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Abstract

This work follows the ideas of E. Akin in an attempt to ease the construction of strict Lyapunov functions
for dynamical polysystems by means of closed relations. A ”best hope” type of result is presented.
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1 Introduction

The notion of dynamical polysystem appeared in the 1970’s, being introduced by C. Lobry, [1]. It had the
following meaning: a dynamical polysystem on a manifold M is a family

Fpc = {F(·, u) : u ∈ Upc}

of smooth vector fields depending on a piecewise constant parameter u, called input . A similar meaning was
given to dynamical polysystems in the work of J. Tsinias and N. Kalouptsidis, [2].

In this paper, a dynamical polysystem is regarded in a slightly more general way, as a family of continuous
dynamical systems, all defined on the same metric space X, not necessarily by means of differential equations,
more like defined by Lovingood ([3]). The analogy between dynamical polysystems and control systems with
piecewise constant inputs is quite natural (also see [4]). Intuitively, a motion in a dynamical polysystem means
starting at a point x ∈ X, traveling for a time t1 according to a dynamical system Φ1, then switching to another
dynamical system Φ2 and traveling for a time t2, and so forth. This work is following some ideas of ([5], 1993).

2 Definitions

Consider a family F of continuous dynamical systems, all defined on a metric space X. For any φ ∈ F and
t ∈ R, φt(x) = φ(t, x) defines a homeomorphism φt on X, having inverse φ−t.

Definition 1. Let G be the subgroup of (R × Homeo(X), (+, ◦)) generated by {(t, φt) : φ ∈ F , t ∈ R}. The
pair (G, X) is called a dynamical polysystem on X. The accessibility semigroup of G, denoted by S, is the
subsemigroup of G generated by {(t, φt) : φ ∈ F , t ≥ 0}. The pair (S, X) is called the accessibility polysystem
on X generated by F .

A similar approach (for minimal dynamical systems, see [6]) appears in [7].

Remark 1. An element of G has form

g = (t, h) = (t1 + t2 + ...+ tk, φ
1
t1 ◦ φ

2
t2 ◦ ... ◦ φ

k
tk ), (1)

with ti ∈ R and φi ∈ F , for 0 ≤ i ≤ k.

The polysystem (G, X) can be considered (and, in fact, is) a G-dynamical system. In what follows, though,
notions related to dynamical systems in general may be defined or approached differently, given the concern for
regarding polysystems in close connection with continuous-time dynamical systems.

3 Preliminaries

This work explores stability in dynamical polysystems by means of Lyapunov functions in a topological context,
not making use of differential equations. Some other topological approaches (without explicitely using Lyapunov
functions) can be found in [8], [9], and [10].

This section follows the ideas of E. Akin in an attempt to ease the problem of finding strict Lyapunov functions
for polysystems. Very similar results appear, in a slightly different context, in [11]. In order to use these ideas,
let us observe that a polysystem can be viewed as a closed relation, in the following sense. Define a closed
relation on X by

f = {(x, gx) ∈ X ×X : g ∈ S[0,1]}, (2)
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where S[0,1] denotes all elements of S with time component between 0 and 1. Note that if y = gx, with g ∈ S,
then (x, y) ∈ fk, for some positive integer k.

The facts about closed relations listed below can be found in [5].

Definition 2. Let X be a metric space and f a closed relation on X.

A Lyapunov function for f is a continuous real-valued function L on X with the property that L(x) ≤ L(y)
whenever (x, y) ∈ f .

A point x ∈ X is regular for L if

L(y1) < L(x) < L(y2) whenever (y1, x) ∈ f and (x, y2) ∈ f

and critical for L if it is not regular.

Denote by |L| the set of critical points for L.

Also, |f | denotes the cyclic set of f , that is

|f | := {x ∈ X : (x, x) ∈ f}

Definition 3. Given a metric space X, a closed relation f on X, x, y ∈ X and ε > 0, an ε−chain from x to y
is a sequence of points in X, x = x0, x1, ..., xn = y with the property that

d(xi+1, f(xi)) < ε, for all i ∈ {0, ..., n− 1}.

Note that in the above definition d(xi+1, f(xi)) refers to the distance from a point to a set, which means, as
usually, the infimum of distances from xi+1 to every point in f(xi).

Definition 4. Given a closed relation f on a metric space X, define the chain relation Cf associated to f, by
(x, y) ∈ Cf if for every ε > 0, there exists an ε-chain from x to y.

Note that Cf is a closed transitive relation containing f .

Theorem 1. (Akin, [5, pp. 33]) If F is a closed transitive relation on a compact metric space X then there
exists a Lyapunov function L for F with |L| = |F |.

Corollary 1. (Akin, [5, pp. 34]) If f is a closed relation on a compact metric space X then there exists a
Lyapunov function L for f with |L| = |Cf |.

4 Polysystems Viewed as Closed Relations

Definition 5. Let X be a metric space and (S, X) a polysystem, as defined in section 1. A Lyapunov function
for the polysystem (S, X) is a continuous real-valued function L on X with L(x) ≤ L(gx) for every x ∈ X and
g ∈ S.

Remark 2. If f is defined by 2 and L is a Lyapunov function for f then L is a Lyapunov function for the
polysystem (S, X).

Proof. Let L be a Lyapunov function for f , let g ∈ S and x ∈ X. Writing g as g = g1g2...gk, with gi ∈ S[0,1] for
all i ∈ {1, 2, ..., k}, we have

L(gx) = L(g1g2...gk.x) ≥ L(g2...gk.x) ≥ ... ≥ L(gk.x) ≥ L(x).
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Definition 6. Given ε > 0 and x, y ∈ X, an ε-chain from x to y in the polysystem (S, X) is a sequence of
pairs (g0, x0), (g1, x1), ..., (gk, xk) in (S, X) with x0 = x, xk = y, gi ∈ S[1,∞) for all i and d(xi+1, gi.xi) < ε for
all i ∈ {0, 1, ..., k}.

Note that the requirement gi ∈ S[1,∞) is needed to avoid triviality in constructing ε−chains. Without it, any
two points in X could be connected through an ε−chain, using the mere continuity of actions by elements in S
on X.

Finally, define a chain relation C for the polysystem (S, X), by

(x, y) ∈ C if for every ε > 0 there exists an ε− chain from x to y, (3)

(in the sense of polysystems).

Definition 7. A point x in X is said to be chain-recurrent (in the sense of polysystems) if x ∈ |C|, (that is,
for every ε > 0 there exists an ε-chain from x to x).

Proposition 1. If f is defined by 2 and C by 3 then C ⊂ Cf .

Proof. Let (x, y) ∈ C. For ε > 0 there exists an ε − chain (in the sense of polysystems) from x to y,
(g0, x0), (g1, x1), ..., (gk, xk). Every gi in this chain can be written as

gi = gj1i g
j2
i ...g

jki
i

with g
jl
i ∈ S[0,1], for all l. We can construct then an ε− chain from x to y (in the sense of relations), as follows:

x = x0, ..., gi−1xi−1, xi, g
jki
i xi, g

jki−1

i g
jki
i xi, ..., g

j1
i g

j2
i ...g

jki
i xi = gixi, xi+1, ..., ..., xk.

It suffices to show now that d(gi−1xi−1, f(xi)) < ε and d(g
jki
i xi, f(xi)) < ε. The first inequality is seen to be

satisfied by noting that d(gi−1xi−1, xi) < ε and xi ∈ f(xi). The second one is true since g
jki
i xi ∈ f(xi) and so

d(g
jki
i xi, f(xi)) = 0 < ε.

Theorem 2. If (S, X) is a polysystem defined on the compact metric space X then there exists a Lyapunov
function L for the polysystem with |L| = |Cf |.

Proof. The theorem follows from Corollary 1.

Corollary 2. If (S, X) is a polysystem defined on the compact metric space X then there exists a Lyapunov
function L for the polysystem with |C| ⊂ |L|.

5 Conclusion

From this Corollary we draw the conclusion that, in trying to obtain a strict Lyapunov function L for the
polysystem (S, X), the most one can hope is that the critical points for L are precisely the chain-recurrent
points in the polysystem.
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