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This paper investigates fixed points of Reich-Suzuki-type nonexpansive mappings in the context of uniformly convex Banach
spaces through an M∗ iterative method. Under some appropriate situations, some strong and weak convergence theorems are
established. To support our results, a new example of Reich-Suzuki-type nonexpansive mappings is presented which exceeds the
class of Suzuki-type nonexpansive mappings. The presented results extend some recently announced results of current literature.

1. Introduction

Fixed point theory and applications played an important role
in many areas of applied sciences and solved many problems
rising in engineering, mathematical economics and optimi-
zation. When the problem cannot be solved by ordinary
analytical methods, we transform it to the form of fixed point
problems and apply an appropriate iterative method to
obtain the required fixed point. In 1922, Banach [1] proved
that if T is contraction mapping on a closed subset K of a
Banach space, that is, kTs − Ts′k ≤ αks − s′k for a fixed α ∈
½0, 1Þ and s, s′ ∈ K , then T possesses a unique fixed point,
which can be obtained by using the Picard [2] iteration pro-
cess. In 1930, Caccioppoli [3] extended the Banach result to
the frame work of complete metric spaces. The Banach-
Caccioppoli results is an important tool for solving many
problems in fractional calculus, mathematical biology, math-
ematical economics, and engineering. Nevertheless, the con-
clusions of Banach-Caccioppoli result no more holds if one

replace the contraction condition of T by a nonexpansive
condition of T , that is, if one choose the value of α = 1 in
the contraction inequality, even the underlying space is a
Banach space. The first basic result concerning the existence
of a fixed point for the class of nonexpansive mappings was
independently proved by Browder [4] and Göhde [5]. They
proved that any nonexpansive mapping on a closed bounded
convex subset of a uniformly convex Banach space (in short
UCBS) always possesses a fixed point. The class of nonexpan-
sive mappings is an important extension of the class of con-
traction mappings. On the other hand, Suzuki [6]
introduced the notion of generalized nonexpansive mappings
by restricting the range of elements that satisfy the nonex-
pansive inequality: a selfmap T on a subset K of a Banach
space is said to be Suzuki-type nonexpansive if for all s, s′ ∈
K satisfying the condition 1/2ks − Tsk ≤ ks − s′k, one has
the inequality kTs − Ts′k ≤ ks − s′k. Obviously, any nonex-
pansive mapping T belongs to the class of Suzuki-type non-
expansive mappings. Recently in 2019, Pant and Pandey [7]
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introduced an interesting generalization of Suzuki-type non-
expansie mappings: a selfmap T on a subset K of a Banach
space is said to be Reich-Suzuki-type nonexpansive if for all
s, s′ ∈ K , satisfying the condition 1/2ks − Tsk ≤ ks − s′k, one
can find a real constant c ∈ ½0, 1Þ, such that kTs − Ts′k ≤ cks
− Tsk + ks′ − Ts′k + ð1 − 2cÞks − s′k. The class of Reich-
Suzuki-type nonexpansive mappings is important, because
it properly contains the class of Suzuki-type nonexpansive
mappings as shown by an example in this paper. Unlike con-
traction mappings, Picard iterative process does not always
converge to a fixed point of a nonexpansive mapping T even
FðTÞ = fp ∈ K : Tp = pg ≠∅. For finding fixed points of
nonexpansive and generalized nonexpansive mappings,
many iterative processes are available in the literature (see,
e.g., Mann [8], Ishikawa [9], Agarwal et al. [10], Noor [11],
Abbas and Nazir [12], and Thakur et al. [13]). For more
details on this direction, we shall refer the reader to [14–18].

Recently, Ullah and Arshad [19] introduced a new
iterative process called M∗ iterative process, as follows:

s1 ∈ K ,
zn = 1 − ρnð Þsn + ρnTsn,
yn = T 1 − δnð Þsn + δnTznð Þ,
sn+1 = TynÞ:

9>>>>>=
>>>>>;

ð1Þ

They proved that M∗ iterative process can be used for
finding fixed points of Suzuki-type nonexpansive mappings.
With the help of a numerical example, they proved that M∗

iterative process converges faster that all of the Mann,
Ishikawa, Agarwal, Noor, Abbas, and Thakur iterative
processes. In this paper, we extend their results to the general
setting of Reich-Suzuki-type nonexpansive mappings.

2. Preliminaries

This section is consists of some basic definitions and earlier
results, which are needed in sequel.

Definition 1. Let fsng be a bounded sequence in a Banach
space X and ∅≠ K ⊆ X. The asymptotic radius of fsng wrt
to K is rðK , fsngÞ = inf flim supn⟶∞ksn −wk: w ∈ Kg.
Moreover, the asymptotic center of fsng relative to K is the
set AðK , sngÞ = fw ∈ K : lim supn⟶∞ksn −wk = rðK , snÞg.

Remark 2. In Banach spaces, the set AðK , fsngÞ is singleton
provided that X is uniformly convex [20]. Moreover, the set
AðK , fsngÞ is convex provided that K is weakly compact
and convex (see, e.g., [21, 22]).

Definition 3 (see [23]). A Banach space X is said to be
endowed with an Opial’s property provided that for any
sequence fsng in X which weakly converges to s ∈ X and for
each element w of X - fsg, it follows that

lim sup
n⟶∞

sn − sk k < lim sup
n⟶∞

sn −wk k: ð2Þ

The following result gives many numbers of Reich-
Suzuki-type nonexpansive mappings.

Lemma 4 (see [7]). Let K be a nonempty subset of a Banach
space and let T : K ⟶ K be a Reich-Suzuki-type nonexpan-
sive mapping. Then, T is also Suzuki-type nonexpansive
mapping with a real constant c = 0.

Lemma 5 (see [7]). Let K be a nonempty subset of a Banach
space and let T : K ⟶ K be a Reich-Suzuki-type nonexpan-
sive mapping. Then, for all p ∈ FðTÞ and s ∈ K , we have kTs
− pk ≤ ks − pk.

Lemma 6 (see [7]. Let K be a nonempty subset of a Banach
space and let T : K ⟶ K be a Reich-Suzuki-type nonexpan-
sive mapping. Then, for all s, s′ ∈ K , we have ks − Ts′k ≤ ð3
+ c/1 − cÞks − Tsk + ks − s′k.

Lemma 7 (see [15]). Let T be a Reich-Suzuki-type nonexpan-
sive mapping on a subset K of a Banach space X with the Opial
property. If fsng converges weakly to q and limn⟶∞ksn − T
snk = 0, then q ∈ FðTÞ.

We recall an important result of Schu [24].

Lemma 8. Let X be a UCBS and 0 < a ≤ dn ≤ b < 1 for all n
∈ℕ. If fgng and fhng are two sequences in X such that
lim supn⟶∞kgnk ≤ ξ, lim supn⟶∞khnk ≤ ξ, and limn⟶∞k
dngn + ð1 − dnÞhnk = ξ for some ξ ≥ 0, then limn⟶∞kgn −
hnk = 0.

3. Convergence Theorems in Uniformly Convex
Banach Spaces

This section deals with some weak and strong convergence
results. First, we give the following key lemma, which will
play an important role in the sequel.

Lemma 9. Let K be a nonempty closed convex subset of a
Banach space X and let T : K ⟶ K be a Reich-Suzuki-type
nonexpansive mapping with FðTÞ ≠∅. For arbitrarily chosen
s1 ∈ K , let the sequence fsng be defined by (1); then,
limn⟶∞ksn − qk exists for all q ∈ FðTÞ.

Proof. Suppose q ∈ FðTÞ. By Lemma 5, we have

sn+1 − qk k = Tyn − qk k ≤ yn − qk k = T 1 − δnð Þsn + δnTznð Þ − qk k
≤ 1 − δnð Þsn + δnTzn − qk k ≤ 1 − δnð Þ sn − qk k + δn zn − qk k
= 1 − δnð Þ sn − qk k + δn 1 − ρnð Þsn + ρnTsn − qk kð Þ
≤ 1 − δnð Þ sn − qk k + δn 1 − ρnð Þ sn − qk k + ρn Tsn − qk kð Þ
≤ 1 − δnð Þ sn − qk k + δn 1 − ρnð Þ sn − qk k + ρn sn − qk kð Þ
= 1 − δnð Þ sn − qk k + δn sn − qk kð Þ = sn − qk k:

ð3Þ

Thus, fksn − qkg is bounded and nonincreasing, which
implies that limn⟶∞ksn − qk exists for each q ∈ FðTÞ.
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Now, we establish the following theorem, which will be
used in the upcoming strong and weak convergence results.

Theorem 10. Let K be a nonempty closed convex subset of a
UCBS X and let T : K ⟶ K be a Reich-Suzuki-type nonex-
pansive mapping. Let fsng be the sequence defined by (1).
Then, FðTÞ ≠∅ if and only if fsng is bounded and limn⟶∞
ksn − Tsnk = 0.

Proof. Assume that the sequence fsng is bounded and
limn⟶∞ksn − Tsnk = 0. Fix q ∈ AðK , fsngÞ. We need to prove
that q is the element of FðTÞ. Using Lemma 6, we have

r Tq, snf gð Þ = lim sup
n⟶∞

sn − Tqk klim sup
n⟶∞

3 + c
1 − c

� �
sn − Tsnk k

+ lim sup
n⟶∞

sn − qk k = lim sup
n⟶∞

sn − qk k = r q, snf gð Þ:

ð4Þ

Hence, Tq ∈ AðK , fsng. Since the set AðK , fsngÞ is single-
ton, we must have Tq = q. Hence, p is the element of FðTÞ
and so FðTÞ ≠∅.

Conversely, we take the set FðTÞ ≠∅ and prove that the
sequence fsng is bounded and limn⟶∞ksn − Tsnk = 0. Fix q
∈ FðTÞ. By Lemma 9, limn⟶∞ksn − qk exists and fsng is
bounded. Let us put

lim
n⟶∞

sn − qk k = ξ: ð5Þ

In the proof of Lemma 9, we see that

zn − qk k ≤ sn − qk k⇒ lim sup
n⟶∞

zn − qk k ≤ lim sup
n⟶∞

sn − qk k = ξ:

ð6Þ

Using Lemma 5 and (5), we obtain the following:

lim sup
n⟶∞

Tsn − qk k ≤ lim sup
n⟶∞

sn − qk k = ξ: ð7Þ

Again in the from the proof of Lemma 9, we see that

sn+1 − qk k ≤ 1 − δnð Þ sn − qk k + δn zn − qk k: ð8Þ

It follows that

sn+1 − qk k − sn − qk k ≤ sn+1 − qk k − sn − qk k
δn

≤ zn − qk k − sn − qk k:

ð9Þ

So, we can get ksn+1 − qk ≤ kzn − qk.

⇒ξ ≤ lim inf
n⟶∞

zn − qk k: ð10Þ

From (6) and (10), we get

ξ = lim
n⟶∞

zn − qk k: ð11Þ

Using (11), we have

ξ = lim
n⟶∞

zn − qk k = lim
n⟶∞

1 − ρnð Þsn + ρnTsn − qk k
= lim

n⟶∞
1 − ρnð Þ sn − qð Þ + ρn Tsn − qð Þk k:

ð12Þ

Hence

ξ = lim
n⟶∞

1 − ρnð Þ sn − qð Þ + ρn Tsn − qð Þk k: ð13Þ

Now bearing (5), (7), and (13) and Lemma 8, we obtain

lim
n⟶∞

Tsn − snk k = 0: ð14Þ

Now, we state and prove the following strong convergence
results, under the strong assumption of compactness. Notice
that it is the extension of the ([19], Theorem 3.3) from the
setting of Suzuki-type nonexpansive mappings to the general
setting of Reich-Suzuki-type nonexpansive mappings.

Theorem 11. Let K be a nonempty convex compact subset of a
UCBS X and let T and fsng be as in Theorem 10 and FðTÞ
≠∅. Then, fsng converges strongly to the fixed point of T .

Proof. By Theorem 10, limn⟶∞kTsn − snk = 0. The com-
pactness of K follows that the sequence fsng has a strongly
convergent subsequence, namely, fsnlg with a strong limit,
say, v ∈ K . We need to prove that v is the strong limit of
fsng and v ∈ FðTÞ. Using Lemma 6, we have

snl − Tv
�� �� ≤

3 + c
1 − c

� �
snl − Tsnl

�� �� + snl − v
�� ��: ð15Þ

If we apply l⟶∞, then we obtain Tv = v, that is, v ∈
FðTÞ. By Lemma 9, limn⟶∞ksn − vk exists. Hence, v is the
strong limit of fsng.

Now, we shall only state the following result. We will not
include the proof here because the proof is elementary.

Theorem 12. Let K be a nonempty closed convex subset of a
UCBS X and let T and fsng be as in Theorem 10. If FðTÞ ≠
∅ and lim infn⟶∞ðinf p∈FðTÞksn − pkÞ = 0, then fsng con-
verges strongly to fixed point of T .

The following definition is essentially due to Sentor and
Dotson [25].

Definition 13. A mapping T on a subset K of a Banach space
X is said to satisfy condition ðIÞ if there exists some non-
decreasing function η : ½0,∞Þ⟶ ½0,∞Þ satisfying ηð0Þ = 0,
ηðaÞ > 0 for every a > 0 and ks − Tsk ≥ ηðinf q∈FðTÞks − qkÞ
for all s ∈ K .

The strong convergence result using condition ðIÞ is
given as follows. Notice that it is the extension of the [19],
Theorem 3.4, from the setting of Suzuki-type nonexpansive
mappings to the general setting of Reich-Suzuki-type nonex-
pansive mappings.
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Theorem 14. Let K be a nonempty closed convex subset of
UCBS X and let T and fsng be as in Theorem 10 and FðTÞ
≠∅. If T satisfies condition ðIÞ, then fsng converges strongly
to a fixed point of T .

Proof. From Theorem 10, it follows that

lim inf
n⟶∞

Tsn − snk k = 0: ð16Þ

Since T is mapping satisfying condition (I), so we have

sn − Tsnk k ≥ η inf
q∈F Tð Þ

sn − qk k
� ��

: ð17Þ

Using (16) and (17), we have

lim inf
n⟶∞

η inf
q∈F Tð Þ

sn − qk k
� ��

= 0: ð18Þ

But the function η is nondecreasing satisfying ηð0Þ = 0, so
we have

lim inf
n⟶∞

inf
q∈F Tð Þ

sn − qk k
� �

= 0: ð19Þ

The conclusions follows from Theorem 12.

We finish this section with following weak convergence
result. Notice that it is the extension of the [19], Theorem
3.2, from the setting of Suzuki-type nonexpansive mappings
to the general setting of Reich-Suzuki-type nonexpansive
mappings.

Theorem 15. Let X be a UCBS with Opial’s property, K a
nonempty closed convex subset of X, and T and fsng as in
Theorem 10 and FðTÞ ≠∅. Then fsng converges weakly to a
fixed point of T .

Proof. By Theorem 10, fsng is bounded and limn⟶∞kTsn
− snk = 0. The uniform convexity of X follows the reflexivity
of X. Hence, the sequence fsng must have a weakly conver-
genet subsequence, namely, fsnkg with a weak limit say, u1
∈ K . By Lemma 7, u1 is the element of the set FðTÞ. We need
only to show that u1 is the weak limit of the sequence fsng
itself. If u1 is not the weak limit of fsng, then one can choose
a subsequence, namely, fsnlg of fsng and u2 ∈ K such that
fsnlg converges weakly to u2 and u2 ≠ u1. Again by Lemma
7, u2 is the element of FðTÞ. By Lemma 9 and the Opial
property, we have

lim
n⟶∞

sn − u1k k = lim
k⟶∞

snk − u1
�� �� < lim

k⟶∞
snk − u2

�� ��
= lim

n⟶∞
sn − u2k k = lim

l⟶∞
snl − u2

�� ��
< lim

l⟶∞
snl − u1

�� �� = lim
n⟶∞

sn − u1k k:
ð20Þ

This is a contradiction. Therefore, the proof is complete.

4. Numerical Example

In this section, first we present a new example of Reich-
Suzuki-type nonexpansive mappings, which exceeds the class
of Suzuki-type nonexpansive mappings as follows.

–0.5 –0.4 –0.3 –0.2 –0.1 0.0
–0.05

–0.04

–0.03

–0.02

–0.01

0.00

0.0 0.1 0.2 0.3 0.4 0.5
0.00

0.01

0.02

0.03

0.04

0.05

–1.4 –1.2 –1.0 –0.8 –0.6 –0.4 –0.2 0.0

–0.14

–0.12

–0.10

–0.08

–0.06

–0.04

–0.02

0.00

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

s
n

+1
s
n

+1
s
n

+1
s
n

+1

s
n

s
n

s
n

s
n

s
1
 = –0.5

s
1
 = –1.5

s
1
 = 1.5

s
1
 = 0.5

Figure 1: Rate of convergence of M∗ (red line) and Thakur (blue
line) under different initial points.
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Example 16. Define T : ½−2, 2�⟶ ½−2, 2� by

Ts =

−
s
2 , for s ∈ −2, 0½ Þ \ −

1
4

� �

0, for s = −
1
4

−
s
5 for s ∈ 0, 2½ �:

8>>>>>>><
>>>>>>>:

ð21Þ

If we choose s = −1/4 and s′ = −2/5, then 1/2js − Tsj < js
− s′j and jTs − Ts′j > js − s′j. On the other hand, T is
Reich-Suzuki-type nonexpansive with the constant c = 1/2.
We shall include only nontrivial cases here.

Case 1. For s, s′ ∈ ½−2, 0Þ \ f−1/4g, we have

Ts − Ts′
�� �� = 1

2 s − s′
�� �� ≤ 1

2 sj j + 1
2 s′
�� �� ≤ 3

4 sj j + 3
4 s′
�� ��

= 1
2 s + s

2
��� ��� + 1

2 s′ + s′
2

�����
�����

≤ c s − Tsk k + c s′ − Ts′
�� �� + 1 − 2cð Þ s − s′

�� ��:
ð22Þ

Case 2. For s, s′ ∈ ½0, 2�, we have

Ts − Ts′
�� �� = 1

5 s − s′
�� �� ≤ 1

5 sj j + 1
5 s′
�� �� ≤ 6

10 sj j + 6
10 s′

�� ��

= 1
2 s + s′

5

�����
����� +

1
2 s′ + s′

5

�����
�����

= c s − Tsk k + c s′ − Ts′
�� �� + 1 − 2cð Þ s − s′

�� ��:
ð23Þ

Case 3. For s ∈ ½−2, 0Þ \ f−1/4g and s′ ∈ ½0, 2�, we have

Ts − Ts′
�� �� = s

5 −
s′
2

�����
����� ≤

1
2 sj j + 1

5 s′
�� �� ≤ 3

4 sj j + 6
10 s′

�� ��

= 1
2 s + s

2
��� ��� + 1

2 s′ + s′
5

�����
�����

= c s − Tsk k + c s′ − Ts′
�� �� + 1 − 2cð Þ s − s′

�� ��:
ð24Þ

Case 4. For s ∈ ½−2, 0Þ \ f−1/4g and s′ = −1/4, we have

Ts − Ts′
�� �� = 1

2 sj j ≤ 3
4 sj j ≤ 3

4 sj j + 1
8 = 1

2 s − Tsjk k + 1
2 s′ − Ts′
�� ��

= c s − Tsk k + c s′ − Ts′
�� �� + 1 − 2cð Þ s − s′

�� ��:
ð25Þ

Case 5. For s ∈ ½0, 2� and s′ = −1/4, we have

Ts − Ts′
�� �� = 1

5 sj j ≤ 6
10 sj j ≤ 6

10 sj j + 1
8 = 1

2 s − Tsk k + 1
2 s′ − Ts′
�� ��

= c s − Tsk k + c s′ − Ts′
�� �� + 1 − 2cð Þ s − s′

�� ��:
ð26Þ

Thus, T is a Reich-Suzuki-type nonexpansive mapping
with FðTÞ ≠∅.

Now, using the above example, and δn = 1/
ffiffiffiffiffiffiffiffiffiffi
n + 5

p
and

ρn =
ffiffiffi
n

p /ðn + 7Þ7/4, we get ksn − pk < 10−15, our stopping cri-
terion where p = 0 is a fixed point of T . The graphs in Figure 1
show that the sequence fsng generated by M∗ iteration pro-
cess converges faster than the sequence fsng generated by
the leading Thakur [13] iteration process.

Finally, we compare the numbers of iteration required to
obtain a fixed points ofM∗ iteration with leading Thakur and
S iterations. Set ksn − pk < 10−10 as a stopping criterion where
p = 0 is a fixed point of the mapping T .

Remark 17. Figure 1 and Table 1 suggest that M∗ is better
than the Thakur and S iterative processes.
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Table 1: Influence of parameters: comparison of various iteration
processes.

Iterations
Initial points

−1:9 −1:6 −1:1 1:2 1:6 1:9
For δn = n/ n + 1ð Þ10/9, ρn = 1/ n + 3ð Þ2/3
S 16 16 16 15 16 16

Thakur 9 9 8 9 9 9

M∗ 7 7 6 6 6 6

For δn = 1 − 1/
ffiffiffiffiffiffiffiffiffiffiffiffi
5n + 3

p
, ρn = 1/n3

S 18 18 18 15 15 15

Thakur 8 8 8 9 9 9

M∗ 5 5 5 5 5 5

For δn = 1/n, ρn = 1/
ffiffiffiffiffiffiffiffiffiffiffiffi
n + 24

p

S 18 18 1 8 17 18 18

Thakur 9 9 9 9 9 9

M∗ 8 8 8 8 8 8

For δn =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n/4n + 3

p
, ρn = 1/ 4n + 9ð Þ3/4

S 18 18 18 18 18 18

Thakur 10 9 9 9 10 10

M∗ 8 7 7 4 7 7

5Advances in Mathematical Physics



Acknowledgments

The authors are grateful to the Spanish Government for
Grant RTI2018-094336-B-I00 (MCIU/AEI/FEDER, UE)
and to the Basque Government for Grant IT1207-19.

References

[1] S. Banach, “Sur les opérations dans les ensembles abstraits et
leur application aux équations intégrales,” Fundamenta Math-
ematicae, vol. 3, pp. 133–181, 1922.

[2] E. Picard, “Memoire sur la theorie des equations aux derivees
partielles et la methode des approximations successives,” Jour-
nal de Mathématiques Pures et Appliquées, vol. 6, pp. 145–210,
1890.

[3] R. Caccioppoli, “Un teorema generale sullesistenza di elementi
uniti in una transformazione funzionale,” Rendiconti Accad-
emy Lincei, vol. 11, pp. 794–799, 1930.

[4] F. E. Browder, “Nonexpansive nonlinear operators in a Banach
space,” Proceedings of the National Academy of Sciences of the
United States of America, vol. 54, no. 4, pp. 1041–1044, 1965.

[5] D. Göhde, “Zum Prinzip der Kontraktiven Abbildung,”Math-
ematische Nachrichten, vol. 30, no. 3-4, pp. 251–258, 1965.

[6] T. Suzuki, “Fixed point theorems and convergence theorems
for some generalized nonexpansive mappings,” Journal of
Mathematical Analysis and Applications, vol. 340, no. 2,
pp. 1088–1095, 2008.

[7] R. Pant and R. Pandey, “Existence and convergence results for
a class of non-expansive type mappings in hyperbolic spaces,”
Applied General Topology, vol. 20, no. 1, pp. 281–295, 2019.

[8] W. R. Mann, “Mean value methods in iteration,” Proceedings
of the American Mathematical Society, vol. 4, no. 3, pp. 506–
510, 1953.

[9] S. Ishikawa, “Fixed points by a new iteration method,” Pro-
ceedings of the American Mathematical Society, vol. 44, no. 1,
pp. 147–150, 1974.

[10] R. P. Agarwal, D. O'Regan, and D. R. Sahu, “Iterative construc-
tion of fixed points of nearly asymptotically nonexpansive
mappings,” Journal of Nonlinear and convex Analysis, vol. 8,
no. 1, pp. 61–79, 2007.

[11] M. A. Noor, “New approximation schemes for general varia-
tional inequalities,” Journal of Mathematical Analysis and
Applications, vol. 251, no. 1, pp. 217–229, 2000.

[12] A. Abbas and T. Nazir, “A new faster iteration process applied
to constrained minimization and feasibility problems,” Mate-
matichki Vesnik, vol. 66, pp. 223–234, 2014.

[13] B. S. Thakur, D. Thakur, and M. Postolache, “A new iterative
scheme for numerical reckoning fixed points of Suzuki’s gen-
eralized nonexpansive mappings,” Applied Mathematics and
Computation, vol. 275, pp. 147–155, 2016.

[14] N. Pakkaranang, P. Kewdee, and P. Kumam, “The modified
multi step iteration process for pairwise generalized nonex-
pansive mapping in CAT(0) spaces,” in Econometrics for
Financial Applications. ECONVN 2018. Studies in Computa-
tional Intelligence, vol 760, L. Anh, L. Dong, V. Kreinovich,
and N. Thach, Eds., pp. 381–393, Springer, Cham, 2018.

[15] K. Ullah, J. Ahmad, and M. de la Sen, “On generalized nonex-
pansive maps in Banach spaces,” Computation, vol. 8, no. 3,
p. 61, 2020.

[16] P. Suntrayuth, N. Pakkaranang, P. Kumam, P. Thounthong,
and P. Cholamjiak, “Convergence theorems for generalized

viscosity explicit methods for nonexpansive mappings in
Banach spaces and some applications,” Mathematics, vol. 7,
no. 2, p. 161, 2019.

[17] D. Kitkuan, K. Muangchoo, A. Padcharoen, N. Pakkaranang,
and P. Kumam, “A viscosityforward-backward splitting
approximation method in Banach spaces and its application
to convex optimizationand image restoration problems,” Com-
putaional and Mathematical Methods, vol. 2, no. 4, 2020.

[18] G. A. Okeke, “Iterative approximation of fixed points of con-
traction mappings in complex valued Banach spaces,” Arab
Journal of Mathematical Sciences, vol. 25, no. 1, pp. 83–105,
2018.

[19] K. Ullah andM. Arshad, “New iteration process and numerical
reckoning fixed point in Banach spaces,” University Politeh-
nica of Bucharest Scientific Bulletin Series A, vol. 79, no. 4,
pp. 113–122, 2017.

[20] J. A. Clarkson, “Uniformly convex spaces,” Transactions of the
American Mathematical Society, vol. 40, no. 3, pp. 396–414,
1936.

[21] W. Takahashi, Nonlinear Functional Analysis, Yokohoma
Publishers, Yokohoma, 2000.

[22] R. P. Agarwal, D. O'Regan, and D. R. Sahu, Fixed Point Theory
for Lipschitzian-type Mappings with Applications Series, vol. 6
of Topological Fixed Point Theory and Its Applications,
Springer, New York, NY, USA, 2009.

[23] Z. Opial, “Weak convergence of the sequence of successive
approximations for nonexpansive mappings,” Bulletin of the
American Mathematical Society, vol. 73, no. 4, pp. 591–598,
1967.

[24] J. Schu, “Weak and strong convergence to fixed points of
asymptotically nonexpansive mappings,” Bulletin of the Aus-
tralian Mathematical Society, vol. 43, no. 1, pp. 153–159, 1991.

[25] H. F. Senter andW. G. Dotson, “Approximating fixed points of
nonexpansive mappings,” Proceedings of the American Mathe-
matical Society, vol. 44, no. 2, pp. 375–380, 1974.

6 Advances in Mathematical Physics


	Some Convergence Results for a Class of Generalized Nonexpansive Mappings in Banach Spaces
	1. Introduction
	2. Preliminaries
	3. Convergence Theorems in Uniformly Convex Banach Spaces
	4. Numerical Example
	Data Availability
	Conflicts of Interest
	Authors’ Contributions
	Acknowledgments

