation of the model is
depicted in Fig. 2 indicating the latent and
observed dynamics across 3 consecutive time
points, where we assumed k = p = 2. The
model in Fig. 2 assumes RNA-protein translation
at two consecutive time points through the matrix
A, and instantaneous protein-RNA transcription
through Z. From a biological point of view, the
model describes two fundamental stages in gene
regulation which are in conformity with the central
dogma which states information flows from DNA
via RNA to proteins through transcription and
translation. The observation-to-state matrix A,
is of dimension k × p, and models the influence
or the effects of the gene expression values from
previous time steps on the hidden states. Matrix
B is the p × p matrix indicating the direct gene-
gene interactions. The state dynamic matrix
F describes the temporal development of the
regulators or the evolution of the transcription
factors from previous time step t−1 to the current
time step t and is of dimension k×k. It describes
the influences of the hidden regulators on each
other. The p × k observation dynamics matrix
Z relates the transcription factors to the RNAs
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at a given time point. We collect the model
interaction parameters into a single parameter

φ i.e φ = {G,Q,R} where G =

[
B Z
A F

]
represents our genomic network of interactions

including the hidden states. We must point
out that [12] focused on the matrix CB + D
which is just direct gene-gene interactions. The
corresponding CB +D in our case is ZA+B.
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Fig. 1. The expression of two replicates of the same gene, simulated according to (2.1),
whereby the underlying dynamics and initial values are the same, but the resulting profile
gradually diverges. Averaging these profiles would lead to disastrous loss of information

Fig. 2. A 2 gene network representing an input-dependent SSM for Gene regulation with the
vector of observed gene expression (yt) and the hidden regulators of gene expression (θt) at

3 different time points, where F, A, Z, and B correspond to the matrices in Equation (2.1)
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2.1 Identifiability Issues
A parameter of a dynamic system is said
to be identifiable if given some data only
one value of this parameter maximizes the
observed likelihood. The identifiability property is
important because it guarantees that the model
parameter can be determined uniquely and with
a unique interpretation from the available data.
Identifiability issues of the SSM stems from the
fact that given the original model (Equation 2.1),
and with the linear transformation of the state
vector θ∗t = Tθt, where T is a non-singular
square matrix, we can find a different set of
parameter vectors

φ̂∗ =
{
Ĝ∗, Q̂∗, R̂∗

}
that give rise to the same observation sequence
{yt, t = 1, 2, ..., T} having the same likelihood as
the one generated by the parameter vector φ.
Hence, if we place no constraints on F , A, Z,
B and possibly Q and R, there exists an infinite
space of equivalent solutions φ̂ all with the same
likelihood value. To overcome such identifiability
issues, further restrictions have to be imposed on
the model. In our work, we assume Q to be an
identity matrix and R is set to be diagonal matrix.
Subjecting Q to be identity only affects the scale
of θ and matrices A and Z.

We further assume that the errors
{ηt, t = 1, ..., T} and {ξt, t = 1, ..., T} are jointly
normal and uncorrelated. Also the number of
time points or biological replicates in microarray
data are typically much smaller than the number
of genes. This fundamental problem of high-
dimensional statistical modelling of micro array
data demands additional care in the estimation of
the model parameters in the state space model.
This problem is avoided by requiring that the
number of observations exceed the total number
of parameters to be estimated, i.e.,

pTnR > p2 + 2kp+ k2. (2.3)

Recall that p is the number of genes, T is the
measuring time points, nR is the number of

replicates hence we have pTnR as total number
of observations. Next, according to our model,
we have B, Z, F, and A as parameters to estimate
but B is a matrix of dimension (p ∗ p) i.e p2, Z is
of dimension (p ∗ k), A is of dimension (k ∗ p), F
is of dimension (k ∗ k) i.e K2. This gives the total
number of parameters to estimate as p2+2kp+k2

. Clearly we will have wished that we have
enough data points to enable us estimate the
parameters in our model, hence Eq(2.3) which
can be seen as a quadratic equation in k. Solving
equation Eq(2.3) for k, the number of latent states
puts the following bound on the dimension of the
hidden states,

0 ≤ k < −p+
√

pTnR, (2.4)

for which the system is still identifiable especially
for large number of replicates.

2.2 The Likelihood Function
With the identifiability constraints from the
previous section, we can now write the model
parameters as φ ={G,R}. As can be seen
from Fig. 2, the observations at time t, ytr
are conditioned on the past observations, y(t−1)r

and on the regulators θtr. The latent state θtr
depends on θ(t−1)r and y(t−1)r. To that effect, we
can assume

θ0r ∼ Nk(0, I)

y0r ∼ Np(0, R)

θtr|θ(t−1)r, y(t−1)r ∼ Nk(θ̃tr, I)

ytr|θtr, y(t−1)r ∼ Np(ỹtr, R),

where

θ̃tr = Fθ(t−1)r +Ay(t−1)r,

ỹtr = Zθtr +By(t−1)r,

and Nd(µ,Σ) is the d-dimensional normal
distribution with mean µ and covariance matrix Σ.
We write the marginal likelihood function Lr

y(φ) of
the data is given by
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Lm
y (G,R) =

nR∏
r=1

∫ T∏
t=1

P (θtr|F,A, θ(t−1)r, y(t−1)r)P (ytr|B,Z, θtr, y(t−1)r)dθ

=

nR∏
r=1

∫ T∏
t=1

ϕ(θtr|θ̃tr, σ2
ηI)ϕ(ytr|ỹtr, σ2

ξI)dθ. (2.5)

Maximizing (2.5) across the parameters is extremely challenging, as it involves an integral across the
latent state. Therefore, we first consider the complete log-likelihood function of the augmented data
(ytr, θtr), given as

ly,θ(G,R) =

nR∑
r=1

lryrθr (F,A,Z,B), (2.6)

where the complete log-likelihood of the rth replicate lryrθr (F,A,Z,B) is given by

lryrθr (F,A,Z,B) =

T∑
t=1

lyt|θt,y(t−1)
(Z,B) +

T∑
t=1

lθt|θ(t−1),y(t−1)
(F,A)

= − 1

2σ2
ξ

T∑
t=1

(yt − ỹt)
′
(yt − ỹt)−

T

2
log(σ2

ξ)

− 1

2σ2
η

T∑
t=1

(
θt − θ̃t

)′ (
θt − θ̃t

)
− T − 1

2
log(σ2

η)

(2.7)

ignoring constant term.

2.3 Joint Parameter Estimation
via EM Algorithm

The EM algorithm used in [12] is developed for
a single replicate. Extension of this to multiple
replicates is non-trivial and non-automatic. There
are various ways to extend the SSM to multiple
replicates. In our case we assume that each
replicate has its own associated latent space
governed by the same global parameters (i.e.
F and A). The reason is that biological
replicates have their own internal clock, governed
by universal biological constraints. Our aim
is to estimate the model parameters G, which
represents the underlying directed genomic
network, by maximizing the marginal likelihood
function lmy (φ) given in Equation 2.5. Due to the
intractability of the integral, we resort to using the
EM algorithm [29, 30] to learn the parameters of
the model.

2.3.1 The EM-algorithm

The main method of inference used in this paper
is the Expectation- Maximization (EM) algorithm.
Frequentist estimation by and large relies on
maximum likelihood (ML) estimators. It consists
of maximizing the likelihood across the parameter
space. Special cases of the EM algorithm were
developed before it was formally introduced by
[19]. The EM algorithm has become a popular
method of inference in statistical estimation
problems involving incomplete data, i.e, data with
some missing or latent or hidden observations
or problems that can be posed in a similar form,
such as mixture models.

The EM algorithm is an iterative tool to
compute the maximum likelihood estimate in
data characterized by the presence of missing, or
hidden or latent observations. This optimization
can be difficult especially if the data consist of
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missing or latent parts. The intuition behind ML
is to estimate the parameter(s) for which the
observed sample is most likely. It possesses
some optimality properties as discussed in [31].
Each iteration of the EM algorithm consists
of an expectation step (E-step) followed by a
maximization step (M-step). In the E-step, the
hidden variables are “estimated” as conditional
expectations given the observed data and current
estimates of the model parameters. In our SSM,
the Kalman filtering algorithm is precisely the E-
step. The later is achieved by computing the
conditional expectation of the (log) likelihood
of the “complete” data. The M-step maximizes
the complete likelihood function across the
parameter space given the estimate of the
missing data from the E-step.

To this effect the algorithm requires the
computation of the conditional expectation of
the log-likelihood given the complete data.
The algorithm is a two-stage procedure, which
alternates by calculating the Kalman smoother in
the E-step and updating the model parameters in
the M-step. The algorithm alternates recursively
between an expectation and maximization steps
until convergence is obtained.

The procedure to obtain the maximum likelihood
estimator of the parameter vector φ via the EM-
algorithm is summarized below:

1. Select initial values of (φ̂0) that is, start
with initial guess for the parameters φ̂0

2. At the kth step, calculate the conditional
expectation of the log likelihood (E-step)

3. Determine the next iterative estimated
parameters (φ̂k+1) that maximizes
conditional expectation of the log
likelihood. (M-step) and compute the
corresponding log likelihood.

4. Iterate step 2 and 3 until the log likelihood
is converged.

2.3.2 The expected log-likelihood
function: The E-step

The E-step step of the EM algorithm involves
the calculation of the first two moments of the
hidden states θt. Let Q denote the expected log-
likelihood. Then from Equation 2.6, Q becomes

Q(φ|φ∗) = Eθ [ly,θ(φ)|y, φ∗]

=

nR∑
r=1

Eθ

[
lryr,θr (Z,B)|y, φ∗]+

nR∑
r=1

Eθ

[
lryr,θr (F,A)|φ∗, y

]
= Qb1(Z,B) +Q2(A,F ) (2.8)

where φ∗ = (Z∗, B∗, F ∗, A∗) is the estimate
obtained from the previous M-step

The calculation of Q(φ|φ∗) in Equation 2.8
involves finding E(θ) and E(θ

′
θ) for each

replicate r. These forms are readily found: for
each replicate we run the Kalman smoothing
algorithm to obtain the expected hidden states
and their variance-covariance components and
these are joined together to get Q(φ|φ∗).

The Kalman-Filtering Algorithm

The Kalman filter has been considered as one
of the optimal solutions to many data prediction,
filtering and smoothing problems. In this context,
it is used to estimate the hidden or latent states in
the E-step of the EM algorithm. We describe here
the basic concepts that one needs to know to
design and implement a Kalman filter algorithm.
Given our original model from equation (2.1)

The predictive step equations are given by:

θ̃t = F θ̂t−1 +Ayt−1 (2.9)

P̃t = FP̂t−1F
′
+ ηt (2.10)

where P̃t represents the corresponding predicted
or prior state estimate error covariance.

Then the observation prediction equation step
becomes:

ỹt = Zθ̃t −Byt−1 (2.11)

Σt = ZP̃tZ
′
+R (2.12)

where Σt represent the observation prediction
covariance.

with
vt = yt − ỹt (2.13)

denoting the measurement innovation or the
residual and reflects the discrepancy between

8
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the predicted measurement ỹt and the actual
observation yt

The filtered equations are also given by

θ̂t = θ̃t +Ktvt (2.14)

P̂t = P̃t −KtΣtK
′
t (2.15)

and

Kt = P̃tZ
′
Σ−1

t (2.16)

is the Kalman gain matrix and is chosen to be
the gain or blending factor that minimizes the
posterior error covariance in Equation (2.15).

Finally the smoothing step is given by

θ̂Tt = θ̂t +Ht

(
θ̂Tt+1 − θ̃Tt

)
(2.17)

where H is the Kalman smoothing matrix. More
information on K and H can be obtained from
[20, 21] Equation (2.16) represents the expected
hidden states needed at the E-step.

2.3.3 The update equations: The M-
step

A new parameter set φ∗ is computed by
estimating the parameters that maximize the two
quadratic forms in (2.8). We solve ∂

∂φ
Q1 = 0 and

∂
∂φ

Q2 = 0 to obtain estimates for Z,B and F,A,
respectively. This can be solved in closed form.
For a full derivation, see the appendix. The entire
EM algorithm can be regarded as alternating
between Kalman smoothing and least squares
minimization given by the update equations.

2.4 Choice of Hidden State
Dimension: AICc

Model selection or the determination of the
optimum dimension of the hidden state k is
important in the application of SSM to network
reconstruction. Popular model selection criteria
include Akaike’s Information Criterion (AIC) [32]
and the Bayesian Information Criterion (BIC)
[33]. We apply a corrected Akaike’s Information
Criterion (AICc) method in our scenario. The
AICc has good model estimation properties,
especially for small sample time-series data

[34, 35]. Furthermore, the CV approach used
in [12] tends to be slow and unstable for small
number of replicates.

The AICc is aimed at finding the best
approximating model to the unknown data
generating process via minimizing the estimated
expected Kulback-Leibler divergence. Given the
log-likelihood function l, the AIC for a model with
k-dimensional state vector is given by:

AIC(k) = −2l(yt|φ̂k) + 2P (2.18)

with P the number of estimated parameters,
and l(yt|φ̂k) the log-likelihood of the observed
data. [36] recommends the use of the corrected
AIC, which corrrects for small sample size bias.
In the framework of normal linear regression
models, the penalty term of AICc provides an
exact expression for the bias adjustment. The
AICc is given by

AICc(k) = −2l(yt|φ̂k) + 2P

[
N

N − P − 1

]
(2.19)

where N = pTnR represents total number of
observations and P = p2 + 2kp + k2 is the total
number of estimated parameters. We select the
hidden state dimension that has the minimum
AICc, i.e we find k such that

k = arg min
k

{AICc(k)} . (2.20)

We successively increase the number of hidden
states and monitor the behavior of AICc as a
function of k.

2.5 Network Reconstruction by
Bootstrapping

We use a bootstrap approach to find confidence
intervals for the parameters defined in our
model. By so doing we compute the bootstrap
distribution of the estimator of φ. Let φ̂ denote
the MLE of the parameters defined in our model
that come from using the EM algorithm described
in previous section. In the following we will use
the notation yr ∈ RP×T with r ∈ {1, ..., nR} to
represent each of the biological time series. The
bootstrap procedure adopted is outlined below:

1. Obtain the Kalman filter model fit
ỹ1, ...ỹnR .
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2. Calculate, for all r in {1, ..., nR}, the
innovation errors ξr = yr − ỹr.

3. Sample with replacement from {ξr} to
obtain ξ∗r

4. For all r in {1, ..., nR}, generate a
bootstrap sample y∗

r through y∗
r = ỹ + ξ∗r

Whereas we bootstrap the residuals in
our method, [12] bootstrapped the original
observations. As our approach is non-
parametric, the two methods result in the same
bootstrapping procedure. Given each new data
we estimate, among other things, the bootstrap
set of parameters

{
φ̂∗

b ; b = 1, ..., Nb

}
through

the EM algorithm. Stated differently, for each
bootstrap sample the parameters that maximize
the likelihood of the bootstrap data are found.
We then obtain the sampling distributions of the
estimators of the elements of φ. The results
of the bootstrapping are the distribution of the
parameters and we proceed to make statistical
inferences about those underlying parameters by
computing confidence interval for each of them
[37, 20].

3 SIMULATION STUDIES

In order to illustrate the performance of our
method for analyzing gene expression data, we
simulate artificial data and applied our proposed
method to these data according to the model
described in Equation 2.1 with T = 10 time
points, p = 3 genes and k = 2 latent states. The
true newtork is depicted on the left in Fig. 3.

In the initialization step of the EM-algorithm, Z
and F are assumed to be identity matrices,
whereas A to set to zero. For B we
perform a simple linear regression where we
regress all observed genes on the previous
time point. The diagonal variance matrix R
is given the usual variance estimate coming
from the regression. We apply the bootstrap
procedure to the data and identify the significant
and non-significant parameters through the use
of bootstrap confidence intervals on the element
Gij of the network. For this decision problem
where we formulate two hypotheses, namely,

H0 : Gij = 0

H1 : Gij ̸= 0

where rejecting H0 indicates the presence of a
connection among the gene i to j. With k equals
2, we obtained network shown on the right in Fig.
3.

Table 1 depicts the performance of our method as
the size of the network increases. Comparison
is also made to the method of [12], in which
no replicates are considered. In order to deal
with the replicates, an average profile across
50 biological replicates is calculated. When
p increases, our method is able to detect the
network more accurately. The reason is that the
number of latent states k = 2 for larger network in
terms of p becauses relatively speaking smaller,
which makes network detection easier. Ignoring
the inter-replicate variability, however, means
that, unlike it is the case for our method, there
is no gradual improvement in network detection
for the other SSM method.

4 APPLICATION

For this study, to demonstrate the application of
our network inference method, we used publicly
available data. Two separate experiments
investigated the expression response of human
T-cells to PMA and ionomicin treatment. The
entire data set is a combination of the datea
from these two experiments. The first data
set (tcell.34) contains the temporal expression
levels of 58 genes for 10 unequally spaced
time points. At each time point there are
34 separate measurements. The second data
set (tcell.10) comes from a related experiment
considering the same genes and identical time
points, and contains 10 further measurements
per time point. Therefore, at each time point there
are 44 separate measurements or replicates.
Corresponding to each gene expression ytr,
we also assumed the existence of generative
replicates for the hidden variables θtr. With p =
58 genes, R = 44 as replicates and T = 10,
the constraint represented by Equation (2.3) is
satisfied, indicating that we have enough data
to estimate our parameters. The dimension of
the hidden variables was determined using AICc
as explained in section 2.4. Table 2 shows the
behavior of AICc with corresponding k’s. It turns
out that k = 4 is the optimum number of the
hidden states. This is fewer than [12] and [14]

10
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who obtained 9, 14 respectively under different
criteria.

In essence, we treated the data as a time series
measurement data ytr , t = 1, 2, ..., 10 and r =
1, 2, ..., 44. For each replicate, yt and θt consist of

58 genes and 4 transcriptions factors respectively,
each, measured at 10 different time points, i.e
for each replicate r, yt and θt are of dimension
(58 × 10), (4 × 10) respectively. Some of these
genes include RB1, CCNG1, TRAF5, CLU.... The
parameters Q were fixed.

Fig. 3. The true network G (left) and recovered network (right) Ĝ

Table 1. Simulation results showing the average scores for true positive rates (TPR), false
positive rates (FPR) and F1-scores as the number of nodes p increases. We compare the

performance of our method and the method of [12], whereby for the latter it is necessary to
average across the replicates. The TPR, FPR and F1 are average scores across 50

simulations. The numbers in parentheses represent the standard deviations. In each
simulation T = 10 is the number of time points, nR = 50 the number of replicates and k = 2

the number of hidden states

p 10 20 60
method Our Rangel Our Rangel Our Rangel

TPR 0.558 0.15 0.935 0.213 0.961 0.123
(0.483) (0.000) (0.072) (0.369) (0.001) (0.410)

FPR 0.098 0.000 0.017 0.003 0.006 0.002
(0.040) (0.000) (0.013) (0.003) (0.0007) (0.002)

F1-score 0.410 0.208 0.827 0.250 0.816 (0.350)
(0.358) (0.360) (0.115) (0.433) (0.005) (0.391)

Table 2. For the selection of the dimension of the latent states in the state space model, we
calculate the AICc as a function of the number latent states k

k 2 3 4 5 6 8 10
AICc 3,386,201 2,537,048 2,524,402 2,849,645 2,800,490 2,884,533 3,137,672

11
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Based on 95% confidence intervals to detect
significant interactions, we plot the connectivity
matrix of the directed genomic network Ĝ. The
output is a directed graph showing connections
from one gene expression variable at a given
time point t to another gene expression variable
whose expression it influences at the next time
point, t + 1. The arrows indicates the direction
of the regulation. The entire directed graph
Ĝ gives 350 genomic interactions. Fig. 4
represents a portion of the interaction network
φ̂ where we indicate genes that have at least 3
outwards connections. These genes include the
FYN-binding protein gene FYB, the JUND proto-
oncogene, the CD69 antigen p60, early T-cell
activation antigen to mention but a few. Fig. 5

is the sub-network produced at 95% confidence
level and it represents the interaction between,
two Jun proteins family namely JUNB and JUND
and various genes involved in programmed cell
death. The results of our method in Fig. 5 support
the hypothesis of the anti-proliferation and anti-
apoptotic role of JUND.

According to our method, the following genes
were mostly seen as regulatory genes. These
genes include the JUND proto-oncogene, the
CLU gene, the cell division cycle 2 CDC2,
the FYN-binding protein gene FYB, TRAF5, the
CD69 and the GATA-binding protein 3. The
latent variables were also seen to regulate the
expression level of most genes as can be seen
in Fig. 4.

Fig. 4. Sub-network found representing the genomic interactions Ĝ, of genes with at least 3
outwards connections, nodes refer to gene expression in the form of proteins or RNAs;

empty nodes refer to latent variables

12



Lotsi and Wit; BJAST, 17(4), 1-18, 2016; Article no.BJAST.28154

Fig. 5. Sub-network found representing the interactions between Jun proteins family and
apotostic genes

Fig. 6. Sub-network found representing the topology of gene FYB in connection with other
genes

13
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Our approach has revealed interesting features
in the family of Jun genes. The network in
Fig. 5 provides support for several hypotheses
that were also confirmed in [12] and [14].
However, we also found new connections. Our
results support the interaction between the proto-
oncogene JUNB, the apoptosis-related cysteine
protease genes CASP4 and CASP8. The
implication is that JUNB is clearly modelled as
a pro-apoptotic gene by activating CASP4 and
CASP8. This interaction was also was recovered
by [14]. We, however, found no evidence
for interaction between JUNB and MAP3K8.
Also Fig. 5 reveals that the proto-oncogene
JUND activates the GATA-binding protein 3,
but represses the expression level of the cell
division cycle 2 (CDC2). This further supports
the anti-proliferative JUND. Furthermore, in our
model, the survival of motor neuron 1 gene
SMN1 and the cell division cycle CDC2 influence
the expression level of JUNB and MAPK8
respectively. JUNB activates the expression level
of CDC2. A critical comparison of our Fig. 5 to
that of similar sub-networks found in the work
of [15] and [14] shows that in all the 3 sub-
networks, JUND regulates the expression level
of CDC2. JUNB activates CASP8 in the sub-
network found by [14] and indirectly regulates
CASP8 through CASP4 in the sub-network found
by [15]. However we found interaction between
JUNB and both CASP8 and CASP4.

The gene FYN-binding protein FYB has been
found to occupy one of the most crucial positions
in the network recovered by [12] also it has a
high degree of connectivity in our work. Fig. 6
reveals some crucial genes that are found to be
directly connected to FYB. Most importantly, in
our model FYB influences the expression level of
genes such as the early T-cell activation marker
CD69, the JUNB proto-oncogen. FYB is also
seen to be connected to genes such as APC,
API2, and CIR. Clearly, these results support
the fact that FYB mRNA levels are predictive
of the expression level of a number of genes.
The hidden state dimensionality was found to be
4, a result similar to the work of [15] in which
they developed an iterative empirical Bayesian
procedure with a Kalman filter to estimate the
posterior distributions of network parameters.
[12] found the dimension of the hidden state to

be 9 through cross validation, while [14] obtained
the value of 14 through a variational Bayesian
approach. At a 95% confidence level, we found
no significant interactions among the hidden
variables or transcription factors. However their
role in the transcription process can not be
ignored as the inferred matrix Z representing
instantaneous protein-RNA transcription was not
sparse signifying that the transcription factors
regulate the expression level of most mRNAs.

5 CONCLUSION

In this paper, we have developed a state
space model with biological replication and
applied it to the T-cell data. We used the EM
algorithm combined with the bootstrap to infer the
structure of the underlying genomic network. The
proposed method offers significant advantages
over other methods that have recently appeared
in the literature. For example, [14] used a
variational Bayesian methodology which is an
approximation of the posterior distribution of
the parameters, whereas we obtained much
faster results through direct inference of the
parameters. [12] used cross validation as a
model selection technique which is quite slow as
compared to AIC. [16] used an ad hoc method
for selecting the hidden state dimensionality k,
while our method uses a data-driven approach.
Also our model allows for dynamic correlation
over time, as each observation and hidden
state depend explicitly on some function of
previous observations as opposed to the model
described by [27, 28, 10]. Their model does
not allow for RNA-protein translation and RNA-
RNA interactions through the matrix A and B
respectively in our model.

One fundamental assumption in our proposed
model is the first-order linear dynamics in the
state and observation equations of the SSM.
This assumption can only be an approximation
to the true nature of a complex biological system
since more realistic models of gene regulatory
interactions surely include complex interactions
or nonlinear relationships. Our linear dynamics
assumption is a stepping stone upon which a
future model with non-linear dynamics will be
explored. With application to the t-cell data, we
have discovered new interactions that have not
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yet been reported in the current literature; as as
part of our ongoing work we are investigating
these interactions further.

Furthermore the AIC approach is prone to over-
fitting, especially in high-dimensional data. A
natural way to avoid this over-fitting is through
regularization.

Given that Most of existing time-series gene
expression data have much fewer replicates,
e.g., 3, 2, 1 or no replicates our bound condition
(2.4) may be broken down making our system
non-identifiable. We can overcome this situation
by imposing a penalty on the parameters. In
future work, we plan to employ a penalized
maximum likelihood strategy in the context of
the EM algorithm in the state space model.
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Kestler HA. Inferring boolean network
structure via correlation. Bioinformatics.
2011;27(11):1529-1536.

[8] Fahrmeir L, Kunstler R. Penalized likelihood
smoothing in robust state space models.
Biometrika (1999). 2009;49:173-191.

[9] Fahrmeir L, Wagenpfeil S. Penalized
likelihood estimation and iterative kalman
smoothing for non-gaussian dynamic
regression models. Computational Statistics
& Data analysis. 1997;24:295-320.

[10] Fang-Xiang W, Wen-Jun Z, Anthony JK.
Modelling gene expression from microarray
expression data with state-space equations.
Biocomputing. 2004;9:588-592.

[11] Ghahramani Z. Introduction to hidden
markov models and bayesian networks.
International Journal of Pattern Recognition
and Artificial Intelligence. 2001;15(1):9-42.

[12] Rangel C, Angus J, Ghahramani Z,
Lioumi M, Sotheran E, Gaiba A, David LW,
Falciani F. Modeling t-cell activation using
gene expression profiling and state-space
models. Bioinformatics. 2004;20(9):1361-
1372.

[13] Yamaguchi R, Yoshida R, Imoto S,
Higuchi T, Miyano S. Finding module-
based gene networks with state-space
models. IEEE Signal Processing Magazine.
2007;37.

[14] Beal MJ, Falciani F, Ghahramani Z,
Rangel C, Wild DL. A bayesian approach to
reconstructing genetic regulatory networks
with hidden factors. Bioinformatics.
2005;21:349-356.

[15] Rau A, Foulley JL, Jaffrzic F,
Doerge W Rebecca. An empirical bayesian
method for estimating biological networks
from temporal microarray data. Statistical
Applications in Genetics and Molecular
Biology. 2010;9(1):2010.

[16] Bremer M, Doerge RW. The km-algorithm
identifies regulated genes in time series
expression data. Advances in Bioinformatics
(in press); 2009.

[17] Hirose O, Yoshida R, Imoto S, Yamaguchi R,
Higuchi T, Charnock-Jones DS, Print C,

15



Lotsi and Wit; BJAST, 17(4), 1-18, 2016; Article no.BJAST.28154

Miyano S. Statistical inference of
transcriptional module-based gene
networks from time course gene expression
profiles by using state space models.
Bioinformatics. 2008;24(7):932-942.
Available: http://bioinformatics.oxford
journals.org/content/24/7/932.full.pdf
+html; http://bioinformatics.oxford
journals.org/content/24/7/932.abstract

[18] Hirose O, Yoshida R, Imoto S, Higuchi T,
Miyano S. Analyzing time course gene
expression data with biological and
technical replicates to estimate gene
networks by state space models. 2008;940-
946.

[19] Dempster AP, Laird NM, Rubin DB.
Maximum likelihood from incomplete
data via the em algorithm. Journal of
the Royal Statistical Society Series B
(Methodological). 1977;39(1)1-38.
Available: http://www.jstor.org/stable
/2984875

[20] Shumway RH, Stoffer DS. Time series
analysis and its applications with r
examples. second edition; 2005.

[21] Meinhold RJ, Singpurwalla ND.
Understanding the kalman filter. The
Americam Statistician. 1983;37(2):123-127.

[22] Efron B. Bootstrap methods: Another look
at the jacknife. The Annals of Statistics.
1979;7:1-26.

[23] Ljung L, Caines P. Asymptotic normality of
prediction error estimators for approximate
systems models. Stochastics. 1979;3:29-
46.

[24] Dent W, Min A. A monte carlo study of
autoregressive integrated-moving average
processes. Journal of Econometrics.
1978;7:23-55.

[25] Brown RG, Hwang PY. Introduction to
random signals and applied kalman filtering.
John Willey and Sons, New York; 1997.

[26] Dewey TG, Galas DJ. Generalized
dynamical models of gene expression
and gene classification. Funt Int Genomics.
2000;1:269-278.

[27] Yamaguchi R, Higuchi T. State-space
approach with the maximum likelihood
principle to identify the system generating
time-course gene expression data of yeast.
Int J Data Mining and Bioinformatics.
2006;1(1):77-87.

[28] Perrin B, Ralaivola L, Mazurie A, Bottani S,
Mallet J, d’Alche Buc F. Gene networks
inference using dynamic bayesian networks.
Bioinformatics. 2003;19(Suppl2):138-148.

[29] Shumway R, Stoffer D. An approach to
time series smoothing and forecasting using
the em algorithm. JTime series Analysis.
1982;3:253-264.

[30] Shumway R. Dynamic mixed models for
irregularly observed time series. Resenhas-
Reviews of the Institute of Mathematics
and Statistics, University of Sao Paulo,USP
Press, Brazil. 2000;4(4):433-456.

[31] George C, Berger RL. Statistical inference;
1996.

[32] Akaike H. A new look at the statistical
model identification. Automatic Control,
IEEE Transactions. 1974;19(6):716 -723.

[33] Schwarz G. Estimating the dimension
of a model. The Annals of Statistics.
1978;6(2):461-464.

[34] Hurvich CM, Tsai CL. Regression and time
series model selection in small samples.
Biometrika. 1989;76(2):297-307.

[35] Hurvich CM, Tsai CL. A corrected
akaike information criterion for vector
autoregressive model selection. Journal of
Time Series Analysis. 1993;14(3):271-279.

[36] Burnham KP, Anderson DR. Model selection
and multi-model inference. 2002;2.

[37] Wild DL, Rangel C, Angus J, Ghahramani Z.
Modeling genetic regulatory networks
using gene expression profiling and state
space models. Probabilistic Modelling in
Bioinformatics and Medical informatics
Springer-Verlag (in press); 2004.

16



Lotsi and Wit; BJAST, 17(4), 1-18, 2016; Article no.BJAST.28154

APPENDIX

We outline here the derivations of the update equations. We write Q(Z,B) as

Q(Z,B) =

nR∑
r=1

Eθ,φ∗
[
lryr,θr (Z,B)

]
(5.1)

then

Q(Z,B) = −
nR∑
r=1

T∑
t=1

y
′
trytr + 2

nR∑
r=1

∑
t

E(θ
′
trZytr)

+2

nR∑
r=1

∑
t

y
′

(t−1)rB
′
ytr −

nR∑
r=1

T∑
t

ZE(θ
′
trθtrZ

′
)

−2

nR∑
r=1

T∑
t

E(θ
′
trZ

′
By(t−1)r)−

nR∑
r=1

T∑
t

B
′
y
′

(t−1)ry(t−1)rB

Setting ∂
∂Z

Q(Z,B) and ∂
∂B

Q(Z,B) equal 0 result in two linear system of equations in the form:

0 = − 1

2σ2
ξtr

nR∑
r=1

T∑
t=1

[−2ytrE(θ
′
tr)

+2ZE(θtrθ
′
tr) + 2By(t−1)rE(θ

′
tr)]

(5.2)

and

0 = − 1

2σ2
ξtr

nR∑
r=1

T∑
t=1

[−2y(t−1)ry
′
tr + 2y(t−1)rE(θ

′
tr)Z

′

+2(y(t−1)ry
′
(t−1)rB

′
)]

(5.3)

Equations 5.2 and 5.3 could also be re-written as

−Myθ + ZMθθ +BML(y)θ = 0 (5.4)

−ML(y)y +ML(y)θZ
′
+ML(y)L(y)B

′
= 0 (5.5)

where
Myθ =

∑
rt

ytrE(θ
′
tr), Mθθ =

∑
rt

E(θtrθ
′
tr), ML(y)L(y) =

∑
rt

y(t−1)ry
′

(t−1)r

ML(y)θ =
∑
rt

y(t−1)rE(θ
′
tr), ML(y)y =

∑
rt

y(t−1)ry
′
tr

and L(y) in Equations 5.4 and 5.5 is the shift operator on matrix y.
From Equation 5.4,

Z = MyθM
−1
θθ −BML(y)θM

−1
θθ (5.6)
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Substitute Equation 5.6 into Equation 5.5, gives

BML(y)L(y) = MyL(y) −MyθM
−1
θθ MθL(y) +BML(y)θM

−1
θθ MθL(y) (5.7)

Therefore
B =

[
MyL(y) −MyθM

−1
θθ MθL(y)

] [
ML(y)L(y) −ML(y)θM

−1
θθ MθL(y)

]−1
(5.8)

Also, from Equation 5.5
B = MyL(y)M

−1
yL(y) − ZMθL(y)M

−1
yL(y) (5.9)

Substitute Equation 5.9 into Equation 5.4, gives

ZMθθ = Myθ −MyL(y)M
−1
L(y)L(y)ML(y)θ + ZMθL(y)M

−1
L(y)L(y)ML(y)θ (5.10)

Rearranging Equation 5.10, we have

Z =
[
Myθ −MyL(y)M

−1
L(y)L(y)ML(y)θ

] [
Mθθ −MθL(y)M

−1
L(y)L(y)ML(y)θ

]−1

(5.11)

Equations 5.8 and 5.11 are the update equations in the maximization step used to infer the parameters
in the observation dynamics.

In the same manner we derive the updates equations for A and F for the model interaction parameters
in the state dynamics model.
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